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In this article we intend to show the use of well-known evolutionary computation techniques - Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) - in an indoor propagation problem. Although these algo-
rithms employ different strategies and computational efforts, they also share certain similarities. Their performance
is compared with a genetic algorithm (GA), which is used as reference in this case. The ability of these algorithms
to optimize access point locations using data derived from the neural network model of a particular Wireless Local
Area Network (WLAN) is demonstrated. Better results are obtained by the PSO algorithm compared to the ACO
algorithm. Although the ACO algorithm requires further work to optimize its parameters, improve the analysis
of pheromone data and reduce computation time, the ant colony-based approach is useful for solving propagation
problems.

Key words: Indoor propagation, Complex indoor environment, Signal strength prediction, WLAN, Neural net-
work modelling, Access point optimization, Particle swarm optimization, Ant colony optimization

Optimizacija položaja pristupnih točaka lokalne bežične mreže zasnovana na neuronskom modelu i evolu-
cijskim algoritmima. U članku se nastoji pokazati uporaba dobro poznatih evolucijskih računarskih tehnika - Op-
timizacija rojem čestica (PSO) i Optimizacija mravljom kolonijom (ACO) – u rješavanju propagacijskog problema
zatvorenog prostora. Spomenuti algoritmi imaju različite strategije i računarske zahtjevanosti, a istovremeno i niz
sličnosti. Ponašanje ovih alogoritama se uspore�uje s Genetskim algoritmom (GA), koji se koristi kao referenca.
Pokazana je sposobnost navedenih algoritama za optimiziranje pristupne točke bežične lokalne mreže korištenjem
podataka dobivenih od modela neuronske mreže. Algoritam roja čestica pokazao je bolje rezultate od algoritma
mravlje kolonije. Algoritam mravlje kolonije se pokazao korisnim, iako je potrebno dodatno optimizirati njegove
parametre, poboljšati analizu feromonskih podataka i smanjiti vrijeme rada računala.

Ključne riječi: širenje u zatvorenom prostoru, složeni prostor, predvi�anje snage signala, bežična lokalna mreža,
modeliranje neuronskom mrežom, optimizacija pristupne točke, optimizacija rojem čestica, opti-
mizacija mravljom kolonijom

1 INTRODUCTION

Indoor wireless communication systems - phones,
hand-held terminals, various PDA devices - are used ex-
tensively in modern society. These portable devices tend to
be mobile and in principle can be located anywhere, with
access points potentially providing a good link to the back-
bone of the communication system. Access points must be
positioned carefully so that they cover entire buildings at
an appropriate signal level. In general, the problem can
be reduced to the needs of the given building, from which
point questions such as how many access points will be
needed,and where do they need to be placed in order to
cover the building at minimum power level, can be an-
swered. The main environmental impact on propagation

occurs in terms of path loss, an accurate estimation of
which is extremely important for the proper determination
of access point locations. Knowledge of path loss enables
the determination of field signal strength, which in turn
leads to the effective positioning of access point locations.

Prediction of signal strength for indoor propagation en-
vironments must take into account the problems associ-
ated with multipath propagation, such as signal attenua-
tion, reflection, diffraction and interference caused by the
diversity of building geometrical and construction charac-
teristics. All of these factors combine to result in extreme
computational complexity. In the case of architecturally-
complex buildings, there is no truly accurate method of
signal strength prediction and thus neural network mod-
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els potentially offer an easy solution (less computing com-
plex) for propagation problem in indoor environments [1].
The neural modelling process includes both theoretical and
experimental investigations that result in a model based
on a multi-layer perceptron (MLP) [2]. Model inputs are
the positions (coordinates) of the base stations and of the
receiving point, while the output consists of one neuron
to obtain the relevant signal strength level. As a training
rule we selected an algorithm that updates weight and bias
values according to the Levenberg-Marquardt optimization
method [3]. This choice was the result of extensive inves-
tigation involving analysis of two neural network architec-
tures (multi-layer perceptron (MLP) and generalized radial
basis function (RBF) neural networks) and a number of dif-
ferent learning algorithms. The selected model was tested
in a particular building environment of such geometrical
and construction complexity that makes the application of
any analytical method very difficult. The neural network
was trained and tested by measuring the field strength at
various receiving points. The results were very promising
[4]. Such a trained neural network can be used to predict
both field strength distribution and optimum access point
position. We will try to show how this model can be useful
in the optimization of access point location.

The problem presented here is our attempt to optimally
locate a transmitter covering a specified coverage region,
so that the signal at every receiving point has sufficient
strength for quality communication. The results obtained
via neural network modelling were used in an optimiza-
tion process comprising two methods of biological origin:
Particle Swarm Optimization (PSO) and Ant Colony Op-
timization (ACO) algorithms. It has already been shown
how PSO can be effective in optimizing a variety of elec-
tromagnetic problems, especially regarding antenna design
[5]. In some instances this type of algorithm has outper-
formed other popular optimization methods such as genetic
algorithms (GA) [6], with this particular algorithm initially
developed in 1995 by Kennedy and Eberhart [7] and subse-
quently applied in a variety of fields. The second optimiza-
tion algorithm used here was the ACO algorithm, although
this is less popularly applied in electromagnetics. First de-
rived by Dorigo in 1991 [8], the ACO algorithm is based
on the behaviour of ant colonies in obtaining food and car-
rying it back to the nest. Ants select paths according to
the pheromone level they give off on the ground, with the
shortest path the one with the highest level of pheromones.
Although this technique is well-suited for discrete prob-
lems such as the travelling salesman problem, there are in-
stances of its application in antenna design [9]. We devel-
oped a numerical representation (cost function) system in
which the quality of signal coverage over the given space
can be expressed as a function of transmitter location. Ex-
treme values (minimum or maximum) of this cost function

represent an optimal location of an access point that satis-
fies given constraints. The trained neural network can then
be used to determine the signal level at an arbitrary point
wherever the access point is located. The presented model
ensures that signal strength is above the specified threshold
at any arbitrary point in the space under consideration.

2 THE NEURAL NETWORK MODEL AND COST
FUNCTION

The neural network model used is represented by the
network shown in Fig. 1 [10]. This model enables a prac-
tically unlimited number of access and receiving points to
be represented as inputs in the network, which in turn pro-
duces signal strength as output for the appropriate loca-
tions of these access and receiving points. The training of
the network was carried out by measuring signal strength
at these locations as described in [10]. The neural model
was applied to two different indoor environments for the
determination of the optimum location of access points:
simple and complex, as illustrated in Fig. 2 and Fig. 3, re-
spectively [10].

The neural network model is designed to obtain signal
strength at any particular location within a given environ-
ment in a very short time, while the indoor environment
itself can also be searched rapidly for any particular lo-
cation of an access point. In this way the optimum ac-
cess point location, i.e. one that ensures sufficient signal
strength at any arbitrary point, can be determined thanks to
the functional dependence between quality signal coverage
and access point location. In this case the arguments of the
function are the coordinates of access point location, while
the value of the function is that of space coverage with ade-
quate signal strength, which depends on the environmental
characteristics that influence signal propagation. All pos-
sible access point locations must be determined for the en-
tire environment, with the accuracy of the obtained results
depending on the density of the possible access point and
receiver locations. The inputs to the model are the coor-
dinates of the access point locations (more than one) and
of the receiver locations that can be randomly distributed
across the particular environment. Thus the cost function
can be defined as the sum of the signal strengths weighted
by the values that represent deviation from the given signal
threshold at the receiving point (-76 dBm in our case). The
cost function can be expressed as

fc = −
N∑

i=1

M∑

j=1

Si (xj , yj , zj)wj (Si(xj , yj , zj)) , (1)

where N is the number of access point locations, M is
the number of potential receiving points, Si is the signal
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Fig. 1. The neural network model

Fig. 2. Second-floor plan of the Dubrovnik University building showing the grid of measurement points and possible
locations of access points – simplex environment
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Fig. 3. Plan of the lobby at Dubrovnik University - complex environment

Fig. 4. Cost function for the assumed location of access point AP1
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strength (dBm) received from access point i that is located
at coordinates (xi, yi, zi) and wj is the weighted value of
receiving point j. The weighted values can be expressed
as follows:

Si (xj , yj , zj) > −60dBm → wj = 1
−60 ≥ Si (xj , yj , zj) ≥ −76dBm → wj = 10
Si (xj , yj , zj) < −76dBm → wj = 100

(2)

The above equations are used for calculation of the
cost function, while the signal strength for every receiving
point is obtained via the neural model. It is also neces-
sary to determine the coordinates of the access point for
which the cost function has minimal value. Signal cover-
age is neither smooth nor a derivable function of access
point location. Very small changes in the receiver posi-
tions can cause great variation in signal strength, which
in turn may result in the formation of many discontinuity
points in signal strength across the space under consider-
ation. These signal strength discontinuity points are dis-
tributed in an unpredictable manner and thus the classic
optimization method cannot be applied. The cost function
has many local minima, as can be seen in Fig. 4, which
presents the scenario for the assumed location of an access
point (AP1) and a limited number of receiving points (233)
a distance of 1 m from each other, applied for the complex
environment (Fig. 3). Signal strength was obtained by ap-
plying the neural model (Fig. 1) to the complex environ-
ment (Fig. 3). Analysis of Fig. 4 reveals the presence of
many discontinuities and local minima that influence the
optimization process significantly. According to these re-
sults, the optimization algorithm is very sensitive regarding
starting conditions and thus the use of evolutionary algo-
rithms is required.

3 EVOLUTIONARY OPTIMIZATION ALGO-
RITHMS

3.1 Particle Swarm Optimization (PSO)

The PSO algorithm has already shown low sensitivity
for local minima [7], while good results have also been ob-
tained when applying the algorithm to certain electromag-
netic problems [5]. Contrary to genetic algorithms, which
are based on Darwin’s theory of natural selection and com-
petition among chromosomes, the model of swarm intelli-
gent behaviour with change of position and velocity can be
founded upon swarm behaviour (like bees) [10].

As with genetic algorithms, the system is populated by
a specific number of particles (bees) which are randomly
distributed across a solution space. Particle movement is
determined by the random velocity associated with each
particle. Moving across the solution space, each particle

Fig. 5. The two particles searching solution space

not only ‘records’ its own best solution achieved so far
(pbest), but also knows the best result achieved by the en-
tire swarm (gbest). The behaviour of two particles is il-
lustrated in Fig. 5. Particle x1, searching solution space at
velocity v1, changes position by moving from location k to
location k + 1. At the same time the particle changes the
magnitude and direction of its velocity from vk1 to vk+1

1 .
The behaviour of the second particle x2 is identical to that
of the first. The personal best achieved result of particle x1
is pbest1 and that of particle x2 is pbest2, while the best
result of the entire swarm is gbest. These changes in lo-
cation and velocity ultimately lead the particles toward the
best solution.

The algorithm is generally applicable to n-dimensional
space, so for particle movement of k+ 1 and the j-th coor-
dinate component of the velocity of the i-th particle, parti-
cle velocity can be written

vk+1
ij = c0v

k
ij+c1rn1

(
pbestij − xkij

)
+c2rn2

(
gbestij − xkij

)

(3)
In (3) i = 1, 2, ...,m, wherem is the size of the swarm,
and j = 1, 2, ..., n, where n is the dimension of the space.
As behaviour in nature is not completely predictable, some
kind of randomness must be included in these quantitative
considerations. To this end the adaptability of the swarm
to various environments is quantified by multiplying con-
stants c1 and c2 by the random numbers rn1 and rn2. These
random numbers need to be uniformly distributed between
0 and 1, while for the purpose of better convergence, val-
ues of 2 are recommended for constants c1 and c2 [7].
The random numbers (rn1 and rn2) are vectors that ensure
the randomness of the magnitude and direction of parti-
cle movement. The convergence of the swarm progresses
more rapidly by including a so-called inertial weight, c0.
This inertial weight determines whether a particle stays on
its current trajectory or is strongly pulled toward gbest (for
higher values) or pbest (for lower values). It is also recom-
mended for acceleration of convergence that the value of
the inertial weight is linearly changed from 0.9 to 0.2 [5].
Another problem arises when a searching particle leaves
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Fig. 6. Global optima for different values of time step

the solution space. One of the solution is to limit the max-
imum velocity. In our case it was set at 20% of the dy-
namic range of each particle dimension. The respective
influences of inertial weight and maximum velocity on the
optimization process were investigated separately, with the
best results obtained by linearly decreasing inertial weight
with limited maximum velocity.

The new particle location is given by

xk+1
ij = xkij + ∆t · vk+1

ij , (4)

where ∆t is the time step that is usually set at 1. In our case
the cost function exhibited a lot of local minima (Fig. 4)
and thus the solution space had to be searched in very short
steps. Such a shortening of the time step results in a higher
density of search points. Fig. 6 shows the influence of time
step on the global optimum (gbest). The present investiga-
tion included four different values of the time step (1, 0.8,
0.6 and 0.4), with the best results obtained using the low-
est value, since it resulted in the densest grid of solution
points.

Population size had to be carefully determined, since
too large a number of particles would increase computa-
tion time and would not contribute significantly to the re-
sults. Fig. 7 presents the results for four different popu-
lation sizes (5, 10, 20 and 30). Convergence is achieved
relatively rapidly for all populations, although the largest
population resulted in faster convergence and thus a popu-
lation size of 30 particles was chosen for the present study.

Further consideration is also required regarding the ar-
rival of a particle at the solution space boundary, or even
its complete exit from the space. Boundary conditions are
commonly treated in one of three ways (Fig. 8): absorbing
wall, reflecting wall and invisible wall [5]. An absorbing
wall absorbs particle energy so that the latter’s velocity in
the dimension on the boundary becomes zero. The particle

Fig. 7. Global optima for different populatin sizes

Fig. 8. Boundary conditions

then changes position in the other dimensions and is pulled
back into the solution space by the next iteration. A reflect-
ing wall reflects the particle from the boundary, changing
the sign of the dimension of the particle on the boundary
and bringing the particle back into the solution space. An
invisible wall enables particles to leave the solution space;
in this case the cost function is not calculated. There is the
possibility that the particle may be either returned to the so-
lution space or lost, but it is generally pulled back as pbest
and gbest are located inside solution space. In the present
study, boundary conditions were analysed experimentally,
with the global best results considered for the three differ-
ent boundary conditions mentioned above. For each appli-
cation of the specific boundary condition, the optimization
process was independently repeated 10 times. These re-
sults are presented as average values in Fig. 9. As can
be seen from this figure, there were no significant differ-
ences between the three cases. The application of reflect-
ing wall boundary conditions resulted in the lowest values
of the cost function. Using this method, all particles are
preserved and thus the search of the solution space is made
in more detail, leading to a more accurate final result.
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Fig. 9. The best global result for different boundary condi-
tions

3.2 Ant Colony Optimization (ACO)
The ACO method is based on ant food searching be-

haviour. Travelling to a food area, ants select paths ac-
cording to the pheromone level they give off on the ground,
with the shortest path ultimately the one with the highest
level of pheromones. In an artificial ant colony, each ant
has the ability to choose its path according to transition
probability, which is a function of path pheromone con-
centration and a parameter connected with cost function.
The path along which an individual ant can move must be
one it has never passed through within a particular itera-
tion. A certain amount of pheromone is left on the path
along which the ant travelled, the level of which gradually
attenuates with time [8].

In the present case study, the classical ant algorithm
had to be modified in order to solve the continuous opti-
mization problem of base station positioning. As a solu-
tion space, a pheromone matrix is generated in which the
matrix elements represent potential locations for ant move-
ment. These matrix elements are also possible receiver lo-
cations. The ant population is randomly generated, with
each ant associated with one matrix element. Each ant can
then move to any other location according to the transition
probability defined by

pkij =
[τij ]

α
[ηij ]

β

∑
l∈Nk

i
[τil]

α
[ηil]

β
, (5)

where τij is the pheromone intensity of an individual ant
at position j, and Nk

i all neighbouring positions of ant k
at position i which cannot be visited by ant k. The value
of the propitiatory of the new position is expressed by ηil,
which corresponds to the cost function. The influence of
pheromone concentration is expressed by parameterα, and
cost function by parameter β, both of which are empir-
ically determined. In the present case study we granted

Table 1. Parameters of the ACO algorithm
Parameter Label Value
Number of
ants

m 30

Pheromone
exponent

α 1

Heuristic ex-
ponent

β 10

Pheromone
decay

ρ 0.02

more influence to the cost function. All of these param-
eters are presented in Table 1. After each change of ant
position, pheromone concentration alters according to the
expression

τnewj = τ currentj + ∆τkj , (6)

where ∆τkj is the pheromone quantity left by ant k at
position j during its transition from position i to J . The
result of ant movement is pheromone update, expressed as

∆τkj =
1

fcj
, (7)

where fcj is the value of the cost function at position j.
The ultimate goal of the algorithm is to find the minimum
value of the cost function. However, the pheromone levels
decay over time if there are no new updates. The influence
of such pheromone decay must therefore be introduced:

τnewj = ρτ currentj + ∆τkj . (8)

The value of parameter ρ can be empirically obtained,
and falls within the interval from 0 to 1 (Table 1).

The ACO algorithm converges more slowly than the
PSO algorithm, as can be seen in Fig. 10.

4 WLAN ACCESS POINT LOCATION OPTIMIZA-
TION

4.1 Simple environment

The parameters of the PSO algorithm for the stud-
ied environment (Fig. 2), as calculated according to the
method outlined in section 3.1, are given in Table 2. The
final value of the cost function is 11153.96, obtained af-
ter 15 iterations, while ACO algorithm converged after 25
iterations with higher value of cost function of 1.11567
(Fig. 11).

The coordinates of the optimum access point position
obtained via the PSO algorithm are [12.91, 7.56, 2.4], as
presented in Fig. 12. Detailed investigation of cost func-
tion values revealed several more local minima that were
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Fig. 10. Best values of the cost function during algorithm
evolution

Fig. 11. The best global value after each iteration

equal to six decimal places, with propagation prerequisites
satisfied for all of these receiving points. Accordingly,
the access point could be located at several other points
along the corridor with the same result, as it is illustrated
in Fig. 12, where red colour denotes optimal position of ac-
cess point obtained by PSO algorithm, that is also valid for
ACO algorithm because small difference between them.

The coordinates of the optimum access point position
obtained via the PSO algorithm are [12.91, 7.56, 2.4], as
presented in Fig. 12. Detailed investigation of cost func-
tion values revealed several more local minima that were
equal to six decimal places, with propagation prerequisites
satisfied for all of these receiving points. Accordingly, the
access point could be located at several other points along
the corridor with the same result (Fig. 12).

Neural model simulation was performed for 28 ran-
domly chosen receiving points that haven’t been used in
training process. The numerical results of these simula-
tions give average absolute error of 3.166 dB, standard de-

Table 2. PSO parameters for the simple environment
Parameter Value
Number of parti-
cles

30

Max. number of
iterations

100

c1 2
c1 2
Inertial weight c0 Changes linearly

[0.9, 0.2]
Time step 0.4
Boundary condi-
tion

Reflecting wall

Fig. 13. Comparison of measured and simulated signal
strength values for an optimally positioned access point

viation of 1.6868 dB and mse of 3.587 dB. The graphical
comparison of measured and simulated data regarding op-
timum access point position is illustrated in Fig. 13. The
good correlation between the two is obvious; the mean
squared error is 3.59 dB. The levels of the signal strength
are much lower for the receiving points without line of
sight, as it can be seen for the points from 18 to 22 and
27 to 28.

4.2 Complex environment
4.2.1 PSO algorithm

Although the studied complex environment (Fig. 3) is
significantly larger than its simple counterpart, the deter-
mined PSO parameters were the same (Table 2). Variation
in global optimum values during the optimization process
is presented in Fig. 14. The cost function converges ex-
tremely rapidly (less than 40 iterations) and with very short
computing time (less than 2 minutes).

The signal strength at 33 receiving points was simu-
lated by the neural model according to Fig. 3. Deviation
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Fig. 12. The optimum position of the access point for PSO and ACO algorithms

Fig. 14. Change in the best global result during the opti-
mization process Fig. 15. Contour diagram of cost function with denoted

global minimum (red circle)
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from the measured values is as follows: average absolute
error is 2.5223 dB, standard deviation is 1.5869 dB and
mse is 2.98 dB. A graphical comparison of these values is
presented in Fig. 17 for all 33 receiving points.

The determined optimum position ensures sufficient
signal strength for every part of the environment, at a
level significantly above the threshold (receiver sensitivity
−76 dBm). This is confirmed by the contour diagram pre-
sented in Fig. 18, which shows measured signal strength
values for the optimum position of the access point. The
white area was not included in considerations since its us-
age does not require WLAN coverage (lavatory area).

The quality of signal coverage is presented by the bar
diagram shown in Fig. 19, which includes data regarding
all access points and associated coverage (Fig. 3). Environ-
ment signal strength for each access point position is asso-
ciated with the receiving points covered. The optimally-
positioned access point covers more than 92% of the total
space with a signal strength of between -50 and -30 dBm,
and more than 51% of the total space with a signal strength
of between −50 and −40 dBm. It can therefore be con-
cluded that the entire space is best covered in terms of sig-
nal strength by an access point located at the optimum po-
sition, with a slightly worse situation obtained by the other
access point positions.

4.2.2 ACO algorithm

The ACO algorithm converges more slowly than the
other two algorithms, PSO and GA (Fig. 20), and as a re-
sult the computer time required for program running is sig-
nificantly longer. Coordinates of optimum position of the
access point are (5.10; 8.50; 2.75) and corresponding value
of the cost function is 9589. Although the minimum value
of the cost function does not deviate significantly from that
obtained via the PSO algorithm, the coordinates of the op-
timum access point position differ by around 1 m. This
difference can be expected given the existence of a great
number of local minima.

In the case of the complex environment presented here,
coverage with sufficient quality signal strength is obtained
in spite of the aforementioned differences from the PSO-
derived results. This is confirmed by the bar diagram
shown in Fig. 21, with the use of the ACO algorithm re-
sulting in fewer receiving points receiving a signal strength
of between −40 dBm and −30 dBm (81.4%), but a larger
number receiving a signal strength of between ˘60 dBm
and −50 dBm (14.29%)

4.2.3 Comparison of the results obtained by the different
optimization algorithms

An effective comparison of the two different methods
employed in the present paper requires the use of a third

Fig. 17. Comparison between measured and simulated sig-
nal strength values for optimally positioned access point

Fig. 18. Contour signal strength distribution diagram for
optimum position of the access point

Fig. 19. Distribution of signal coverage for several access
points, including that optimally positioned (PSO)
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Fig. 16. Optimum position of the access point

Fig. 20. Comparison of the best values of the cost function
for the three optimization methods

Fig. 21. Distribution of signal coverage for several access
points including that optimally positioned (ACO)
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Fig. 22. Distribution of signal coverage for several access
points, including that optimally positioned (GA)

Fig. 23. Distribution of signal coverage for an access point
optimally positioned via the three different optimization al-
gorithms

as reference - in this case the genetic algorithm (GA). The
latter was selected given its successful use in a number of
applications, as well as its inclusion in available software
(Matlab [11]). The distribution of signal coverage for an
access point optimally positioned via GA is presented in
Fig. 22. As can be seen from this figure, the results are
nearly identical to those obtained by the PSO algorithm.

The distribution of signal coverage for an access point
optimally positioned via the three different optimizing al-
gorithms is presented in Fig. 23. Analysis of this figure
reveals no significant difference between the PSO and ge-
netic algorithm. Some discrepancies are apparent with re-
spect to the ACO algorithm, but the results are acceptable.

A comparison of the three algorithms is summarized
in Table 3. Besides the coordinates of optimum access
point location and corresponding values of the cost func-

Table 3. Comparison of optimization results
Algorithm Optimal

position
(x, y, z)

gbest CPU
time
(sec)

PSO (6.6, 9.4,
2.75)

9.572 · 103 184.47

ACO (5.1, 8.5,
2.75)

9.589 · 103 814.44

GA (5.92, 8.96,
2.75)

9.573 · 103 189.25

tion, computing time is also included. As can be observed
from this table, the main difference takes the form of a
much longer computing time for the ACO algorithm.

5 CONCLUSION

The research presented in this paper reveals that anal-
ysis of propagation phenomena and optimization of base
station position can be carried out without the need for
complex and lengthy computations, as well as with a prac-
tically equal level of accuracy as that achieved by more
deterministic methods. The most significant contribution
made by this paper is the application of a relatively new
algorithm in solving a propagation optimization problem.
The main advantage of the ACO algorithm is its simplicity,
providing both an easily obtainable and sufficiently accu-
rate result. Although it is not as fast as either the PSO
or genetic algorithm, its accuracy is certainly comparable.
The selection of the main user-defined parameters for this
type of problem was described here using an experimental
method, a technique which could also potentially be help-
ful in other scenarios and fields.

The introduced method can be used to improve the per-
formance of existing indoor wireless networks, as well as
serving as a useful tool for wireless network planning in
general.
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