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Among all trivalent graphs on n vertices, let Gn be one with the smallest possible eigenvalue gap.

(The eigenvalue gap is the difference between the two largest eigenvalues of the adjacency

matrix; for regular graphs, it equals the second smallest eigenvalue of the Laplacian matrix.)

We show that Gn is unique for each n and has maximum diameter. This extends work of Guidu-

li and solves a conjecture implicit in a paper of Bussemaker, ^obelji}, Cvetkovi} and Seidel.

Depending on n, the graph Gn may not be the only one with maximum diameter. We thus also

determine all cubic graphs with maximum diameter for a given number n of vertices.
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NOMENCLATURE

Graphs in this paper are undirected, connected, trivalent

(also called cubic) graphs on n vertices, without loops or

multiple edges. For such a graph G, we denote the edge

set by E or E(G) if we have to emphasize its dependence

on G. Similarly, we write the vertex set as V = V (G) =

{1, 2,..., n}. The Laplacian matrix L or L(G) is defined

as L(G) = 3I – A(G), where A denotes the adjacency ma-

trix. Spectral theory originally defines the spectrum of G

as the spectrum of A. This paper, however, prefers to deal

with the Laplacian spectrum of G, that is, the spectrum

of L. Obviously, these spectra are in a linear relationship

with each other. (Therefore, the choice of L instead of A

is mathematically irrelevant for regular graphs; however,

there are applications where L arises more naturally than

A, cf. Ref. 1) The matrix L is positive semidefinite, with

an eigenvector j = (1, 1,..., 1)T corresponding to the eige-

navalue 0. As G is connected, this eigenvalue has multi-

plicity 1.

INTRODUCTION

Let 0 = l1 < l2 ≤ ... ≤ ln, be the eigenvalues of L. The

eigenvalue l = l2 is called the eigenvalue gap (for con-

nected regular graphs, this is the difference between the

two largest eigenvalues of the adjacency matrix). The

eigenvalue gap was first investigated by Fiedler in 1973,

who called it the algebraic connectivity of a graph (see

Ref. 2). The intuition is that the gap is large if and only

if the graph has large »connectivity«. Fiedler bounded the

gap above and below by functions of the edge connectivity

of the graph. This was extended by Alon and Milman3

and Alon4, who bounded the isoperimetric ratio (a more
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global measure of connectivity) above and below, respec-

tively, by functions of the eigenvalue gap (see their res-

pective papers). The difference between two consecutive

eigenvalues of various matrices has applications in chem-

istry or biology, see e.g. Refs. 5 and 6.

We show that the trivalent graph on n vertices with

minimal second-largest eigenvalue is uniquely determined.

Guiduli7 already proved that such a graph must look

like a path; more precisely, he showed that the graph must

be reduced path-like. A trivalent graph is said to be re-

duced path-like if it is built from non-trivial blocks with

bridges in-between:

At the left end we have one of the blocks:

or (1)

The block at the right end is the mirror image of one

of these blocks. Each interior block is of the type:

or (2)

We will refer to these four types of blocks as small

or big blocks, at the end or in the interior, respectively.

Note that in our figures we draw the bridges (which in

the sense of the usual definition are blocks, too) as

outgoing edges of non-trivial blocks. Speaking of blocks

we thus always mean the non-trivial ones.

The main result of this paper, Theorem 1, states that

the trivalent graph with minimum eigenvalue gap is the

one specified explicitly in the next definition.

Definition 1. – Let Gn be the reduced path-like graph on

n vertices with small interior blocks and one small end

block. The other end block is then forced by the value of

n. (Notice that trivalent graphs only exist for even n and

that, so far, Gn only makes sense for n ≥ 10.) If n ≡ 2

(mod 4), then Gn is the graph:

If n ≡ 0 (mod 4), then Gn is the graph:

G4, G6 and G8 are:

G4 = , G6 = , G8 =

Numerical values of the eigenvalue gap for some n

are

n l2(Gn) n l2(Gn) n l2(Gn)

4

6

8

10

4

2

0.763932

0.221543

12

14

16

18

0.167742

0.104893

0.0840422

0.0620222

20

50

100

200

0.0515873

0.00789634

0.0019742

0.000493469

The values for n = 50, 100, 200 indicate the asymp-

totic behaviour: Doubling n reduces l2 by about a factor

4. Indeed, asymptotically l2(Gn) = 2p2 / n2 + O(n–3). (The

proof of this result will be the subject of a separate note.)

We prove the following theorem, conjectured by Busse-

maker, ^obelji}, Cvetkovi} and Seidel.8

Theorem 1. – The graph Gn is the unique trivalent graph

on n vertices with minimum eigenvalue gap.

Proof: Guiduli7 showed that the graph with minimum

eigenvalue gap must be reduced path-like, built from big

and small blocks as specified in (1) and (2). Starting from

there, the proof distinguishes several cases. The next three

sections deal with technical details, cast into several lem-

mas and corollaries.

Let us summarize the main course of the arguments:

Lemma 4 rules out big interior blocks. Thus, only the

type of blocks at the end has to be determined. For n ≡ 0

(mod 4), Corollary 1 settles the affair. For n ≡ 2 (mod 4),

two graphs remain to consider: Gn and the graph Hn with

big blocks at both ends. Lemma 5 will rule out the

second possibility. �

EIGENSYSTEMS OF PATH-LIKE TRIVALENT
GRAPHS

For path-like graphs built from the four blocks specified

in (1) and (2), we need some properties of their Laplacian

eigensystems and, specifically, the eigenvalue gap l2.

Let L be the Laplacian matrix of a connected graph

G on n vertices, and let x∈Rn be an n-vector. The value

x Lx

x

T

| | | |2

is called the Rayleigh quotient. Let j = (1, 1,..., 1)T∈Rn,

a ∈R; it is well known, cf. e.g. Refs. 1 and 9, that:

l2 = min min
( )

, ,x x j x x j

x Lx

x x≠ ⊥ ≠ ⊥
=

−∑
0 2 0

2

2

T i ji j
x x

| | | | | | | |

~
=

= n min
( )

( )
( , ),

x j≠
<

−

−
∑
∑a

x x

x x

i ji j

i ji j i j

2

2

~
(3)

194 C. BRAND et al.

Croat. Chem. Acta 80 (2) 193–201 (2007)



The Rayleigh quotient will be our main tool. Right

now, we use it for a rough estimate of the eigenvalue

gap l2.

Lemma 1. – Let G be a connected trivalent graph on n

vertices (n ≥ 10), built from big and small blocks as spe-

cified in (1) and (2). Then,

l2 <
12

n
.

Proof: Define x with x1, ... , xn/2 = –1 for all vertices in

the left half of G, xi = 1 for the remaining n/2 vertices in

the right half of G. Clearly, x ⊥ j, and at most three edges

will contribute to the sum for the Rayleigh quotient.�

This estimate is far from optimal and easy to impro-

ve, but it tells us that we definitely do not have to search

for the minimal l2 at values greater than 2.

Definition 2. – Let G be a connected trivalent graph on n

vertices, built from big and small blocks as specified in

(1) and (2). We define a partition P(G) = (C1, ..., Cm),

where the cells Ci are disjoint subsets, each containing

exactly one or two vertices from V = {1,..., n}, their

union being V. We specify that vertices drawn vertically

above each other in our figures shall belong to the same

cell, and we will number cells consecutively from left to

right.

To illustrate this principle, a graph starting with a

small block (1) at the left end will have two vertices in

cell C1, two in C2, one in both C3 and C4, and so on.

This partition is equitable. That means: for all i and

j, the number of neighbors which a vertex in Ci has in

the cell Cj is independent of the choice of vertex in Ci.

We will amply exploit the relations between equitable

partitions and eigensystems, see, e.g. Ref. 10 and only

sketch the proof of the following result.

Lemma 2. – Let G be a connected trivalent graph on n

vertices, built from big and small blocks as specified in

(1) and (2). Let there be m cells in the partition P as de-

fined just before. Then, there are m orthogonal eigenvec-

tors, each constant on the cells of P. The remaining

n – m orthogonal eigenvectors belong to eigenvalues > 2

and can be chosen so that each of them is nonzero in one

block only.

For us, only l2 is of interest, and we need to make

sure that the corresponding eigenvector is in the first

group. Therefore, we list for the n – m eigenvectors from

the second group the values they can take in each type of

block, and the associated eigenvalues. The simple esti-

mate from Lemma 1 then ensures that l2 is well below

these values.

For a small block at the end with cells C1, C2, and

C3, nonzero components may occur either in C1 or C2.

C C1 2

1 0

1 0−






l = 4, or

C C1 2

0 1

0 1−






l = 3.

For a big block at the end, there are three eigenvec-

tors with nonzero values in cells C1, C2, and C3 only. Let

f = (1 + 5) / 2 (the golden ratio). Then

C C C1 2 3

1 0 0

1 0 0−






l = 4,

C C C1 2 3

0 1

0 1

f

f− −






l = 4 – f,

C C C1 2 3

0 1

0 1

f

f

−
−






l = 4 –

1

f
.

For a small interior block, the eigenvalue l = 4 cor-

responds to components ±1 in the middle cell. For a big

interior block, components ±1, ±1 in the two central cells

give l = 3, the pattern ±1, �1 gives l = 5.

It is easily checked that in this way n – m orthogonal

eigenvectors of a path-like trivalent graph on n vertices

can be constructed. Each of the other m eigenvectors be-

longs to the subspace of vectors that are constant on the

cells C1, ..., Cm of P.

Definition 3. – There is an obvious one-to-one correspon-

dence between an n-vector that is constant on the cells

C1, ..., Cm of P and an m-vector x with components (x1, ...,

xm), so that the values at vertices in cell Ci are xi. There-

fore, from now on we will identify the corresponding m-

and n-vectors. The context should make it clear whether

a vector x has m or n components.

Lemma 3. – Let G be a connected trivalent graph on n

vertices, built from big and small blocks as specified in

(1) and (2). Consider an eigenvector to l2 and the par-

tition P = (C1, ..., Cm). Let x = (x1, ..., xm) so that xi is the

value of the eigenvector at vertices in cell Ci, cells num-

bered consecutively from left to right. Then, the xi form

a strictly monotone sequence changing sign once.

This follows from Fiedler,9 Theorem (3,12). �

NO BIG BLOCKS IN THE MIDDLE

In this section, we show that big blocks cannot occur in

the interior of the graph Gn with minimal eigenvalue gap

l2. The idea here is that if there were a big block, push-

ing this block towards one end (by local switching of ed-

ges) would reduce l2. Figure 1 illustrates the principle,

assuming that the block is to be pushed to the left, away

from the center. (We consider the position where the
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eigenvector changes sign as the »center« in some intui-

tive sense.)

G

← End Ck Ck+1 Ck+2 Center →

H

Lemma 4. – Let G be a connected trivalent graph on n �

10 vertices, built from big and small blocks as specified

in (1) and (2). In the cells Ck, Ck+1,Ck+2 of the partition

P, let xk, xk+1, xk+2 be the components of the eigenvector

associated with l2. Assume an edge between cells Ck

and Ck+1 and a big interior block to the right of this edge,

as diagrammed in the upper part of Figure 1. We may

select the orientation of the graph and the sign of the ei-

genvector so that, by Lemma 3, xk > xk+1 > xk+2 ≥ 0. Then,

the graph H obtained by local switching of edges as shown

in the lower part of Figure 1 has a smaller eigenvalue

gap than G.

Proof: Let x be the eigenvector associated with l2 on G,

and let (x1, ..., xm) be the values of x in the cells C1, ...,

Cm of P(G). Note that x is orthogonal to j = (1, ..., 1);

we will assume ||x || = 1. Then

l2 = ( )x xi j−∑ 2

E(G)

,

where the sum counts all edges in G. We define a vector

y with values (y1, ..., ym) in the cells C1, ..., Cm of P(H)

and make it orthogonal to j.

yi =
x x x i k

x

k k k

i

+ − − = +
−





+ +2 1 1d

d

if

else,

,
(4)

where d = 2(xk – xk+1) / n ensures orthogonality to j. (Note

that for the graph H the value yk in cell Ck counts twice

in the inner product with j, the value in cell Ck+2 counts

only once. For x and G, it is the other way round!)

From the definition of y,

( )x xi j−∑ 2

E(G)

= ( )y yi j−∑ 2

E(H)

.

We will show that ||y || > 1, which means that the Ray-

leigh quotient for y on H is smaller than l2 of G.

||y || = y
i
2

V(H)

∑ = ( )x i −∑ d 2

V(G)

– (xk+1 – d)2 – (xk+2 – d)2 +

(xk – d)2 + (xk + xk+2 – xk+1 – d)2 =

x
i
2

V(G)

∑ – 2d x i

V(G)

∑ + nd2 + 2(xk – xk+1)(xk + xk+2 – 2d) =

1 + nd2 + 2(xk – xk+1)(xk(1 – 4/n) + 4xk+1/n + xk+2).

The sum is > 1, since we assumed that xk > xk+1 > xk+2 ≥ 0

and n ≥ 10. �

Corollary 1. – For n ≥ 12 and n ≡ 0 (mod 4), the graph

Gn from Definition 1 is the unique trivalent graph on n

vertices with minimal eigenvalue gap.

Proof: Guiduli7 showed that only blocks as specified in

(1) and (2) can build a graph with minimal eigenvalue

gap. Lemma 4 rules out big interior blocks. Thus, only

the blocks at the end are to be determined. For n ≡ 0 (mod

4), the only possibility is one big and one small block.�

TWO CANDIDATES FOR THE MINIMUM

If G is reduced path-like with no big blocks in the middle,

and n ≡ 2 (mod 4), then there are two alternatives: either

the graph has a big block at each end, or it has small

blocks only. The graphs are drawn below.

Gn

Hn

The graph Gn has diameter (3n – 10)/4, while Hn has

diameter (3n – 14)/4. Intuitively, we would expect the graph

with a larger diameter to have the smaller eigenvalue l.

The calculations in this section will confirm that this is

true indeed.

Gn

Hn

Figure 2. Graphs Gn and Hn for n ≡ 6 (mod 8).

Lemma 5. – For n ≥ 10 and n ≡ 2 (mod 4), the graph Gn

from Definition 1 is the unique trivalent graph on n

vertices with minimal eigenvalue gap.

Proof: Because of Lemma 4, solely Hn competes against

Gn. For n = 10, note that Gn wins by being the only
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y–1 y0 y1 y2 y3 y4 y
k–2 y

k–1 y
k

x–1 x1 x2 x3 x4 x5 x6 x
k–1 x

k



candidate; the definition of Hn starts with n ≥ 14. Thus,

let now n ≥ 14. The idea of the proof is simple: We mo-

dify an eigenvector x of Hn to get a new vector y, still

perpendicular to j. We then show that the Rayleigh quo-

tient for Gn with the newly defined vector is less than the

eigenvalue of Hn. There are two different cases, though

similar: when the diameter of Gn is even and when it is

odd. Section Even Diameter of Gn: Case n ≡ 6 (mod 8)

demonstrates the even case in detail, and for the odd case,

Section Odd Diameter of Gn: Case n ≡ 2 (mod 8) shows

where the evaluation differs. �

Even Diameter of Gn: Case n ≡ 6 (mod 8)

Definiton of x and y. – We will exploit the symmetry of

Hn and Gn to define the vectors x and y. We will use the

convention of Definition 3. For both graphs, the reflec-

tion about the central vertical axis is an automorphism.

Vertices interchanged by this reflection have components

with opposite sign. Figure 2 shows the right half of each

graph and establishes the nomenclature. For convenien-

ce, we start counting cells and vector components at the

center.

Let the vector x be an eigenvector to the second-smal-

lest eigenvalue l = l2 of the Laplacian L(Hn) (no other

eigenvalue than l2 will be of importance here, so let us

drop the subscript from now on). From x, we define a

vector y, which we will use to calculate the Rayleigh

quotient of Gn.

y0 = 0, y1 = x1, (5)

y2 = x3, y3 =
x x3 4

2

+
−l

y4 = x4,

y5 = x6, y6 =
x x6 7

2

+
−l

y7 = x7, ..., (6)

yk–5 = xk–4, yk–4 =
x xk k− −+

−
4 3

2 l
yk–3 = xk–3,

yk–2 = xk–1, yk–1 = 2xk–1 – xk–2 yk = xk + xk–1 – xk–2

Symmetry and Lemma 3 allow us to assume x–1 < 0 < x1 <

x2 < ... < xk. Correspondingly, 0 = y0 < y1 < y2 < ... < yk,

and y is orthogonal to j.

Establishing Certain Relationships among the Coordina-

tes. – First, we establish a few relationships among the

components of x, using the eigenvalue equations L(Hn)x

= lx.

We can write x2 in terms of x1, x3 and l from the

equation –x1 + 2x2 – x3 = lx2. We do the same for x5, ...,

xk–2.

x2 =
x x1 3

2

+
−l

, x5 =
x x4 6

2

+
−l

, ...,

xk–2 =
x xk k− −+

−
3 1

2 l
. (7)

From the eigenvalue equations:

–x–1 + 3x1 – 2x2 = lx1 and

–x1 + 2x2 – x3 = lx2 (8)

we may express x1 in terms of x–1 and x3,

x1 =
( )

( — )( — )

–2 2

4 1

1 3− +l

l l

x x
.

As long as 0 < l < 1, an upper bound for x1 follows;

corresponding inequalities hold for x4, x7, ..., xk–3.

x1 <
2

4 1

1 3( )

( )( )

x x− +
− −l l

, x4 <
2

4 1

3 6( )

( )( )

x x+
− −l l

, ...,

xk–3 <
2

4 1

4 1( )

( )( )

x xk k− −+
− −l l

. (9)

We can write the values at the ends of both graphs in

terms of l and xk–1. Consider the eigenvalue equations:

–xk–2 + 3xk–1 – 2xk = lxk–1 and

–2xk–1 + 2xk = lxk .

Solving these as well as substituting in the definitions

of yk–1 and yk gives:

xk–2 =
2 5

2

2

1

− +
− −
l l

l
xk , xk =

2

2 −l
xk–1,

yk–1 =
2 3

2

2+ −
−
l l

l
xk–1, yk =

2 4

2

2+
−
l- l

l
xk–1. (10)

Estimating the Norm. – We will bound from below the

difference ||y ||2 – ||x ||2 in terms of xk–1 and l. The

squared norms of x and y are:

||x ||2 = 2(x x x x x x x
k k1

2
2
2

3
2

4
2

5
2

3
2

2
22 2 2+ + + + + + + +− −...

2 2
1

2 2x x
k k− + ),

||y ||2 = 2(y y y y y y y
k k1

2
2
2

3
2

4
2

5
2

3
2

2
22+ + + + + + + +− −...

2 2
1

2 2y y
k k− + ).

Their difference is:

||y ||2 – ||x ||2 = 4(− + − + − + −− −x y x y y x
k k2

2
3
2

5
2

6
2

4
2

2
2... ) –

2x y y x
k k k k− −+ + −

1
2

1
2 2 24( ). (11)

Substituting the definitions (5) of y3, y6, ..., yk–4, the ex-

pressions (7) for x2, ..., xk–2 and adding a term 0 = (x–1 +

x1) transforms the first part. Expansion cancels most of

the squares and yields an intermediate result S1.
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4(− + − + − + −− −x y x y y x
k k2

2
3
2

5
2

6
2

4
2

2
2... ) =

4

2 2
1 1

2
1 3

2
3 4

2

( )
(( ) ( ) ( )

−
+ − + + + −−

l
x x x x x x ... +

(xk–4 + xk–3)
2 – (xk–3 + xk–1)

2) =

4

2
2 2

2 1
2

1 3 1 4 6 3
( )

( ( ) ( )–−
− − − − −

l
x x x x x x x ... –

2xk–3(xk–1 – xk–4) – x
k−1
2 ) = S1

The inequalities (9) for x1, x4, ..., xk–3 in terms of x–1,

x3, x6, ..., xk–1 bound the sum from below and form a tele-

scopic sum. We neglect positive contributions from x–1 and

arrive at the final result, a bound in terms of l and xk–1.

S1 >
4

2

4

4 12 1
2

3 1 3 1
( ) ( )( )

(( )( )
−

−
− −

+ −


− −
l l l

x x x x x +

(x6 + x3)(x6 – x3) + ... + (xk–1 + xk–4)(xk–1 – xk–4)) –

x
k−



1

2 =

4

2

4

4 12 1
2

1
2

1
2

1
2

( ) ( )( )
( )

−
−

− −
− + −



− − −

l l l
x x x x

k k
>

–
4

2

1
2

2

x
k−

−( )l

4

4 1
1

( )( )− −
+




=

l l
–

4 8 5

2 4 1

2
1

2

( )

( ) ( )( )

− +
− − −

−l l

l l l

xk .

(12)

The remaining terms in equation (11) become with

equations (10):

− + + −− −2 4
1

2
1

2 2 2x y y x
k k k k

( ) =

2 4 60 33 28 4

2

2 3 4

2 1
2

( )

( )

+ + − +
− −

l l l l

l
x

k
.

For 0 < l < 1, certainly

33l2 – 28l3 + 4l4 = l2(3 – 2l)(11 –2l) > 0

Thus, dropping these terms gives a lower bound,

− + + − > +
−− − −2 4

8 1 15
1

2
1

2 2 2
1

2x y y x x
k k k k k

( )
( )l

l(2 )2
.

Together with inequality (12), the bound now is:

||y ||2 – ||x ||2 >
4 115 149 30

2 4 1

2

2 1
2

l l l

l l l

( )

( ) ( )( )

− +
− − − −x

k
>

l l

l

( )

( )

115 149

2 2 1
2

−
− −x

k
. (13)

A Bound for yTLy. – Here we wish to find an upper

bound for yTL(Gn)y – xTL(Hn)x in terms of xk–1 and l.

From equation (3),

yTL(Gn)y – xTL(Hn)x = ( )

, )

y yi j

i j n

− −
∈
∑ 2

{ } E(G

( )

, )

x xi j

i j n

−
∈
∑ 2

{ } E(H

.

In these sums, the contribution of the edge between

x–1 and x1 in Hn is equal to the contributions from the

four edges between y–1 and y1 in Gn. Between x1 and x3,

using expression (7) for x2,

2(x1 – x2)
2 + 2(x2 – x3)

2 =

(x1 – x3)
2 1

2

2

2
+

−






 >

l

l( )
(y1 – y2)

2;

that is, the edges in Hn contribute more than the

corresponding edge in Gn. The same holds for the edges

between x3 and x6 in Hn and the edges from y2 to y5 in

Gn. The difference d of their contributions is

d = (x3 – x4)
2 + 2(x4 – x5)

2 + 2(x5 – x6)
2 – 2(y2 – y3)

2 –

2(y3 – y4)
2 – (y4 – y5)

2 .

Inserting from equations (5) and (7) establishes:

d =
l

l

2

22( )−
(x6 – x3) (x3 + 2x4 + x6) > 0 . (14)

In the same way, all other edges between x6 and xk–1

contribute more than the corresponding edges in Gn. Ed-

ges between xk–1 and xk contribute as much as edges be-

tween yk and yk+1. The only exception are the edges be-

tween yk–2 and yk–1 and their mirror images at the other

end of Gn, which are not counterbalanced by any edges

in Hn. Their contribution is

4(yk–2 – yk–1)
2 =

4 4

2

2 2

2

l l

l

( )

( )

−
−

x
k−1
2 .

Thus,

yTL(Gn)y – xTL(Hn)x <
4 4

2

2 2

2 1
2

l l

l

( )

( )

−
− −x

k
<

64

2

2

2 1
2

l

l( )− −x
k

(15)

...
Hn

Gn...

Figure 3. Graphs Hn and Gn for n ≡ 2 (mod 8).
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The Rayleigh Quotient. – Now comes the easy part. We

combine the inequalities (13) and (15).

y L y

y

T
n( )G

| | | |2
<

x L x

x

T
n k

k

x

x

( )
( )

( )

( )

H +
−

+ −
−

−
64

2

115 149

2

2

2 1
2

2

2

l

l

l l

l
| | | | −1

2

=

l
( )

( ) ( )

2 64

2 115 149

2 2
1

2

2 2
1

2

− +
− + −

−

−

l l

l l l

| | | |

| | | |

x

x

x

x

k

k

< l . (16)

The last inequality holds as long as 115 – 149l > 64

and l > 0. For the smallest possible graph Hn with n =

14, already l ≈ 0.12709, and for larger n the eigenvalues

will be smaller.

Odd Diameter of Gn: Case n ≡ 2 (mod 8)

The arguments in this case follow closely those presented

in the previous section. The essential difference is that

now Hn has two vertices labeled by x0 at its center; there

are no components y0 in Gn, but additional vertices y±(k+1).

Figure 3 illustrates the situation. Equations and estima-

tes differ mainly in the subscripts. The equivalents of

equations (5), (7), (9) and (10) are, respectively,

y1 = x1, y2 =
x x1 2

2

+
−l

, y3 = x2,

y4 = x4, y5 =
x x4 5

2

+
−l

, y6 = x5, ..., yk–1 = xk–1 (17)

yk = 2xk–1 – xk–2, yk+1 = xk + xk–1 – xk–2.

x3 =
x x2 4

2

+
−l

, x6 =
x x5 7

2

+
−l

, ..., xk–2 =
x xk k− −+

−
3 1

2 l
.

(18)

x2 <
2

4 1

1 4( )

( )( )

x x−
− −l l

, x5 <
2

4 1

4 7( )

( )( )

x x+
− −l l

, ...,

xk–3 <
2

4 1

4 1( )

( )( )

x xk k− −+
− −l l

. (19)

xk–2 =
2 5

2

2− +
−
l l

l
xk–1 xk =

2

2 −l
xk–1,

yk =
2 3

2

2

1

+ −
− −
l l

l
xk yk+1 =

2 4

2

2+
−
l- l

l
xk–1 (20)

The difference between the squares of x and y is:

||y ||2 – ||x ||2 = 4(y x y x y x
k k2

2
3
2

5
2

6
2

3
2

2
2− + − + + −− −... ) –

2x
k−1
2 + 4(y

k
2 + y

k+1
2 – x

k
2). (21)

Using equations (17), (18), (19) and (20), we get:

||y ||2 – ||x ||2 >
l l

l

( )

( )

115 149

2 2 1
2

−
− −x

k
,

which is exactly an inequality (13).

To bound yTL(Gn)y, we compare the contributions of

edges between x1 and x4 with those from y1 to y4.

d = 2(y1 – y2)
2 + 2(y2 – y3)

2 + (y3 – y4)
2 – (x1 – x2)

2 –

2(x2 – x3)
2 – 2(x3 – x4)

2.

Inserting from equations (17) and (18) brings:

d =
−
−

− + + <l

l

2

2
4 1 1 2 4

2
2 0

( )
( )( )x x x x x .

an expression analogous to equation (14). In the same

way, all other edges between x4 and xk–1 may be com-

pared. Edges between xk–1 and xk contribute as much as

edges between yk and yk+1. The only exception are the

edges between yk–1 and yk and their mirror images at the

other end of Gn, which are not counterbalanced by edges

in Hn. Their contribution is

4(yk–1 – yk)
2 =

4 4

2

2 2

2 1
2

l l

l

( )

( )

−
− −x

k
.

The resulting inequality is identical with equation

(15). Consequently, the final estimate (16) also holds.

With due relief, we pronounce the concluding quod

erat demonstrandum for Lemma 5, and thus for Theo-

rem 1 as well. �

TRIVALENT GRAPHS WITH MAXIMUM DIAMETER

The following theorem characterizes the cubic graphs with

maximum diameter for a given number n of vertices.

Theorem 2. – The graph Gn from Definition 1 is the graph

of maximum diameter among all trivalent graphs on n

vertices.

For n = 4 (trivially), and for n ≥ 10 and n ≡ 2 (mod

4), the graph Gn is the unique graph of maximum diame-

ter. For n = 6 and n = 8, the other extremal graphs are:

For n ≥ 12 and n ≡ 0 (mod 4), the graph Gn shares its

extremal position with graphs built from small blocks as

specified in (1) and (2), and exactly one big block, either
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at the end or in the interior, taken also from (1) and (2)

or from:

Proof: The proof starts with reformulating the question:

instead of maximizing the diameter d for a given n, let

us find among all cubic graphs with fixed d a graph with

minimal number n of vertices. These two formulations

are almost equivalent; but inspection reveals for d = 4 a

minimum n = 10, while the maximum diameter for n =

10 vertices is d = 5. Except for n = 10, however, the cor-

respondence between diameter d and minimal n will turn

out to be a bijective mapping. Consequently, we may

prove the second formulation.

For n ≤ 8, enumeration solves the problem (see, e.g.,

the tables in Ref. 11). For n ≥ 10, d ≥ 5, we derive a low-

er bound (23) for n in terms of the given d, and we show

that this bound is sharp for exactly those graphs speci-

fied in this theorem. The following lemmas cover the

technical details. �

In the case of the minimal eigenvalue gap, the first

observation was that the graphs in question must be re-

duced path-like. Not surprisingly, a graph with the mini-

mum number of vertices for a given diameter will be of

similar structure. This is the topic of the next lemmas. In

the following, a block is defined, as usual, as a maximal

connected subgraph without a point of articulation. In

this sense, a block is either a maximal 2-connected sub-

graph or a K2, its edge being a bridge.

Lemma 6. – Let G be a cubic graph with minimal num-

ber of vertices for a given, fixed diameter d. Then, the

block graph of G is a path, i.e., the blocks of G are single

edges (with two vertices of degree one), or blocks with

one or two vertices of degree two.

Proof: We observe first that of any two blocks that have

a vertex in common exactly one must be a K2, because

every vertex has degree 3.

Consider a diameter P in G and denote the subgraph

formed by all the blocks it meets in at least two vertices

by GP. Clearly (since block graphs are trees), the block

graph of GP is a path. If the assertion of the proposition

is not true, there must be a block B that is connected to

GP by an edge e where the endpoint a of e in GP has two

neighbors a1 and a2 in GP. We now delete e and B as

well as all edges incident with them from G and connect

a1 and a2 by a small interior block (2). This decreases

the number of vertices in G by at least 2 and does not

decrease the diameter. �

Lemma 7. – Let B be a block of diameter d ≥ 2, i∈{0, 1,

2} and suppose that B has |B | – i vertices of degree 3

and i of degree 2. Then:

|B | ≥ 2d + 2 – i.

Proof: Let B have diameter d and let P, Q be two disjoint

paths connecting vertices a, b of distance d in B. Choose

P, Q so that no shorter disjoint path exists. Let aj and bj, j∈
{0, 1}, be the neighbors of a and b in P � Q. If a has

degree 3, there exists another neighbor a2 of a and, si-

milarly, there exists another neighbor b2 of b if b has de-

gree 3. For d > 2 all these vertices must be distinct, for

d = 2 it could be that a2 = b2. We distinguish two cases:

CASE 1. i = 0. Neither a2 nor b2 are on P or Q (otherwise

a shorter path would exist). Thus, even if a2 = b2, the

number of vertices of B is at least

|P � Q | + 1 ≥ 2d + 1

Since a cubic graph must have an even number of

vertices, |B | ≥ 2d + 2.

CASE 2. i > 0. If a or b or both have degree three, by the

same argument as above,

|B | ≥ |P � Q | + 1 ≥ 2d + 1

If both of them are of degree 2, then neither a2 nor

b2 exist and the bound has to be lowered by one. �

Furthermore, we note that graphs of diameter one are

complete. Thus, there is only one cubic block of diame-

ter 1, the complete graph K4.

As we shall see, only minimal blocks of diameter ≤ 3

will be of importance for the charcterization of cubic

graphs with a given diameter and minimal number of

vertices. These minimal blocks are:

For diameter 1, the complete graph K4.

For diameter 2 and i = 0, the two cubic graphs on 6

vertices; for i = 1 a K4 in which one edge is subdivided

by an additional vertex (of degree 2), i.e., the small end

block (1); and for i = 2 a K4 from which an edge has

been deleted, i.e., the small interior block (2).

For diameter 3 and i = 0, we have the three cubic

graphs on 8 vertices with diameter 3; for i = 1 just two

graphs, the large end block (1) and the one depicted in

Theorem 2; and for i = 2 three graphs, only two of which

are interesting to us, because in one of them the vertices

of degree 2 have distance 2. These two are the big inte-

rior block (2) and the one depicted in Theorem 2.

Lemma 8. – Let G be a cubic graph on n vertices, with

diameter d. Then, its number k of bridges satisfies the

inequality:

n ≥ 2d – 2k + 2 (22)
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Proof: Let B0, e1, B1, e2, ..., ek–1, Bk–1, ek, Bk be the suc-

cession of blocks on a diameter P of G, the notation be-

ing chosen such that the ei are trivial blocks, i.e., their

edges are bridges. Furthermore, let di, i = 0, 1, ..., k, de-

note the diameter of the Bi, or, more precisely, the dis-

tance between vertices of degree 2 in Bi for i = 1, ..., k – 1,

respectively, the maximal distance from the vertex of de-

gree two in Bi for i = 0, k. Then:

n ≥ 2d0 + 1 + 2 di

i

k

=

−

∑
1

1

+ 2dk + 1.

Since

d0 + di

i

k

=

−

∑
1

1

+ dk = d – k

we infer the validity of the assertion of the proposition.

�

Thus, for a given d, the lower bound (22) for the

number of vertices will be minimal for maximal k. For d ≤
4, no bridge is possible, so let us assume d ≥ 5. We then

maximize k by taking blocks of the smallest possible

diameter. Consequently, either there are k+1 blocks with

diameter 2, or just one block has diameter three. Then,

d = k + 2(k + 1), or d = k + 2k + 3.

The lower bound (22) in these cases becomes:

n ≥ 2

3
(5 + 2d) if d ≡ 2 (mod 3), or

n ≥ 4 +
4

3
d if d ≡ 0 (mod 3), (23)

which is valid if d ≥ 5

In the first case, when d ≡ 2 (mod 3), the bound is

sharp if and only if the blocks are small blocks as speci-

fied in (1) and (2). That means that both endblocks have

five vertices and the interior blocks have four, or n ≡ 2

(mod 4).

In the second case, when d ≡ 0 (mod 3), possible

combinations are both endblocks with five vertices, one

middle block with six and all other middle blocks with

four vertices; or one endblock with five, one with seven

vertices and all middle blocks with four. Then, n ≡ 0

(mod 4).

Theorem 2 lists all these types of blocks; the num-

ber of possible extremal graphs can easily be computed.

Note that the mapping from the set of possible dia-

meters D = {5, 6, 8, 9, 11, 12, ...} to the set of minimal

vertex numbers N = {10, 12, 14, 16, ...}, defined by re-

quiring equality in equations (23), is one-to-one. We need

this fact in Theorem 2.
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SA@ETAK

Karakterizacija trivalentnih grafova najmanjim procjepom vlastitih vrijednosti

Clemens Brand, Barry Guiduli i Wilfried Imrich

Neka je Gn graf s najmanjim mogu}im procjepom vlastitih vrijednosti me|u svima trivalentnim grafovima

s n ~vorova. (Procjep vlastitih vrijednosti je razlika izme|u dvije najve}e vlastite vrijednosti matrice susjedstva

grafa; za regularne grafove procjep je jednak drugoj najmanjoj vlastitoj vrijednosti Laplaceove matrice grafa.)

Pokazano je da je Gn jedinstven za svaki n i da ima najve}i mogu}i promjer, ~ime su pro{ireni raniji Guidulijevi

rezultati i rje{ena implicitna pretpostavka iz rada Bussemakera, ^obelji{a, Cvetkovi}a i Seidela. Ovisno o n,

graf G ne mora biti jedini graf s maksimalnim dijametrom. Stoga tako|er odre|ujemo sve kubi~ne grafove s

maksimalnim dijametrom za zadani broj n vrhova.

TRIVALENT GRAPHS WITH MINIMAL EIGENVALUE GAP 201

Croat. Chem. Acta 80 (2) 193–201 (2007)




