
Josip Knezović, Igor Čavrak, Daniel Hofman

Parallelizing MPEG Decoder with Scalable Streaming
Computation Kernels

DOI
UDK
IFAC

10.7305/automatika.2014.12.617
621.397.13:004.272.43.042
2.8.1

Original scientific paper

In this paper, we describe a scalable and portable parallelized implementation of a MPEG decoder using a
streaming computation paradigm, tailored to new generations of multi–core systems. A novel, hybrid approach to-
wards parallelization of both new and legacy applications is described, where only data–intensive and performance–
critical parts are implemented in the streaming domain. An architecture–independent StreamIt language is used for
design, optimization and implementation of parallelized segments, while the developed STREAMGATE interface
provides a communication mechanism between the implementation domains. The proposed hybrid approach was
employed in re–factoring of a reference MPEG video decoder implementation; identifying the most performance–
critical segments and re–implementing them in StreamIt language, with STREAMGATE interface as a communica-
tion mechanism between the host and streaming kernel. We evaluated the scalability of the decoder with respect
to the number of cores, video frame formats, sizes and decomposition. Decoder performance was examined in the
presence of different processor load configurations and with respect to the number of simultaneously processed
frames.

Key words: data streams, multicore, multimedia, parallel systems, stream computing, video decoding

Skalabilna implementacija dekodera po normi MPEG korištenjem tokovnog programskog jezika. U ovom
radu opisujemo skalabilnu i prenosivu implementaciju dekodera po normi MPEG ostvarenu korištenjem paradigme
tokovnog računarstva, prilago�enu novim generacijama višejezgrenih računala. Opisan je novi, hibridni pristup
paralelizaciji novih ili postojećih aplikacija, gdje se samo podatkovno intenzivni i računski zahtjevni dijelovi imple-
mentiraju u tokovnoj domeni. Arhitekturno neovisni jezik StreamIt koristi se za oblikovanje, optimiranje i izvedbu
paraleliziranih segmenata aplikacije, dok razvijeno sučelje STREAMGATE omogućava komunikaciju izme�u dom-
ena implementacije. Predloženi hibridni pristup razvoju paraleliziranih aplikacija iskorišten je u preoblikovanju ref-
erentnog dekodera video zapisa po normi MPEG; identificirani su računski zahtjevni segmenti aplikacije i ponovno
implementirani u jeziku StreamIt, sa sučeljem STREAMGATE kao poveznicom izme�u slijedne i tokovne domene.
Ispitivana su svojstva skalabilnosti s obzirom na ciljani broj jezgri, format video zapisa i veličinu okvira te dekom-
poziciju ulaznih podataka. Svojstva dekodera su praćena u prisustvu različitih opterećenja ispitnog računala, i s
obzirom na broj istovremeno obra�ivanih okvira.

Ključne riječi: podatkovni tokovi, višejezgrena računala, multimedija, paralelni sustavi, tokovno računarstvo,
dekodiranje video zapisa

1 INTRODUCTION

Multimedia has permeated a multitude of application
domains, ranging from mobile applications, entertainment
systems, on–line multimedia processing environments and
services, gaming, up to the highly specialized domains
such as surveillance and security systems, medical imag-
ing and analysis, remote imaging etc. Such diversity of
domains dictates the implementation of multimedia algo-
rithms on heterogeneous computing platforms of varying
processing and storage capabilities; from smart phones and

embedded systems with severely limited resources, to large
clusters of servers with abundance of processing power.
The constant advancement of applications, formats and al-
gorithms poses two main challenges to hardware and soft-
ware implementation aspects of multimedia systems: re-
quired processing power of underlying platforms and quick
adoption of changes in existing or novel implementations
of standards/algorithms. Current trends in addressing the
processing power challenge utilize two approaches; the
first approach relies on increasing raw processing power
by employing multi– and many–core architectures, while

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 55(3), 359–371(2014)

359 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

the second approach aims to maximize efficiency of al-
gorithm implementations by realizing performance critical
segments in platform specific assembly language.

Due to heterogeneity of existing and emerging com-
puting platforms, portability and scalability of algorithm
implementations are crucial for quick adoption and dis-
semination of new multimedia standards and algorithms.
However, current programming practices of sequential ex-
ecution approach and low–level algorithm optimization are
in sharp contrast to required scalability and portability re-
quirements [1] [2], effectively restricting each algorithm
implementation to specific target architecture and failing to
utilize processing power of novel multicore and many–core
architectures. In addition, emergence and fast development
of highly parallel computing systems require a shift in the
programming model that can scale with the computational
resources. To exploit those resources, it is necessary to
utilize a mechanism enabling the programmer to explicitly
express parallelism and to embed it into the abstract model
of computation. The automatic extraction of parallelism,
either by hardware or software, without a direct assistance
of programmer and programming model has been proven
as infeasible task [3] [4]. Explicit parallel programming
models, languages and run–times [5] allow for load bal-
ancing, synchronization and partitioning to be automated
by run–time systems. Those models enable more aggres-
sive automated analysis and tailoring of programs to target
computational infrastructure.

The streaming model of computation exposes paral-
lelism and data dependencies by representing data process-
ing in a form of a computational graph, with vertices (fil-
ters) representing atomic computations and arcs denoting
data streams between computations. Raising the design
abstraction level enables the exploitation of abundant par-
allelism in image and video processing applications [6],
taking into account distributed address spaces and multiple
control flows, as well as enabling programmers to explic-
itly expose communication and parallelism in programs.
Portability and scalability properties are ensured by both
high abstraction level of design and implementation spec-
ification (consequently hiding target architecture details),
and by the ability to conduct automatic model analysis,
transformation and synthesis of application code in order
to optimally utilize target architecture resources.

In this paper we propose a novel approach towards
building scalable and portable parallelized applications for
multicore and many–core systems, and employ it in re–
implementation of a MPEG–2 decoder application. Our
approach is based on a functional decomposition of ex-
isting (non–parallelized) application or a newly designed
application, where the most compute–intensive elements
are (re)designed and (re)implemented in the streaming do-
main, whereas non–critical elements are left/implemented

in the sequential domain. The streaming domain part of the
application is implemented using StreamIt language [7],
while the bridge between the streaming and the sequential
domain is provided and managed by STREAMGATE inter-
face and run–time [8].

The rest of this paper is organized as follows: Section 2
describes the current state of streaming–based computation
models and run–time implementations for multicore and
many–core systems, as well as their usage in multimedia
domain. Section 3 describes the STREAMGATE, our mod-
ification of StreamIt language, compiler and run–time sys-
tem for interfacing and integration of stream–based com-
putation into general–purpose imperative domain. Sec-
tion 4 presents our approach for implementation of a par-
allelized MPEG–2 decoder using StreamIt and STREAM-
GATE. Evaluation results and detailed analysis of the em-
ployed approach are given in Section 5. We conclude the
paper with Section 6.

2 RELATED WORK

The idea of streaming model of computation has been
present in computer science for quite a long time [9] [10].
Previous research on the streaming model was oriented
towards scheduling of data flow graphs for digital signal
processing [11], reactive systems [12] [13] [14] [15], or
system modeling and prototyping [16] [17]. The idea of
empowering the model’s advantages for efficient and scal-
able programming of new multicore processors is, how-
ever, quite new [18] [19] [20]. This has led to the emer-
gence of new streaming languages; supporting models for
efficient mapping of data–driven parallel applications to
novel computing platforms, ranging from graphics pro-
cessing units to multicore processors, cluster of worksta-
tions or even embedded multiprocessor systems.

Brook [21], CUDA [22] and Sh [23] are oriented to-
wards graphical processing units and thus designed with
the intricacies that GPUs currently have, such as fixed
pipelines, programming model issues etc. A program de-
veloped using one of the listed tools/models is tied to the
target GPU platform and must be carefully designed to fol-
low the appropriate data layout in the GPU memory.

OpenMP platform supports multithreaded program-
ming with pragma lines introduced in serial C/C++ or For-
tran code [24]. It is bound with the shared memory model
and therefore suffers from scalability issues. Message
Passing Interface (MPI) [25] is another concurrency plat-
form based on message passing and aimed at large clusters
of machines with local address spaces.

Accelerator, on the other hand, addresses data par-
allelism with data–parallel arrays and by transferring
data–intensive tasks from C# to GPU. Commercial so-
lutions such as RapidMind and PeakStream also of-

AUTOMATIKA 55(2014) 3, 359–371 360

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

fer just–in–time based compilation strategy for offload-
ing data–parallel tasks to graphical processing units in a
streaming manner [26].

StreamIt [18] [7] [27] is a platform–independent pro-
gramming language and compiler infrastructure that al-
lows the design in a streaming model and exploitation of
task, data and pipeline parallelism. The constructs in the
language are especially crafted to allow structural repre-
sentation of the stream graph with useful options of man-
aging data, such as peeking on input channels. The theo-
retical foundation of the model assumes some very impor-
tant invariants such as infinite stream of data to be pro-
cessed and a relatively stable computational pattern ex-
pressed with stream graphs. These assumptions are not al-
ways met in real–world applications of the model; a more
likely scenario is that only parts of a large application
can be modeled in accordance with such strict prerequi-
sites. Thus, the method for a seamless integration of the
streaming model into other programming paradigms and
with other models could prove beneficial; domain–specific
models require efficient interfaces to more general models
in order to be widely applicable.

MPEG–2 is a widely used video compression standard
for progressive and interlaced coding, spanning a wide ap-
plication area ranging from DVD video to video signal
broadcasting [28] [29]. It is characterized with high com-
plexity and incorporates hierarchical image data structure
organized in several layers: video sequence, group of pic-
tures (GOP), frame, slice, macro block and block layer.

Significant effort has been invested in parallelization of
MPEG–2 encoder and decoder by various groups [30] [31]
[32] [33]. It has been concluded that parallelism should
be exploited at all available levels, from the GOP (group
of pictures) level to the finer–grained macro block and
block level. GOP level parallelization is trivial in case
of independent GOPs, with issues arising due to load im-
balance and random access problems for large GOPs. A
coarse–grained parallelization approach at the slice level is
desirable, with drawbacks such as excessive communica-
tion thus hindering the performance improvements.

Drake et al. experimented with the implementation of
a complete MPEG–2 decoder in StreamIt language, pri-
marily to demonstrate malleability of the proposed stream
model to different application domains [34]. Their expe-
rience has shown that parts of the decoder algorithm with
high dynamism, control–oriented data flow and irregular
events exchanged between algorithm stages prevent usage
of a “pure” data–flow streaming model. To alleviate the
problem, a teleport messaging mechanism had been in-
troduced, allowing out–of–band exchange of control mes-
sages between arbitrary stream graph filters [35].

Despite the fact that the MPEG–2 standard has been
replaced by novel, upcoming standards such as H.264, the

StreamIt compiler (modified)

gcc

application

Pthreads library

SMP

kernel_sgate.lib

Streaming kernel

SMPSG library

01: #include “kernel_sgate_entry.h”
02:
03: int main(int argc, char* argv[])
04: {
05: HandleUserInput();
06: byte[] input = new byte[IN_SIZE];
07: byte[] output = new byte[OUT_SIZE];

08: kernel::init();
09: while(InputsAvailable())
10: {
11: Input(input);
12: kernel::assign_memr_input(input, IN_SIZE);
13: kernel::assign_memw_output(output, OUT_SIZE);
14:
15: kernel::fire();
16:
17: kernel::synchronize();
18:
19: Output(output);
20: }
21:
22: kernel::exit();
23:
24: Exit();
}

kernel_sgate_entry.h

void->void pipeline kernel
{
 add MemoryReader(input);
 add StreamItFilters();
 add MemoryWriter(output);

}

kernel_sgate_entry.cpp

Streaming kernel (StreamIt)

NATIVE COMPILER (gcc)

Host application (C/C++)

Fig. 1. STREAMGATE overview: Hybrid host–kernel de-
sign and implementation process

concepts for parallelization remain valid. Moreover, re-
cent standardization efforts have increased computational
complexity in order to achieve higher video quality under
similar bitrate constraints. Therefore the research interest
to map compute intensive parts of video compression stan-
dards onto parallel architectures [6,36,37]. The importance
of parallelization is also evident in upcoming video coding
standards such as HEVC, carefully designed with the par-
allelism in mind [38].

3 STREAMGATE INTERFACE
Most of the data–intensive applications prove inade-

quate for complete transformation into a pure streaming
model, thus requiring parts of the implementation to retain
a standard, sequential model of execution. Resulting in a
hybrid approach, transformation of such applications man-
dates their careful functional decomposition and identifi-
cation of functional components most amenable to stream
based modeling and parallelization. Such components, in
general, exhibit easily identifiable task, data and pipeline
level parallelism, clear and stable data flow among func-
tional sub–elements, and absence of upstream or down-
stream command flow. In order to justify the transforma-
tion effort with the increase of application performance,
parallelized components should encapsulate only the most
computationally demanding parts of the application.

To allow such a hybrid approach using StreamIt lan-
guage, we have devised an interaction mechanism between

361 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

the sequential and the streaming parts of applications in the
form of a STREAMGATE interface. The STREAMGATE in-
terface defines syntax, mechanisms and semantics of inter-
actions between the host and kernel segment of computa-
tion. In this approach, an application is decomposed into
the sequential host part (main application code developed
in a general purpose programming language) and one or
more kernels (parallelized execution application segments
implemented using StreamIt language) explicitly invoked
from the host in an asynchronous manner.

Fig. 1 depicts the methodology and implementation
steps of a hybrid single kernel C++/StreamIt application
using the STREAMGATE interface. Implementation de-
composition follows the functional decomposition of the
streaming application: host (employing sequential execu-
tion paradigm) is implemented in the target implementa-
tion language (C/C++), while the kernel functionality is
specified in StreamIt language. Explicit interaction be-
tween the host and the kernel part is expressed by li-
brary function invocations (red lines in host application
code) and the STREAMGATE’s MemoryReader and Memo-
ryWriter filters (the first and last filter in the StreamIt code
example). StreamIt kernel is compiled in the form of a
static library, produced as a result of our modification of
the StreamIt compilation tool chain. The generated library
exposes a standard set of functions to be used in the host
application code, providing mechanisms to initialize paral-
lel computation resources (threads on the underlying mul-
ticore), exchange data between host and kernels, start the
computation, synchronize execution of host and kernels,
and to release allocated resources, all implemented through
our SMPSG library.

The high–level StreamIt code is compiled using a mod-
ified StreamIt compiler into a backend–specific lower–
level language with all the necessary synchronization boil-
erplate code, highly optimized with respect to available
computing cores, reducing scheduling overhead in a purely
Synchronous Data Flow model. Compilation and opti-
mization process subjects the original stream model to
multiple optimizations such as filter fusion, filter fission,
pipeline and data parallelism identification. Following this
device–independent process is a process of static schedul-
ing and allocation of tasks to available target architecture
processing units. The resulting C++ source code is gener-
ated and the static STREAMGATE kernel library (SMPSG),
accompanied with StreamIt backend library (part of the
original StreamIt tool chain), is assembled for inclusion in
the main application executable code. The STREAMGATE
and StreamIt backend libraries rely on low–level system re-
sources available at run–time, such as low–level threading
mechanisms (pthreads library), hiding the implementation
details from system designers and developers.

While StreamIt assumes a single firing of stream com-

Fig. 2. STREAMGATE kernel thread states and transitions

putation as a monolithic application, the STREAMGATE
encapsulates such computation in one or more kernels, al-
lowing their multiple activations over the application life
cycle. In a simplified view, the STREAMGATE defines
three thread states (Fig. 2) and transitions between those
states: blocked, running and exiting. Upon kernel initial-
ization (kernel_init() function invoked by the host code),
all kernel threads are created and placed in blocked state,
minimizing inactive state kernel overhead. Invocation of
kernel_fire() kernel function transitions the threads into
running state where they remain until all the stream in-
put data is consumed and stream computation completed
(threads resume blocked state). Multiple firings of ker-
nel processing during the host application life cycle are
allowed, and all the allocated resources can be discarded
by calling kernel_exit() function, when all the threads enter
exiting state prior to their termination. Firing of streaming
kernel is non–blocking but the kernel and host execution
can be synchronized by using kernel_synchronize() func-
tion which blocks the host’s thread execution until all the
kernel’s threads transition into blocked state, i.e. streaming
kernel processes all available inputs.

Pipeline–level parallelism between the host and the
kernel stages can be easily incorporated into the proposed
host–kernel partitioning model. MemoryReader and Mem-
oryWriter stream filters can be observed as boundaries
between host and streaming application stages, forming
a 3–stage pipeline at the application level (as illustrated
in Fig.3). To exploit the application–level pipelining and
even further increase the application performance, system
designer is allowed to introduce additional processing in
the main host thread, bounded by kernel_fire() and ker-
nel_synchronize() calls to kernel functions, feeding the ker-
nel with data in wavefronts. While one wavefront is be-
ing prepared for kernel processing (1), kernel computation
can be performed of the previous data wavefront (2) and
previous kernel processing results can be collected by the
host (3) (Fig. 3). We support this high–level pipelining in

AUTOMATIKA 55(2014) 3, 359–371 362

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

Fig. 3. Host–kernel pipelining

in
iti
al
iz
e

de
co
de
r

de
co
de

fra
m
es

di
sp
la
y

fra
m
es

yu
v2
rg
b

re
st

0

10

20

30

40

50

60

70

Ti
m

e
[%

]

Fig. 4. Execution time distribution of MPEG–2 reference
decoder implementation

the interface by double–buffering the MemoryReader and
MemoryWriter exchange filters.

4 MPEG–2 DECODER IMPLEMENTATION

MPEG–2 is a widely used video compression standard
for progressive and interlaced coding, and as such presents
a typical multimedia application suitable for the hybrid ap-
proach. MPEG–2 encoder and decoder are hard or practi-
cally impossible to implement in the streaming domain us-
ing only data channels and strict producer–consumer rela-
tionships due to the dynamism, control oriented data flows
and irregular events exchanged among some, usually inde-
pendent stages of the algorithm [34].

Fig. 4 presents the execution time profiling results
of the modified MPEG–2 decoder reference implementa-
tion (non–parallelized) from MediaBench benchmark suite
[39]. Our modification of the reference implementation
consisted of configuring the benchmark to use highly op-
timized integer based IDCT and 4:2:0 chroma format.
The profile identified the yuv2rgb functional element to
be the most computationally demanding — consuming
around 60% of the processor time on chrominance compo-
nents upsampling and YCrCb to RGB color space conver-
sion. To increase the application performance, a hybrid re–
factoring approach was selected, preserving the majority
of functional components in sequential implementation do-
main, while transforming upsampling and conversion com-

ponent (yuv2rgb) into streaming domain using StreamIt
language and the STREAMGATE as an interface between
the host and the kernel application segments.

The simplified pseudo–code in Listing 1 represents the
implementation of the main MPEG–2 decoder applica-
tion (host) using the hybrid approach. The STREAMGATE
is used for managing data exchange and synchronization
between the host application and the yuv2rgb functional
element implemented in the streaming domain using the
StreamIt language and run–time. The streaming subsys-
tem kernel is initialized and resources allocated at line 10
of the example, lines 15 and 16 contain input and output
shared buffer declarations paired with MemoryReader and
MemoryWriter data exchange filters used in the streaming
domain. Parallelized processing is asynchronously started
at line 17, while line 18 blocks the main application thread
until all processing within the kernel is finished. At line 22
all the resources allocated by the kernel are released.

Listing 1. Pseudo–code of host’s main decoder function
1 #include "yuv2rgb_sgate_entry.h"
2

3 i n t mpeg2decode (i n t width , i n t h e i g h t , i n t
f r a me s)

4 {
5 i n i t i a l i z e _ d e c o d e r () ;
6 i n t i n _ s i z e = f r am e s ∗wid th∗ h e i g h t ∗ 3 / 2 ;
7 i n t o u t _ s i z e = f r am e s ∗wid th∗ h e i g h t ∗3 ;
8 b y t e ∗ b u f _ i n = new b y t e [i n _ s i z e] ;
9 i n t ∗ b u f _ o u t = new b y t e [o u t _ s i z e] ;

10 yuv2rgb::init() ;
11

12 w h i l e (f r a m e s _ a v a i l a b l e)
13 {
14 decode_ f r ames (i n _ b u f f e r) ;
15 yuv2rgb::assign_memr_buf_in(in_size)
16 yuv2rgb::assign_memw_buf_out(out_size)
17 yuv2rgb::fire() ;
18 yuv2rgb::sync() ;
19 d i s p l a y _ f r a m e s () ;
20 }
21

22 yuv2rgb::exit() ;
23 d e l e t e [] b u f _ i n ;
24 d e l e t e [] b u f _ o u t ;
25 e x i t _ d e c o d e r () ;
26 }

The original stream graph of the color channel upsam-
pling and conversion streaming kernel integrated into the

363 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

MPEG–2 decoder application, as perceived and designed
by the developer, is shown in Fig. 5. The computation is
performed at a coarse level, by processing individual video
sequence frames. Data exchange between the main body
of the decoder (host code) and the streaming kernel is es-
tablished through the STREAMGATE’s MemoryReader and
MemoryWriter StreamIt filters. Data on the input side of
the graph are raw pixels in 4:2:0 chroma format and YCrCb
space, and the output is a stream of pixels in the RGB space
and 4:4:4 chroma format. Data are delivered to the stream-
ing module in chunks of varying size, parametrized with
the number of frames, and the processing is repetitively
fired to perform the required transformations.

The main body of the streaming conversion and upsam-
pling kernel consists of two split–join constructs arranged
in a producer–consumer relationship. The first split–join
construct distributes incoming data in a round–robin fash-
ion to a single forwarding luminance component and two
components dedicated to upsampling chrominance compo-
nents of decoded frames from 4:2:0 to 4:4:4 spatial reso-
lution. The second split–join construct performs a color–
space conversion from YUV to RGB by distributing du-
plicated input data to R, G and B converters. The pre-
ceding streaming model exhibits pipeline–level parallelism
(sequential arrangement of input, two split–join and out-
put functional blocks, sequential arrangements of 4:2:0 to
4:4:2 and 4:4:2 to 4:4:4 upsampling blocks), task–level
parallelism among upsampling sub–modules and data–
level parallelism among stateless filters which compiler
freely exploits in order to utilize all the available cores.

Fig. 5 annotates filters with colors and their statically
determined work estimates (performed as a step during
StreamIt compilation). Filters colored in red perform sig-
nificantly more work than blue colored filters. Work esti-
mates are further used by the StreamIt compiler in order
to decide on the transformations performed on the origi-
nal stream graph such as filter fusion and fission, with the
goal of producing a well balanced graph for deployment
on target architecture.

One of the key properties of multimedia applications
is the achievable constant data throughput, determining
the performance of an application on a particular hard-
ware platform. The streaming model allows designers and
programmers to focus on high–level aspects of application
or algorithm parallelism, abstracting away underlying pro-
cessing infrastructure and implementation details. How-
ever, such initial design falls far from optimal usage of
target architecture resources, in particular from achieving
optimal processing granularity and allocation of tasks to
available processing elements.

The task of supporting infrastructure is to analyze the
original stream graph, identify types of parallelism present

YUV2RGB

YUV2RGBConverterSplitter

MemoryReader

work=0

I/O: 0->1

roundrobin(101376,25344,25344)

YComponentForwarder

work=1216512

I/O: 101376->101376

Upsample420To

work=4283776

I/O: 25344->50688

Upsample420To

work=4283776

I/O: 25344->50688

roundrobin(1,1,1)

duplicate(1,1,1)

Upsample422To

work=8567200

I/O: 50688->101376

Upsample422To

work=8567200

I/O: 50688->101376

RComponent

work=6994944

I/O: 304128->101376

GComponent

work=7400448

I/O: 304128->101376

BComponent

work=6994944

I/O: 304128->101376

roundrobin(1,1,1)

MemoryWriter

work=0

I/O: 1->0

Fig. 5. STREAMGATE MPEG–2 decoder implementation
of color conversion and upsampler loop

among filters, filter groups and branches, and conduct a se-
ries of graph and filter transformations. Resulting stream
graph, together with generated source code, represents the
optimal partitioning/grouping of filters and mapping of re-
sulting tasks onto a target processing infrastructure, guar-
anteeing maximal data throughput for a particular appli-
cation or application segment. Load balancing of trans-
formed filters is particularly important when a signifi-
cant amount of pipeline–level and task–level parallelism
is present in the stream graph. For stream programs, the
theoretically maximal obtainable speedup in throughput is
given by Equation 1:

Smax =

∑N
i=1Wi

MAXN
i=1(Wi)

(1)

where Wi denotes the amount of processing performed by
filter i, given there areN resulting filters in the transformed
streaming graph and that all pipelined filters can be simul-
taneously mapped onto separate processing elements (pro-
cessors, processor cores or virtual processing elements). If
Ri denotes the relative amount of work of filter Wi, com-
pared to total work by all filters in a stream, then:

Ri =
Wi∑N
i=1Wi

(2)

AUTOMATIKA 55(2014) 3, 359–371 364

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

then the maximal achievable speedup Smax is:

Smax =
1

MAXN
i=1(Ri)

(3)

Parallelized multimedia algorithms predominantly
contain two types of parallelism: data–level and pipeline–
level. Data–level parallelism is present in various types of
stateless data filtering and transformation operations, while
pipeline–level parallelism is a result of a series of inher-
ently sequential, possibly interdependent operations real-
ized in a form of a chain of stateful filters in a producer–
consumer relationship. While data–level parallelism inher-
ently ensures balanced workload among replicated filters,
pipeline–level parallelism, at both application scope and
individual stream branch scope, must be carefully man-
aged by the supporting infrastructure.

R
G
B

 =

1.164 0 1.596
1.164 −0.391 −0.813
1.164 2.018 0

Y − 16
U − 128
V − 128

 (4)

Listing 2. YUV2RGB StreamIt filter
1 i n t −> i n t f i l t e r YUV2RGB
2 {
3 work pop 3 push 3
4 {
5 i n t Y = pop () −16;
6 i n t U = pop () −128;
7 i n t V = pop () −128;
8

9 i n t R = (76309∗Y+104597∗V) > >16;
10 i n t G = (76309∗Y−25675∗U−53279∗V) > >16;
11 i n t B = (76309∗Y−132201∗U) > >16;
12

13 push (R) ;
14 push (G) ;
15 push (B) ;
16 }
17 }

5 EXPERIMENTAL RESULTS

Listing 2 presents a simplified specification of the par-
allelized YUV to RGB color space conversion filter de-
fined by Equation 4, and is a fraction of the complete
StreamIt specification of the MPEG–2 decoder kernel. The
processing is defined in a form of a stateless StreamIt filter
consuming three integers from input and producing three
integers on its output in one filter firing (lines 1 and 3).
Such a filter is an ideal candidate for fission (utilizing state-
less nature of computation and inherent data parallelism
between calculations of R, G and B values) and fusion
with more computation–demanding filters. As long as fil-
ter fusion results in stateless filter, streaming compiler can

Test Resolution Chroma Frame rate
QCIF 176x144 4:2:0 25
CIF 352x288 4:2:0 30
SD 720x576 4:2:0 25
HD 1280x720 4:2:0 25

Table 1. Properties of test video sequences

Fig. 6. Partitioned stream graph for STREAMGATE kernel
in MPEG–2 decoder (SMP = 4)

data–parallelize resulting coarsened fused filter in order to
utilize available processing cores.

To test the viability of our approach, we evaluated the
performance of a parallelized MPEG–2 decoder on a set
of test video sequences. In particular, we were interested
in investigating the portability and scalability of the hybrid
(host–kernel decomposition) approach to different proces-
sor configurations and the possible performance limita-
tions of StreamIt based MPEG–2 decoder with regards to
core utilization, overall system load and the number of
frames processed by the decoder at one kernel firing.

The primary indicator of performance used in the eval-
uation was the decoder throughput, i.e. the amount time re-
quired by the decoder to fully decode a video sequence of
known resolution and size. The set of test video sequences,
along with their key properties, is presented in Table 1.
The first two test videos (QCIF and CIF formats) resem-
bled the typical video resolutions used on embedded and
constrained devices featuring low–power multicore CPUs.
The remaining two test videos represented a wider image
formats suited for high–resolution devices. The evaluation
environment consisted of a personal computer with a sin-
gle 2.4 GHz Intel Core 2 Quad Q6600 processor and 4 GB
of main memory, Linux kernel version 3.9. Additional ex-
periments were conducted using the Sniper simulator – a
multicore simulator based on the interval core model [40].

5.1 Scalability
Fig. 6 contains the resulting, partitioned stream graph

of the yuv2rgb STREAMGATE kernel targeted to four
cores. Compared to the original, programmer perceived
stream graph from Fig. 5, the streaming compiler per-
formed fusion (filter coalescing) and fission (replication of

365 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

balanced filters) transformations in order to produce four
well–balanced filters encapsulated in the top–level split–
join construct with the MemoryReader as the source and
MemoryWriter as the final stream consumer.

Since a coarse–grained processing strategy was em-
ployed in the kernel by processing video at the frame level,
we evaluated the scalability of our approach for different
frame sizes. We also measured and compared the through-
put of the decoder parametrized with the running number
of cores. Other domain specific streaming optimizations
incorporated in the StreamIt compiler were not used in our
experiments. All throughput tests were run 20 times and
resulting mean values were recorded.

The set of tested StreamIt kernels included four SMP
(symmetric multiprocessing) kernels including stream
graph transformations and optimizations and utilizing 1–
4 processing cores, as denoted by the number in the kernel
name. In order to test the effect of increased processor
load on performance of generated n–core StreamIt kernels,
two processor load types were used in the experiments: LL
postfix denoting light processor load configuration (only
OS–related processes active in the system, all cores be-
low 5% utilization) and HL postfix denoting heavy load (at
least 15% and at most 25% utilization of at least two cores
prior to decoder run). SMP1 kernel performance tests were
always conducted in the LL configuration.

Table 2 presents the average decoding speedups for a
set of test video sequences, normalized to the SMP1LL
kernel performance, where decoding performance is mea-
sured for a set of generated StreamIt kernels and two con-
figurations of processor loads. If comparing decoder per-
formances under LL configuration, speedup is almost lin-
ear with respect to the number of cores utilized by kernels
(Fig. 7), independent of the test video sequence used. A
more detailed analysis shows that the mean speedup gain
between SMP3 and SMP4 is higher than speedup gain be-
tween SMP2 and SMP3 kernels (0.40 : 0.23). On the other
hand, HL configuration reveals an impact of high processor
utilization on performance of highly parallelized kernels
(Fig. 8) where linear increase in performance with respect
to the number of cores is no longer present. This effect is
especially visible for SMP4 kernel (Fig. 9), whose perfor-
mance under HL configuration is lower than SMP3’s, and
in the case of CIF video sample, lower than SMP2’s per-
formance. The mean speedup gain between kernels SMP2
and SMP3 remains the same as for the LL configuration,
but the gain between SMP3 and SMP4 becomes negative
(0.23 : -0.1).

Relatively minor effects of HL configuration on perfor-
mances of SMP2 and SMP3 kernels can be explained by
the number of processing cores available on the test system
and the low–level details of StreamIt SMP backend imple-
mentation. SMP2 and SMP3 kernel implementations, as

QCIF CIF SD HD

N
or

m
al

iz
ed

 s
pe

ed
up

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SMP2LL SMP3LL SMP4LL

Fig. 7. Kernel speedups under LL configuration, normal-
ized to SMP1 kernel performance

QCIF CIF SD HD

N
or

m
al

iz
ed

 s
pe

ed
up

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SMP2HL SMP3HL SMP4HL

Fig. 8. Kernel speedups under HL configuration, normal-
ized to SMP1 kernel performance

SMP2 SMP3 SMP4

N
or

m
al

iz
ed

 s
pe

ed
up

 -
di

ffe
re

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 QCIF CIF SD HD

Fig. 9. Differences between LL and HL normalized
speedups

AUTOMATIKA 55(2014) 3, 359–371 366

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

Test SMP2LL SMP2HL SMP3LL SMP3HL SMP4LL SMP4HL
QCIF 1.53 1.52 1.75 1.76 2.18 1.73
CIF 1.60 1.55 1.78 1.71 1.92 1.50
SD 1.59 1.56 1.87 1.87 2.46 1.79
HD 1.54 1.52 1.78 1.75 2.28 1.69
MEAN 1.57 1.54 1.80 1.77 2.20 1.67

Table 2. Kernel speedups, normalized to SMP1LL kernel performance

Frame size

N
or

m
al

iz
ed

 s
pe

ed
up

320x180 160x360 160x180 160x90 80x180 80x90

1.0

1.5

2.0

2.5
SMP1LL
SMP2LL
SMP3LL
SMP4LL

Fig. 10. Simulated kernel speedups, normalized to
SMP1LL kernel performance on 320× 180 HD subframe

currently mandated by StreamIt compiler and runtime, uti-
lize two or three threads to parallelize tasks. Under signif-
icant load, operating system can still allocate SMP kernel
threads to available cores in a quad–core processor, ensur-
ing that the processing time wasted at the thread synchro-
nization barrier is minimal. However, SMP4 kernel imple-
mentation requires allocation of four threads to individual
cores, which leads to allocation of at least one thread to
a significantly loaded core, delayed execution due to pre-
emption and significant time wasted by fast–performing
threads to synchronize with the slow–performing thread at
the spinlock–based synchronization barrier.

Additional simulations using the Sniper simulator were
conducted to further evaluate decoder scalability on more
than 4 cores [40]. CIF test video sequence from previous
evaluation was used, and the simulated system was 2/4/8–
core Pentium M 2.66GHz, 4GB RAM, 32KB L1 cache,
32KB L2 cache, 8MB L3 cache, no operating system or ap-
plications present. The results, normalized to SMP1 kernel
performance, show constant positive speedups on systems
up to 8 simulated cores (Fig. 11), proving good scalability
of the MPEG–2 decoder kernel implementation.

5.2 Data Decomposition

In the previous experiment, during testing of SD and
HD videos, internal buffering in the compiled stream graph
exhausted the process stack space. To avoid the issue, input

Cores

N
or

m
al

iz
ed

 s
pe

ed
up

1 2 3 4 5 6 7 8

1.0

1.5

2.0

2.5

3.0 CIF 352x288

Fig. 11. Kernel speedups on 2,4 and 8 cores (Sniper), CIF
video sequence, normalized to SMP1 kernel performance

frame data had been further decomposed into subframes:
QCIF subframes for SD and CIF subframes for HD test
sequence. Using this approach, the buffer sizes among
stream filters were reduced, but the more fine–grained ap-
proach also resulted in improved performance of streaming
kernels. Decreasing required buffering among filters low-
ered the memory requirements, most notably the program
stack used by internal buffers. In theory, placing large
internal buffers on heap could allow more general usage
thus lowering the overall performance. However, the ex-
periments revealed performance degradation in some cases
reaching as high as 30% compared to implementations us-
ing stack space, proving the approach useless.

Further experimental study of the effect of data decom-
position on decoder performance was conducted by using
a 1280 × 720 HD video sequence, partitioned into differ-
ent subframe sizes, as input data. Table 3 presents the sub-
frame sizes and achieved speedups for different versions of
decoder kernels, relative to SMP1 kernel performance on
320×180 subframe. Kernel performances were tested only
under the LL configuration. A significant performance dif-
ference was visible for all parallelized kernels compared to
the non–parallelized kernel SMP1. SMP3 and SMP4 ker-
nels exhibited visible performance improvements with the
decrease of subframe size, higher than expected given the
Amdahl’s law (Fig. 10). Although a more thorough anal-
ysis of the underlying mechanisms is needed for detailed

367 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

320× 180 160× 360 160× 180 160× 90 80× 180 80× 90

SMP1LL 1.00 1.00 1.04 1.05 1.07 1.07
SMP2LL 1.68 1.68 1.63 1.66 1.66 1.68
SMP3LL 1.88 1.88 1.85 2.04 2.09 2.09
SMP4LL 2.00 1.96 2.34 2.29 2.34 2.29

Table 3. Kernel speedups, normalized to SMP1LL kernel performance on 320× 180 HD video subframe

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400

T
im

e
 [
s
]

Frame count

Fig. 12. Execution time vs. STREAMGATE buffer size (in
number of frames)

explanation of the effect, initial findings suggest that, in
addition to high–level parallelization of processing, clever
data decomposition can also benefit decoder performance.

5.3 Frame group sizes

Fig. 12 presents the results of the experimental evalua-
tion of the total CIF video sample decoding time versus the
number of frames decoded on one kernel firing. The size of
frame groups provided to one kernel firing varied from 1 to
1500. For small groups (1–10 frames per group), the large
number of kernel invocations introduced a significant over-
head and increased the total decoding time, compared to
mid–sized groups. For the group sizes above 700, decod-
ing times increased sharply as a result of increased time
spent by the OS in performing housekeeping operations.
The minimal decoding times for this experiment were ob-
tained for groups sized around 150 frames, accounting for
approx. 60 MB of the total memory allocated on data ex-
change buffers. Moreover, execution times exhibited small
variations for group sizes smaller than optimal, down to 10
frames per group, accounting for approx. 4 MB of the data
exchange buffer size.

While the smaller frame groups require significantly
less memory for implementation of intra–filter private
buffers, the number of kernel invocations is proportion-
ally higher. On the other hand, large frame groups require
less kernel invocations, but present significantly higher

memory demands, resulting in far more frequent occur-
rences of cache misses and page faults, thus drastically re-
ducing application performance. Performance degradation
threshold is system specific and dependent on the available
system memory. For resource constrained systems with
small amount of main memory, StreamIt implementation
of MPEG–2 decoder would not be suitable, as the perfor-
mance would be bounded by both the number of kernel
firings and the amount of memory available for buffering.

6 CONCLUSION

Current and upcoming processor architectures are char-
acterized with the inherent parallelization of processing,
predominantly due to increased number of processing
cores. Another trend in computing landscape is the rising
importance of data–intensive applications, requiring high
processing power and presenting natural targets for vari-
ous types of performance optimizations.

In this paper we demonstrated the benefits of using
streaming programming model for high–level re–factoring
of data–intensive parts of legacy programs. We proposed
an interface and a tool which enable integration of stream-
ing kernels, providing portable and scalable performance
with the increase of processing cores. Kernels are ex-
pressed in a high–level stream programming language, al-
lowing programmers to explicitly model computation and
communication dependencies. In this way, streaming com-
piler is able to perform aggressive parallelization and effi-
ciently map kernels to target multicore architectures. Te-
dious tasks of partitioning and load balancing are left to the
compiler who has all the information available (computa-
tion and communication dependencies) to perform it in a
scalable and efficient manner.

Our interface enables incremental parallelization of
legacy programs by isolating data–intensive parts into
streaming kernels. The interface allows iterative firing of
streaming kernels, executed in parallel using available pro-
cessing cores. The viability of the approach was tested on
a parallelized MPEG decoder implementation with a sin-
gle streaming kernel encapsulating color conversion and
upsampling computations.

Current interface implementation allows only static
declarations of input and output data rates in filter defi-

AUTOMATIKA 55(2014) 3, 359–371 368

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

nitions (number of consumed and produced tokens in sin-
gle kernel firing), restricting usability of the proposed ap-
proach in real–world programs. Introduction of dynamic
data rate support, thus enabling filters to consume and pro-
duce a number of tokens and control messages on single
kernel firing unknown at compile–time, would offer flexi-
bility and more general use of stream programming model.
However, such approach would restrict the effectiveness of
static filter analysis and resulting optimizations of stream-
ing computation graph. An approach to overcome the
drawbacks of dynamic data rates is proposed in [41], based
on separation of static and dynamic domains by partition-
ing the stream program into static subgraphs separated by
dynamic boundaries. Each subgraph then undergoes ag-
gressive compile–time optimization and is allocated to a
dedicated run–time thread during kernel firing.

REFERENCES

[1] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe,
“A lightweight streaming layer for multicore exe-
cution,” SIGARCH Comput. Archit. News, vol. 36,
pp. 18–27, May 2008.

[2] A. D. Reid, K. Flautner, E. Grimley-Evans, and
Y. Lin, “Soc-c: efficient programming abstractions
for heterogeneous multicore systems on chip,” in
Proceedings of the 2008 international conference on
Compilers, architectures and synthesis for embedded
systems, CASES ’08, (New York, NY, USA), pp. 95–
104, ACM, 2008.

[3] G. Tournavitis, Z. Wang, B. Franke, and M. F.
O’Boyle, “Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism
detection and machine-learning based mapping,”
SIGPLAN Not., vol. 44, pp. 177–187, June 2009.

[4] S. Rul, H. Vandierendonck, and K. De Bosschere,
“A profile-based tool for finding pipeline parallelism
in sequential programs,” Parallel Comput., vol. 36,
pp. 531–551, Sept. 2010.

[5] D. B. Skillicorn and D. Talia, “Models and Lan-
guages for Parallel Computation,” ACM Computing
Surveys, vol. 30, pp. 123–169, 1996.

[6] C. Meenderinck, A. Azevedo, B. Juurlink, M. Al-
varez Mesa, and A. Ramirez, “Parallel scalability of
video decoders,” J. Signal Process. Syst., vol. 57,
pp. 173–194, Nov. 2009.

[7] W. Thies, Language and Compiler Support for
Stream Programs. Phd thesis, Massachusetts Insti-
tute Of Technology, Cambrige, MA, 2009.

[8] J. Knezović, M. Kovač, and H. Mlinarić, “Integrat-
ing streaming computations for efficient execution on
novel multicore architectures,” AUTOMATIKA: Jour-
nal for Control, Measurement, Electronics, Com-
puting and Communications, vol. 51, pp. 387–396,
March 2011.

[9] R. Stephens, “A Survey of Stream Processing,” Acta
Informatica, vol. 34, no. 7, 1997.

[10] W. M. Johnston, P. R. P. Hanna, and R. J. Millar, “Ad-
vances in dataflow programming languages,” ACM
Computing Surveys, vol. 36, pp. 1–34, March 2004.

[11] E. A. Lee and D. G. Messerschmitt, “Static schedul-
ing of synchronous data flow programs for digital sig-
nal processing,” IEEE Transactions on Computers,
vol. 36, no. 1, pp. 24–35, 1987.

[12] P. Guernic, A. Benveniste, P. Bournai, and T. Gau-
tier, “Signal – a data flow–oriented language for sig-
nal processing,” in IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 34(2), pp. 362–
374, 1986.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,
“The synchronous dataflow programming language
LUSTRE,” in Proceedings of the IEEE, pp. 1305–
1320, 1991.

[14] G. Berry, G. Gonthier, A. B. G. Gonthier, and P. S.
Laltte, “The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation,” 1992.

[15] G. Delaval, A. Girault, and M. Pouzet, “A Type Sys-
tem for the Automatic Distribution of Higher-order
Synchronous Dataflow Programs,” in ACM Interna-
tional Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), (Tucson, Ari-
zona), June 2008.

[16] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong, “Tamming
Heterogeneity – the Ptolemy Approach,” in Proceed-
ings of the IEEE, vol. 91, pp. 127–144, 2003.

[17] P. K. Murthy, E. G. Cohen, and S. Rowland, “Sys-
tem canvas: a new design environment for embedded
dsp and telecommunication systems,” in CODES ’01:
Proceedings of the ninth international symposium on
Hardware/software codesign, (New York, NY, USA),
pp. 54–59, ACM, 2001.

[18] W. Thies, M. Karczmarek, and S. Amarasinghe,
“Streamit: A language for streaming applications,” in
Proceedings 2002 International Conference on Com-
piler Construction, 2002.

369 AUTOMATIKA 55(2014) 3, 359–371

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

[19] S.-w. Liao, Z. Du, G. Wu, and G.-Y. Lueh, “Data
and Computation Transformations for Brook Stream-
ing Applications on Multiprocessors,” in CGO ’06:
Proceedings of the International Symposium on Code
Generation and Optimization, (Washington, DC,
USA), pp. 196–207, IEEE Computer Society, 2006.

[20] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips, “GPU Computing,” Pro-
ceedings of the IEEE, vol. 96, pp. 879–899, May
2008.

[21] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike,
and H. Pat, “Brook for GPUs: Stream Computing on
Graphics Hardware,” ACM Transactions on Graph-
ics, vol. 23, pp. 777–786, August 2004.

[22] J. Nickolls and I. Buck, “CUDA Software and GPU
Parallel Computing Architecture,” Microprocessor
Forum, May 2007.

[23] M. McCool, S. Du Toit, T. Popa, B. Chan, and
K. Moule, “Shader algebra,” in SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers, (New York, NY,
USA), pp. 787–795, ACM, 2004.

[24] B. Chapman, G. Jost, and R. van der Pas, Using
OpenMP Portable Shared Memory Parallel Program-
ming. The MIT Press, 2007.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI-The Complete Reference, Volume
1: The MPI Core. Cambridge, MA, USA: MIT Press,
2nd. (revised) ed., 1998.

[26] M. D. McCool, “Data-Parallel Programming on the
Cell BE and the GPU using the RapidMind Devel-
opment Platform,” in GSPx Multi-core Applications
Conference, 2006.

[27] S. Amarasinghe, M. I. Gordon, M. Karczmarek,
J. Lin, D. Maze, R. M. Rabbah, and W. Thies,
“Language and compiler design for streaming appli-
cations,” Int. J. Parallel Program., vol. 33, no. 2,
pp. 261–278, 2005.

[28] ISO/IEC 13818: Information technology – Coding of
moving pictures and associated audio for digital stor-
age media at up to about 1.5 Mbit/s. International
Organization for Standardization, 1999.

[29] V. Bhaskaran and K. Konstantinides, Image and
Video Compression Standards. Kluwer Academic
Publishers, 1995.

[30] I. Assayad, P. Gerner, S. Yovine, and V. Bertin,
“Modelling, analysis and parallel implementation of

an on-line video encoder,” in 1st International Con-
ference on Distributed Frameworks for Multimedia
Applications (DFMA 2005), 6-9 February 2005, Be-
sançon, France, pp. 295–302, 2005.

[31] T. Jacobs, V. Chouliaras, and D. Mulvaney, “Thread-
parallel MPEG-2, MPEG-4 and H.264 video en-
coders for SoC multi-processor architectures,” IEEE
Transactions on Consumer Electronics, vol. 52, no. 1,
pp. 269–275, 2006.

[32] E. Iwata and K. Olukotun, “Exploiting Coarse-Grain
Parallelism in the MPEG-2 Algorithm,” Tech. Rep.
CSL–TR–98–771, Stanford University, 1998.

[33] A. Bilas, J. Fritts, and J. P. Singh, “Real–Time Par-
allel MPEG–2 Decoding in Software,” in In Pro-
ceedings of the 11th International Parallel Process-
ing Symposium, pp. 197–203, 1997.

[34] M. Drake, H. Hoffman, R. Rabbah, and S. Ama-
rasinghe, “MPEG-2 decoding in a stream program-
ming language,” in Proc. International Parallel and
Distributed Processing Symposium, (Rhodes Island,
Greece), 2006.

[35] W. Thies, M. Karczmarek, J. Sermulins, R. Rab-
bah, and S. Amarasinghe, “Teleport messaging for
distributed stream programs,” in Symposium on
Principles and Practice of Parallel Programming,
(Chicago, Illinois), Jun 2005.

[36] B. Pieters, C.-F. Hollemeersch, J. De Cock, P. Lam-
bert, W. De Neve, and R. Van De Walle, “Parallel de-
blocking filtering in mpeg-4 avc/h.264 on massively
parallel architectures,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 21, no. 1,
pp. 96–100, 2011.

[37] K. Choi and E. S. Jang, “Leveraging parallel comput-
ing in modern video coding standards,” IEEE Multi-
Media, vol. 19, no. 3, pp. 7–11, 2012.

[38] G. J. Sullivan, J.-R. Ohm, W. Han, and T. Wiegand,
“Overview of the high efficiency video coding (hevc)
standard,” IEEE Trans. Circuits Syst. Video Techn.,
vol. 22, no. 12, pp. 1649–1668, 2012.

[39] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems,” in MICRO
30: 30th annual ACM/IEEE international sympo-
sium on Microarchitecture, (Washington, DC, USA),
pp. 330–335, IEEE Computer Society, 1997.

[40] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and

AUTOMATIKA 55(2014) 3, 359–371 370

Parallelizing MPEG Decoder with Scalable Streaming Computation Kernels J. Knezović, I. Čavrak, D. Hofman

accurate parallel multi-core simulations,” in Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011.

[41] R. Soule, M. I. Gordon, S. Amarasinghe, R. Grimm,
and M. Hirzel, “Dynamic expressivity with static
optimization for streaming languages,” in The 7th
ACM International Conference on Distributed Event-
Based Systems, (Arlington, TX), June 2013.

Josip Knezović received his B.Sc., M.Sc. and
Ph.D. degree in Computer Science from the Fac-
ulty of Electrical Engineering and Computing,
University of Zagreb in 2001, 2005 and 2009, re-
spectively. Since 2001 he has been affiliated with
Faculty of Electrical Engineering and Comput-
ing. He is assistant professor at the Department
of Control and Computer Engineering. His re-
search interests include programming models for

parallel systems in multimedia, image and signal processing. He is a
member of IEEE and ACM.

Igor Čavrak is an assistant professor at the De-
partment of Control and Computer Engineering,
University of Zagreb, Faculty of Electrical Engi-
neering and Computing (FER). He received his
M.Sc. and Ph.D. degrees in computer science
from FER in 2001 and 2006. He joined Univer-
sity of Zagreb in 1996, and since then has been
involved in various educational and research ac-
tivities. His research interests include pervasive

computing, distributed intelligent systems and software engineering. He
published more than 20 papers in journals and conference proceedings,
and is a member of ACM, IEEE and KES.

Daniel Hofman graduated electrical engineering
at University of Zagreb, Faculty of Electrical En-
gineering and Computing (FER) in 2008. Since
then he has been working as a research assistant
at the Department of Control and Computer Engi-
neering at FER and pursuing his PhD at the same
Faculty. His research focus is on Network Algo-
rithms for Video Coding on Multi-core Architec-
tures. He published numerous papers in journals
and proceedings. He is an active member of the
European Network of Excellence on High Per-

formance and Embedded Architecture and Compilation (HiPEAC) and
Institute of Electrical and Electronics Engineers (IEEE).

AUTHORS’ ADDRESSES
Assist. Prof. Josip Knezović, Ph.D.
Assist. Prof. Igor Čavrak, Ph.D.
Daniel Hofman, B.Sc.
Department of Control and Computer Engineering,
Faculty of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, HR-10000 Zagreb, Croatia
email: {josip.knezovic, igor.cavrak,
daniel.hofman}@fer.hr

Received: 2013-07-17
Accepted: 2014-04-30

371 AUTOMATIKA 55(2014) 3, 359–371

