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This paper first presents some earlier results on k-dominating sets of Cartesian products and

cardinal products of two paths, and then new results on k-dominating sets of a strong product

and an equivalent product of two paths (a k-domination number of a strong and an equivalent

product of Pm × Pn for arbitrary m and n).
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INTRODUCTION

For any graph G we denote the vertex-set and the edge-

set of G by V(G) and E(G), respectively. A subset D ⊂
V(G) is called a k-dominating set, k ≥ 2, if for every ver-

tex y not in D there exists at least one vertex x∈D, such

that d(x, y) ≤ k. For convenience, we also say that D

k-dominates G. The k-domination number gk(G) is the

cardinality of the smallest k-dominating set. A 1-domi-

nation number is also called a domination number.

On the Cartesian product of the vertices of two graphs

we can define many products. First systematical resear-

ches of such products of graphs were done by H. Izbicki

and W. Imrich.1 They found out that there are 256 such

products, 20 of them being associative. Out of these 20,

10 can be defined if we know the structure of both

factors. Futhermore, 8 of them are commutative. These

eight products can be split in four pairs of mutual dual

products.2

Graph X' is a complement of graph X if they have

the same set of vertices, and two vertices are adjacent to

X' if and only if they are not adjacent to X. Then for

some product * we can define dual product * such that:

X * Y = (X' * Y')'.

We can also say that * is a complementary product

of *. From the aforementioned it follows that there are

4 associative and commutative products and their com-

plementary products.

Since it is often possible to deduce properties of the

complementary product from the properties of the origi-

nal product,1 we will consider only four associative and

commutative products of simple graphs. These 4 products

are cardinal, Cartesian, strong and equivalent.3

We will denote the cardinal product by × . On the

cardinal product G × H of two graphs G and H, {(g1, h1),

(g2, h2)} ∈E(G × H) if and only if {g1, g2} ∈E(G) and

{h1, h2} ∈E(H). (see Figure 1. (P3 × P4))

* Dedicated to Professor Haruo Hosoya in happy celebration of his 70th birthday.



We will denote the Cartesian product by �. On the

Cartesian product G � H of two graphs G and H, {(g1,

h1), (g2, h2)} ∈E(G � H) if and only if g1 = g2 and {h1,

h2}∈E(H), or {g1, g2}∈E(G) and h1 = h2. (see Figure 2.

(P3 � P4))

The strong product will be denoted by ⊗. On the

strong product G ⊗H of two graphs G and H, {(g1, h1),

(g2, h2)} ∈E(G ⊗ H) if and only if:

1) {g1, g2} ∈E(G) and {h1, h2} ∈E(H), or

2) g1 = g2 and {h1, h2} ∈E(H), or

3) {g1, g2} ∈E(G) and h1 = h2. (see Figure 3. (P3 ⊗
P4))

The equivalent product will be denoted by �. On the

equivalent product G � H of two graphs G and H, {(g1,

h1), (g2, h2)} ∈E(G � H) if and only if:

1) {g1, g2} ∈E(G) and {h1, h2} ∈E(H), or

2) g1 = g2 and {h1, h2} ∈E(H), or

3) {g1, g2} ∈E(G) and h1 = h2, or

4) {g1, g2} ∈E(G') and {h1, h2} ∈E(H').

(see Figure 4. (P3 � P4))

Notions of a polygraph4–6 were introduced in chemi-

cal graph theory as a formalization of chemical notions

of a polymer. A path is a special case of a polygraph cal-

led a fascia graph and the Cartesian product of two paths

is a fascia-fascia graph, which is of interest in mathema-

tical chemistry.

Also, let maximal matching of graph G be b1. Then

if G is a graph without isolated vertices, with n vertices,

it holds:

g(G) ≤ min {b1(G), n – b1(G)} .

In the next chapter, we will give some earlier results

about k-dominating sets on the cardinal and Cartesian

products of two paths.

K-DOMINATING SETS ON THE CARDINAL AND
CARTESIAN PRODUCTS OF TWO PATHS

We have shown the following results:7–8 For the cardinal

product of two paths it holds:

Theorem 1. – For n ≥ 3, k ≥ 2

gk(P2 × Pn) = ... = gk(P2k × Pn) = 2 ⋅ n

k2 1+






.

Let k ≥ 2, n ≥ 3. Then

gk(P2k+1 × Pn) =

2
2
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2
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,
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otherwise
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For k ≥ 1 and n ≥ 3,
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gk(P2k+2 × Pn) =
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Theorem 2. – For any two paths Pm, Pn,

lim
( )

,m n

k m n

mn→∞

×g P P
=

1

4 4 1

2

2k k+ +
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.

For the Cartesian product the following holds:9

Theorem 3. – Let k ≥ 1. Then

gk(P2 � Pn) =

n

k

n

k

n k
2
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2
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,

,

(mod ),if

otherwise

For every path Pn n ≥ 2, and k ≥ 2

gk(P3 � Pn) =
n

k2 1−






.

Theorem 4. – For m odd and k ≥ m – 1

gk(Pm � Pn) ≤
n

k m2 2− +






.

For m even and k ≥ m – 1

gk(Pm� Pn) ≤

n

k m
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Theorem 5. – For any two paths Pm, Pn, m, n ≥ 2,

lim
,m n→∞

gk m n

mn

( )P P�

=
1

2 2 12k k+ +
.

Now it is interesting to consider this problem on the

strong and equivalent products of two paths.

K-DOMINATING SETS ON THE STRONG
PRODUCT OF TWO PATHS

Observation 1. – For each path Pn, n ≥ 1 gk(Pn) =

n

k2 1+






.

By ⊗ we denote the strong product.

Lemma 1. –

gk(P2 ⊗ Pn) = gk(P3 ⊗ Pn) = ... = gk(P2k+1 ⊗ Pn) =

n

k2 1+






= gk(Pn)

Proof: We will consider the case P2k+1 ⊗ Pn, and for other

cases the proof is the same. Let D = {(k + 1, k + 1 +

(2k + 1)r |r = 0, 1, ...,
n

k2 1+






– 1}. D is a k-dominating

set for n ≡ (k + 1), (k + 2), (k + 3), ..., 0(mod(2k + 1)).

If n ≡ 1, 2, ..., k(mod(2k + 1)), then D = {(k + 1, k +

1 + (2k + 1)r |r) = 0, 1, ...,
n

k2 1+






– 2} � (k + 1, n). |D | =

n

k2 1+






. Minimality follows from the fact that:

n

k2 1+





≥ gk(P2k+1 ⊗ Pn) ≥ gk(P2k ⊗ Pn) ≥ ... ≥

gk(P2 ⊗ Pn) ≥ gk(Pn) =
n

k2 1+






.�

Theorem 6. – Let m, n ≥ 2k + 1. Then,

gk(Pm ⊗ Pn) =
m

k

n

k2 1 2 1+




 +






= gk(Pm) ⋅ gk(Pn).

Proof: Let D = {(k + 1 + (2k + 1)l, k + 1 + (2k + 1)r) | l =

0, 1, ...,
m

k2 1+






– 1, r = 0, 1, ...,
n

k2 1+






– 1}. D is a

k-dominating set for m ≡ (k + 1), (k + 2), ..., 2k,

0(mod(2k + 1)) and n ≡ (k + 1), (k + 2), ..., 2k, 0(mod(2k +

1)).

If m ≡ (k + 1), (k + 2), ..., 2k, 0(mod(2k+1)) and n ≡
1, ..., k(mod(2k + 1)),

then D = {(k + 1 + (2k + 1)l, k + 1 + (2k + 1)r) | l =

0, 1, ...,
m

k
r

2 1
1

+





− , = 0, 1, ...,

n

k2 1+






– 2} � {(k + 1 +

(2k + 1)l, n) | l = 0, 1, ...,
m

k2 1
1

+





− }.

If m ≡ 1, ..., k(mod(2k + 1)) and n ≡ (k + 1), (k + 2),

..., 2k, 0(mod(2k + 1)), then
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D = {(k + 1 + (2k + 1)l, k + 1 + (2k + 1)r | l = 0, 1,

...,
m

k2 1+






– 2, r = 0, 1, ...,
n

k2 1
1

+





− } � {(m, (k + 1) +

(2k + 1)r) | r = 0, 1, ...,
n

k2 1
1

+





− } .

If m ≡ 1, ..., k(mod(2k + 1)) and n ≡ 1, ..., k(mod(2k +

1)), D = {(k + 1 + (2k + 1)l, k + 1 + (2k + 1)r | l = 0, 1, ...,

m

k2 1+






– 2, r = 0, 1, ...,
n

k2 1+






– 2} � {(m, (k + 1) +

(2k + 1)r) | r = 0, 1, ...,
n

k2 1
1

+





− } � {(k + 1 + (2k + 1)l,

n) | l = 0, 1, ...,
m

k2 1+






– 2}.

D is a k-dominating set on Pm ⊗Pn and it holds |D | =

m

k

n

k2 1 2 1+




 +






.

Proof of minimality:

a) If m, n ≡ 0(mod(2k + 1)), it is obvious, because

each vertex is k-dominated by exactly one vertex and each

dominating vertex dominates (2k+1) x (2k+1) vertices

which are maximal.

b) If m ≡ 0(mod(2k + 1)) but n ≡ h(mod(2k + 1)), h ≠
0, then on Pm ⊗ Pn–h each vertex is k-dominated by only

one vertex, and there are
m

k2 1+






n

k2 1+






vertices.

From the construction of the set D it follows that no

vertex on the rest of the graph can be k-dominated by

one of the previous k-dominating vertices.

To k-dominate the rest of the graph, which is Pm ⊗

Ph (1 ≤ h ≤ 2k), we need
m

k2 1+






vertices (Lemma 1).

Then, on the whole graph we have at least

m

k2 1+






n

k2 1
1

+





+






 =

m

k2 1+






n

k2 1+






vertices.

c) If n ≡ 0(mod 2k + 1) but m ≡ h(mod 2k + 1), h ≠ 0,

the proof is the same as in b).

d) If m ≡ h(mod 2k + 1), h ≠ 0 and n ≡ z(mod 2k + 1),

z ≠ 0, then on a Pm–h ⊗ Pn–z we have a perfect k-dominat-

ing set (each vertex is k-dominated by exactly one vertex),

and it has
m

k2 1+






n

k2 1+






vertices. To k-dominate the

remaining vertices (on the blocks Ph ⊗ Pn and Pm–h ⊗ Pz)

we need at least
n

k2 1+






+
m h

k

−
+





2 1

=
n

k2 1+






+
m

k2 1+






vertices and then the result follows.�

K-DOMINATING SETS ON THE EQUIVALENT
PRODUCT OF TWO PATHS

Observation 2. – By � we denote the equivalent product.

From P1 � Pn = Pn, it follows gk(P1 � Pn) = gk(Pn).

From P2 � Pn = P2 ⊗Pn, it follows gk(P2 � Pn) = gk(P2

⊗ Pn) = gk(Pn).

Definition 1. – For a fixed l, 1 ≤ l ≤ n, the set

(Pm)l = {(i, l) | i = 1, ..., m} is called a column of Pm � Pn.

For a fixed z, 1 ≤ z ≤m, the set (Pn)z = {(z, j) | j = 1, ..., n}

is called a row of Pm � Pn.

Theorem 7. –

g (P3 � Pn) = g (Pn) .

Proof: Since on P3 � Pn we have all edges as on P3 ⊗ Pn

(and some more), it follows that:

g (P3 � Pn) ≤ g (P3 ⊗ Pn) =
n

3






= g(Pn) .

Let us prove that
n

3





≤ g (P3 � Pn). Let D be some

dominating set and vertex (i, j) ∈D, i ∈{1, 2, 3}, j ∈{1,

2, ..., n}.

If i = 2, this vertex dominates only all vertices on

the (j – 1)-th, the j-th and the (j+1)-th column on P3 � Pn,

and we have the same situation as on the strong product.

If we take that if (i, j) ∈ D, then i = 2, it follows

(from the strong product) that D has at least
n

3






vertices.

Let i = 1 (it is the same for i = 3). Vertex (1, j) domi-

nates (1, j–1), (1, j), (1, j+1), (2, j–1), (2, j), (2, j+1) �

(3, 1), ... (3, j–2), (3, j+2), ..., (3, n). ( If j = 1, then there

do not exist vertices (1,j–1),(2,j–1),(3,j–1),... but every-

thing else is the same.)

To dominate the remaining vertices from the 3-rd

row, we can take some vertices from the the 2-nd row

(but these vertices can dominate only 9 vertices and we

again have the situation as on the strong product), or we

can take some vertices from the 1-st and the 3-rd row.

The best case is if (3, j) ∈D, because then all ver-

tices from the 1-st and the 3-rd row and 3 vertices from

the 2-nd row are dominated.

To dominate n–3 vertices from the 2-nd row (on

which we have the same situation as on the strong pro-

duct), we need at least
n −





3

3
=

n

3






– 1 vertices.

All together, D has then at least
n

3






+ 1 vertices,

and is not minimal. �
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Theorem 8. –

g(Pm � Pn) = min{g(Pm), g(Pn)}; m, n ≥ 4.

Proof: Without loss of generality let g(Pm) < g(Pn).

If m ≡ 2, 0(mod(3)), then we can take D = {(2 + 3l,

2) | l = 0, 1, ...,
m

3






– 1}. If m ≡ 1(mod(3)), then, D = {(2 +

3l, 2) | l = 0, 1, ...,
m

3






– 2} � (m, 2).

If m = 4, then, D = {(1, 2), (4, 2)}. It holds:

|D | =
m

3






= g(Pm)

and D is a dominating set on Pm � Pn.

Proof of minimality: Let (i, j) ∈D. Then it domina-

tes vertices (i–1, j–1), (i–1, j), (i–1, j+1), (i, j–1), (i, j), (i,

j+1), (i+1, j–1), (i+1, j), (i+1, j+1), and {(k, l) : |k – i| >

1, |l – j | > 1}. To dominate the remaining vertices on the

(i – 1)-th, the i-th and the (i+1)-th row (like P3 � Pn) and

the (j–1)-th, the j-th and the (j+1)-th column (like P3 � Pm),

we need min{g (Pm), g(Pn)} – 1 vertices. �

Theorem 9. –

g2(Pm � Pn) = 1; m, n ≥ 3.

Proof: Let D be a 2-dominating set and (i, j) ∈D. As in

the previous theorem, only vertices from the (i–1)-th, the

i-th and the (i+1)-th row and the (j–1)-th, the j-th and

the (j+1)-th column, which are at a distance >1 from

(i,j), are not 1-dominated by (i,j). All other vertices are

already dominated. But now we have 2-domination.

Let 3 ≤ i ≤m – 2 and 3 ≤ j ≤ n – 2 . It is easy to see

that vertices from the (i–1)-th, and the (i+1)-th row and

the (j–1)-th and the (j+1)-th column are 2-dominated.

Also, for all vertices from the i-th row and the j-th

column there exists at least one vertex (k,l) from the first

or the last row which is adjacent to them, and which is at

a distance one from (i,j). (|k – i | > 1, |l – j | > 1). Then

(i,j) 2-dominate all vertices on Pm � Pn for m,n ≥ 3. For i

∈{1, 2, m – 1, m} and j∈{1, 2, n – 1, n}, the proof is the

same. �

Theorem 10. – Let m, n ≥ 3 and k ≥ 2. Then it holds:

gk(Pm � Pn) = 1 .

Proof: From the previous theorem. �

CONCLUSIONS

K-dominating sets on the Cartesian product, cardinal

product, strong product and equivalent product of two

paths are given. A path is a special case of a polygraph

called a fascia graph and the Cartesian product of two

paths is a fascia-fascia graph. Hence, the methods of this

paper could be generalized to polygraphs.

Also, from the domination number we can say some-

thing about the lower bound on maximal matching. Pro-

ducts of more than two paths can be considered, but this

was not done. There is only one article about the domi-

nating Cartesian product of cycles10 where the product

of more than two graphs is considered.
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SA�ETAK

K-dominacijski skupovi na asocijativnim i komutativnim produktima dvaju putova

Antoaneta Klobu~ar

U ~lanku su prvo dani raniji rezultati o k-dominacijskim skupovima na kartezijevom i kardinalnom pro-

duktu dvaju putova, a potom novi rezultati o k-dominacijskim skupovima na jakom i ekvivalentnom produktu

dvaju putova (za slucaj kada su putovi proizvoljno veliki).
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