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Dominance degree is introduced as a mathematical procedure to quantify the order relations

between a pair of subsets contained in a partially ordered set obtained from the features of its

elements. Dominance degree summarizes the partial order relations of the members of two sub-

sets. If a member of one subset follows an order relation to a member of another subset, then

the dominance degree informs how far this relation can be transferred to all elements of the

two subsets. Dominance degree was applied to the study of 35 acyclic alkanes (from C5H12 to

C8H18) in two river-scenarios: hilly regions and lowland rivers. Each chemical was defined by

three fate descriptors estimated by applying the module EXWAT from the E4CHEM package.

It was found that CnH2n+2 dominates CmH2m+2 if n > m, which means that when considering the

fate descriptors simultaneously, those of CnH2n+2 are higher than those of CmH2m+2. Finally,

some particular results were found for the linear isomer of each subset.
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INTRODUCTION

Alkanes have been detected in several rivers around the

world1,2 and their presence is derived from natural bio-

genic, geologic and industrial sources.3–6 In fact, it was

estimated in 1991 that approximately 750,000 tons of hy-

drocarbons are annually transported by rivers to the Me-

diterranean Sea7 and a large proportion of them are al-

kanes. Furthermore, in natural aquatic systems, for instan-

ce rivers, the freely dissolved fractions of hydrophobic

organic contaminants, like alkanes, generally have the

greatest impact on aquatic organisms representing the

most ecotoxicologically relevant environmental residues.8

Hence, studies of the distribution and fate of these che-

micals in rivers are of the utmost environmental impor-

tance.

In this work, we use the module EXWAT from the

software package E4CHEM in order to assess the risk of

35 acyclic alkanes in rivers. E4CHEM (available from

the second author) consists of a system of modules de-

scribing the behaviour of chemicals in different environ-

mental targets and depending on different stages of data

availability. E4CHEM makes it possible to study the fate

of chemicals in different targets (troposphere, stratosphe-

re, plants, soil and rivers)9 by the application of single
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simulation models for each target. Especially for rivers,

E4CHEM includes the model EXWAT, which in an ap-

propriate way combines environmental parameters of the

river where the chemical is present with the substance

properties. It is important to note that the use of EXWAT

is supported by the agreement obtained between EXWAT

predictions and experimental results for some other cases

of chemicals in rivers.10

We consider two different river scenarios, each de-

fined by its special features: a river in a hilly region and

a lowland river. In this way, we can obtain descriptors

for the fate of chemicals in each scenario that allow a

comparison of the behaviour of the substances involved.

This procedure may be considered as a ranking process

of the chemicals and it can be studied by applying the

concept of partially ordered sets (posets), as Brüggemann

has shown in several studies.11 The use of partial orders

as a data exploring concept is called the Hasse diagram

technique (abbreviated HDT) and here it is applied to an

environmental chemistry case. By the application of the

HDT, a Hasse diagram of a set under study is found. In

chemical applications this type of diagram show which

chemical/s is/are the most pollutant or the environment

friendliest substance/s as well as which chemicals are in-

-between these substances. We show in this paper how

some subsets of the chemicals under study can be analyz-

ed by characterization of their order relationships, which

are represented in the structure of the Hasse diagram.

Exposure Model EXWAT

A study of the fate of a substance in an environmental

target cannot be based only on substance data but must

also include environmental parameters of the media where

the chemical is present. Thus the substance properties and

environmental parameters are coupled by a deterministic

mathematical exposure model (stationary). Such a model

must be based on the differential mass balance,

dc / dt = Input (p, q) – Output(p, q). (1)

where p is the tuple of environmental parameters and q

is the tuple of chemical properties. The Input(p, q) term

includes the input due to the upstream concentration as

well as the input by human activity into the first box mo-

delling the river stretch.

However, real cases, such as a river for a particular

case of EXWAT, have different targets. For instance, a

river has two targets, sediment and water body of surface

water. In these cases, a differential equation is needed

for each target, which indeed is considered by EXWAT

(mathematical details on the particular mass balance

equations for these two targets are given in reference

10). Once the stationary concentration in the outflow of

one river segment is determined, the inputs of the down-

stream section can be calculated. As we are interested in

studying the fate of alkanes, we modelled each river sce-

nario just by one segment, consisting of a water (W) and

sediment (S) body (Figure 1) where all relevant proces-

ses are adequately described. Representation of a river

segment, according to EXWAT, is depicted in Figure 1B.

There is water inflow (a) with an upstream concen-

tration of the substance and water outflow (a) with the

resulting concentration due to different processes within

the compartment. In W, suspended material that can be

deposited or resuspended (b) is transported (c) (black

circles). It is assumed that the dissolved substance is in

equilibrium with its sorbed form on the suspended ma-

terial. By dispersive forces, the dissolved chemical enters

the interstitial water (d), which is assumed to be appro-

ximately in the order of amount of the molecular diffu-

sion coefficient. Processes of degradation (e) can be in-

cluded in the model; however, we considered the chemi-

cals as conservative, i.e., without degradation. Sediment

burial (f) and volatilization (g) are considered as sinks;

metabolites are not considered.

Once the missing physicochemical properties of the

substance have been estimated by DTEST12 (an E4CHEM

module giving a high degree of automatic estimation of

required chemical properties), the model EXWAT couples

them with environmental data and physical parameters of

the river. Some of the physicochemical properties esti-

mated by DTEST are water solubility, vaporization en-

tropy, vapour pressure and the partitioning coefficients

KOW, KOC, and KAW. Some of the river parameters of

EXWAT are the ones listed in Table I and the concen-

tration of suspended solids, temperature, pH, porosities,

water discharge, and some others. Having this informa-

tion and ignoring the temporal behaviour of the environ-

mental system, EXWAT yields chemical concentrations

in: the fluid phase (water and suspended matter), sedi-

ment, water (not including suspended matter), sediment

matrix, pore water, suspended sediments and biomass.
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Figure 1. A) Partition of a river into several segments (boxes) in
EXWAT, and B) the processes considered within each box (see text).



These concentrations can be regarded as fate descriptors

or can be combined with flux parameters in order to yield

additional descriptors.13 Further, EXWAT, as a simple

stationary model, provides a set of linear equations in its

state variables; these equations may be mathematically

related to each other and allows additionally the deriva-

tion of descriptor-descriptor relations. However, our in-

terest in this paper is not to go into the details of those

relationships but to show how the chemical fate is relat-

ed to a posetic structure.

METHODS

A Chemical in Two River Scenarios

The river we studied was divided into two different scena-

rios: 1) river in a hilly region (H) and 2) lowland river (L).

Parameters defining each scenario are given in Table I.

We selected three fate descriptors from the EXWAT

results:

D1: Total concentration of chemicals in the fluid phase,

gw / mg L–1;

D2: Total concentration of chemicals in sediment, gs / mg L–1;

D3: Deposition flux: Concentration of sorbed chemicals on

suspended sediment, gws, times deposition velocity,

Depos. D3 = (gws * Depos.) / (mg ⋅ m) (L ⋅ d)–1.

Note that the values of gw and gs refer to different com-

partments; for example, in the hilly scenario gw refers to the

water body with a volume of 7.5 � 105 m3 whereas gs refers to

the sediment compartment with a volume of 1.5 � 104 m3.

Each descriptor was calculated by considering as the input

rate of alkanes into the river a constant value of 100 kg d–1

in order to differentiate the descriptor values of alkanes in

the river (Figure 1A). The three concentrations estimated by

EXWAT were performed in the box shown in Figure 1A.

Note that our interest concerns the fate of chemicals and its

methodological evaluation rather than the modelling of real

amounts of alkanes in rivers. Our modelled river must be

considered as a fictitious system.

General Remarks on the Hasse Diagram Technique

We introduce some definitions in order to illustrate some

basic functionalities of the Hasse diagram technique,11,14

implemented in the WHASSE software, available from the

second author. WHASSE makes it possible to draw Hasse

diagrams and to explore the influence of different parame-

ters on them.

Definition 1. – We call x a chemical and G the ground set

that is the set of chemicals.

Definition 2. – Di (x) is the numerical value of the i-th fate

descriptor of the chemical x.

According to EXWAT, we have Di (x) = f [p, q (x)],

where p is a tuple of environmental and physical parame-

ters of the river and q (x) is a tuple of properties of the che-

mical x. Then, Di (x) values characterize the fate of the che-

mical x in the river considered. In order to rank the chemi-

cals according to their Di (x), the procedure followed by the

Hasse diagram technique is to compare the fate descriptors

of all chemicals.

Definition 3. – Let x, y ∈G, then x ≤ y if Di (x) ≤ Di (y) for

all i. This specific order relation is called a product- (or

component-wise-) order and obeys the following axioms of

order:

i) reflexivity: ∀ x ∈G, x ≤ x (a chemical can be com-

pared with itself);

ii) antisymmetry: ∀ x, y∈G, x ≤ y and y ≤ x⇒ x = y (if

x is better than y, then y is worse than x);

iii) transitivity: ∀ x, y, z ∈G, x ≤ y and y ≤ z ⇒ x ≤ z

(if x is better than y and y is better than z, then x is better

than z).

Note that in most mathematical textbooks the symbol

(G, ≤) is used for a partially ordered set.15 However, Brüg-

gemann and co-workers have introduced the notation (G, D),

where D is called the "information base" and is the set of Di

descriptors.16 The reason for writing D instead of ≤ is to

emphasize that the order relation between the chemicals de-

pends on the descriptors selected. Thus, the fact of having

certain order relations between the chemicals in one scena-

rio does not imply that those chemicals will have the same

order relations in another. The cause of this behaviour is that

Di (x) depends, besides chemical properties, on the river pa-

rameters, as mentioned above.

If Di (x) ≤ Di (y) for some indices i and Di (y) ≤ Di (x)

for one or some other indices, then x and y are "incompa-

rable", denoted as x || y. A graph P representing the order

relations found in G can be drawn,17 where the order rela-

tion ≤ is represented by an arrow going, for instance, from

the better chemical to the worse. But P contains unnecessa-

rily many edges, which can be avoided by a transitive reduc-

tion18 eliminating all edges that arise solely from the transiti-

vity axiom. After such "transitivity reduction", a more parsi-

monious graph H, called the Hasse diagram, can be drawn.
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TABLE I. Parameters input to EXWAT describing two scenarios of a
river. H and L stand for the river in a hilly region and the lowland
river, respectively.

River parameters H L

River length / km 100 100

Box length(a) / km 2 2

Volume flow / m3 s–1 500 1000

Water body depth / m 2.5 3.5

Sediment depth / m 0.05 0.05

Width / m 150 300

Wind / m s–1 5 5

Suspended matter content / g m–3 100 100

w(Organic carbon in suspended matter)(b) 0.02 0.04

w(Organic carbon in sediment matrix)(b) 0.02 0.04

Sinking velocity of suspended matter / m d–1 10 15

(a) See Figure 1A.
(b)

w = mass fraction.



RESULTS

The set G of chemicals in this study is made from the

complete set of 35 acyclic alkanes ranging from C5H12 to

C8H18: three C5H12, five C6H14, nine C7H16 and eighteen

C8H18 isomers (Table II). The physicochemical proper-

ties of each alkane (water solubility, vapour pressure, melt-

ing point, boiling point and octanol/water partition coef-

ficient) were taken from the Chemical Properties Hand-

book19 and the Handbook of Physical Properties of Orga-

nic Chemicals;20 the missing values were estimated using

the module DTEST of E4CHEM. Having the complete

pool of physicochemical properties coming from the lite-

rature and from estimations by DTEST, we use the EXWAT

model of E4CHEM in order to generate the three fate de-

scriptors D1, D2 and D3 for each scenario.

General Dependences of the Descriptors

The alkane labels were assigned following the increasing

values of the Wiener index21 (as a measure of branching

index) of each molecule (Table II). The values of the three

fate descriptors for each alkane appear in Table III. Note

that concentrations D1(H) and D1(L) relate to the volume

of the water body while those of D2(H) and D2(L) relate

to the volume of the sediment. A simple equilibrium cal-

culation shows that, due to the small volume of the sedi-

ment, the variation of D1 can be quite low whereas that

of D2 can be rather high.

Before discussing the results obtained using the

Hasse diagram technique, we analyze separately the be-

haviour of each fate descriptor for the 35 alkanes in both,

H and L, scenarios.

We found that the trends present in H are also pre-

sent in L (Figure 2). We observed that D1 (chemical con-

centration in the fluid phase) is mainly determined by the

molecular weight of the molecules. Thus, we classified

D1 into four subsets of values corresponding to C5H12,

C6H14, C7H16 and C8H18 isomers, respectively. We found

that D1 values for both scenarios fulfil this order relation-

ship: C8H18 > C7H16 > C6H14 > C5H12. In all the cases,

the D1 values of isomers are nearly the same; however,

with the increase of the molecular weight, the linear iso-

mer of each subset increases its D1 value (Table III, Fig-

ure 2). We observed, for the case of alkanes in L, that

the linear isomer of C7H16 reached the value of D1 cor-

responding to the C8H18 isomers (Figure 2). This result
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TABLE II. Molecular graphs and labels for the 35 alkanes consi-
dered in the fate analysis.

Figure 2. Total chemical concentration in the fluid phase (D1) of 35 alkanes in hilly region (H) and in lowland (L) rivers. Some structures are
drawn (see text).



may suggest that when considering isomers of the set

C9H20 (not studied here), perhaps the linear isomer of

C8H18 could reach the values of D1 for C9H20 isomers,

which is supported by the high D1 value of the linear

C8H18 isomer.

In order to relate D1 with some molecular structural

parameter, we calculated the complete pool of 708 mole-

cular descriptors available in the MOLGEN-QSPR soft-

ware (arithmetical, topological, electrotopological, and

geometrical descriptors).22 After these calculations, we

found a high Pearson correlation (R > 0.9) between D1

and several molecular branching indices (W, 1c, MTI, and

MTI’), which are in turn highly correlated to molecular

weight. Thus, the fate of alkanes in the fluid phase is de-

termined mainly by the molecular weight of the sub-

stances.

Regarding D2 and D3, we found a high correlation

between these fate descriptors (R > 0.9). However, in
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TABLE III. Values of the fate descriptors for the alkanes studied. Di(H) and Di(L) stand for the Di values in the hilly region (H) and lowland
river (L) scenarios, respectively

Alkanes D1(H) D2(H) D3(H) D1(L) D2(L) D3(L)

mg L–1 mg L–1 (mg ⋅ m) (L ⋅ d)–1 mg L–1 mg L–1 (mg ⋅ m) (L ⋅ d)–1

1 0.658 0.078 0.010 0.559 0.065 0.018

2 0.657 0.088 0.002 0.559 0.045 0.003

3 0.658 0.092 0.020 0.560 0.093 0.034

4 0.735 0.169 0.060 0.598 0.209 0.096

5 0.732 0.105 0.024 0.596 0.104 0.038

6 0.733 0.127 0.036 0.596 0.140 0.058

7 0.731 0.091 0.015 0.595 0.077 0.024

8 0.736 0.191 0.072 0.599 0.245 0.116

9 0.796 0.136 0.038 0.626 0.144 0.060

10 0.796 0.150 0.046 0.626 0.166 0.072

11 0.796 0.150 0.046 0.626 0.166 0.072

12 0.796 0.143 0.042 0.626 0.154 0.065

13 0.796 0.143 0.042 0.626 0.154 0.065

14 0.797 0.158 0.050 0.626 0.178 0.079

15 0.797 0.158 0.050 0.626 0.178 0.079

16 0.797 0.158 0.050 0.626 0.178 0.079

17 0.824 0.882 0.448 0.651 1.279 0.682

18 0.856 0.284 0.117 0.655 0.361 0.178

19 0.857 0.305 0.129 0.656 0.392 0.195

20 0.857 0.305 0.129 0.655 0.392 0.195

21 0.859 0.346 0.151 0.657 0.453 0.229

22 0.856 0.284 0.117 0.655 0.361 0.178

23 0.857 0.305 0.129 0.655 0.392 0.195

24 0.859 0.346 0.151 0.657 0.453 0.229

25 0.858 0.322 0.138 0.656 0.417 0.209

26 0.858 0.322 0.138 0.656 0.417 0.209

27 0.858 0.322 0.138 0.656 0.417 0.209

28 0.858 0.346 0.151 0.657 0.453 0.229

29 0.858 0.322 0.138 0.656 0.417 0.209

30 0.860 0.372 0.166 0.658 0.493 0.251

31 0.858 0.322 0.138 0.656 0.417 0.209

32 0.860 0.372 0.166 0.658 0.493 0.251

33 0.859 0.372 0.166 0.658 0.493 0.251

34 0.860 0.372 0.166 0.658 0.493 0.251

35 0.947 2.938 1.572 0.727 4.001 2.172



contrast to D1, we found no clear distinction between

groups according to molecular weight (Figure 3). When

looking for correlations between D2 and D3 through our

pool of molecular descriptors, we did not find any rele-

vant (R > 0.8) relationship. This result suggests that D2

and D3, contrary to D1, are not related to the molecular

parameters of alkanes. The high correlation between D2

and D3 suggests a similar trend in the alkane concentra-

tions in sediments and also in suspended sediments. Note

that D3 contains the term gws, the concentration of che-

micals on suspended sediment. Despite the lack of cor-

relation between the degree of branching and D2 and D3,

it is important to note the high D2 and D3 values of al-

kanes 17 and 35, which correspond to the linear struc-

tures of C7H16 and C8H18, respectively (Figure 3). This

trend is not observed for the linear structures of the light

alkanes C5H12 and C6H14. A similar behaviour was ob-

served for the same linear alkanes when considering D1.

Having described each fate descriptor separately, we

can discuss the effect on each descriptor of changing the

river parameters from H to L. We observe that D1 de-

creases when we change from H to L (Figure 2). This

means that the concentration of alkanes in fluid phase is

lower in lowland rivers than in rivers in hilly regions. The

reason is the high dilution due to higher discharge in the

lowland river. Now, considering D2, we observe a small

increment in L compared to H. On the other hand, D3 in-

creases in L compared to H, because the deposition of

alkanes on suspended sediments is faster in L than in H.

In general, the change of scenario, from H to L, makes

D1 decrease in contrast to increasing D2 and D3. All in

all, even if we consider structurally simple alkanes, it is

difficult to oversee their fate in different environmental

scenarios. Here, the concept of partially ordered sets is

helpful and is applied in the next section.

Hasse Diagram of Alkanes in Hilly Region and

Lowland Rivers

It was mentioned in the above section that some alkanes

share some fate descriptor values; it means that two al-

kanes x, y∈G may have Di(x) = Di(y) for i = 1, 2, 3. We

say that then x and y belong to an equivalence class K,

and we select one representative of such a class. These

selected chemicals together with the chemicals for which

Di(x) ≠ Di(y) for i’s, are gathered in the set T of repre-

sentatives. Thus, we draw the Hasse diagram over the set

T of representatives. The equivalence classes for both sce-

narios are shown in Scheme 1.

The set of representatives for scenario H is {1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 18, 19, 21, 25, 28, 30, 33,

35} and the one for L is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,

14, 17, 18, 19, 20, 21, 25, 30, 35}. We note four subsets

of isomers (C5H12, C6H14, C7H16 and C8H18) in each

Hasse diagram (Figure 4) and we will discuss some of

their features in the following text.
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Figure 3. Total chemical concentration in sediment (D2) and deposition flux (D3) of 35 alkanes in hilly region (H) and in lowland rivers (L).
Di(H) and Di(L) stand for the values of the log10 of Di in the H and L scenarios, respectively.
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Scheme 1. Equivalence classes in H and L and their relationships.



General Observations

Brüggemann and co-workers have demonstrated the ver-

satility of using Hasse diagrams in ranking17,23 the che-

micals in a given environmental space defined by de-

scriptors.

In our particular case, the rank is built from fate de-

scriptors (D1, D2 and D3) and in all the cases their high

values (upper part of the diagram) may imply a hazard:

either by being transported downstream with adverse

effects on aquatic organisms or because of accumulation

in sediments (chemical time bomb effect). In contrast, if

D1, D2 and D3 have low values for an alkane, then this

substance is "better" or "less unfriendly" regarding the

environment and is located in the lower part of the dia-

gram. Hence, the diagrams shown in Figure 4 can be in-

terpreted as a rank of alkanes in the given scenario. If we

consider the H diagram, we can see that the most pollu-

tant alkanes are the C8H18 isomers. Then, going down in

the diagram, we found C7H16 isomers, then C6H14, and

finally C5H12. In summary, having classified the alkanes

into four isomer subsets, it seems possible to establish

one ranking according to their fate descriptors. In order

to do that, we introduce the concept of dominance de-

gree (Dom). Let us assume that G' ⊂ G and G'' ⊂ G with

G' ∩ G'' = ∅; if ∀x ∈ G', ∀y ∈ G'', x > y then G'

dominates G'' and we write G' � G''. In the practice of

empirical posets the condition "for all" is too hard.

Therefore we are introducing the dominance degree

Dom (G', G'') = NR / NT, where NR (N realized) = |{(x, y),

x∈G', y∈G'' and x > y}| and NT = |G'| ⋅ |G''|. Note that the

counting is based on the complete object set (35 objects)

rather than that on T, because different equivalence clas-

ses appear in H and L. If Dom (G', G'') > 0.5, then we

write G' � G''. We show schematically in Figure 5 the

Dom (G', G'') results for each pair of isomer groups. For

example, the calculation of Dom (C6H14, C5H12), in both

scenarios, is performed by determining NR = |{(4, 1), (4,

2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3), (7, 1), (7,

2), (8, 1), (8, 2), (8, 3)}| = 14 and NT = |C6H14| ⋅ |C5H12| =

15. Then, Dom (C6H14, C5H12) = 14 / 15 = 0.933.

An arrow � is drawn for each dominance relation;

each of these relations is characterized by its dominance

degree and, in this case:

Dom (CnH2n+2, CmH2m+2) is
> >
= <




0 5

0

. for all

for all

n m

n m
.

Note that the case n = m is not considered because

the subsets compared ought to be disjoint (by definition).

It is important to note that the same dominance diagram

holds for both scenarios. In summary, we find C8H18�

C7H16� C6H14� C5H12, which generalizes our finding

with only one descriptor (D1), as discussed above. Further

discussion on the mathematical properties of the domi-

nance degree is given in reference 24; another applica-

tion of this concept to environmental studies can be found

in reference 25.

Particular Object Related Observations

For each isomer subset, the linear alkane is the chemical

presenting simultaneously high values of its fate descrip-

tors. They are 35 for C8H18, 17 for C7H16, 8 for C6H14

and 3 for C5H12 (compare Table II). Now, from a general

analysis of the Hasse diagrams we can say that the maxi-

mal15 element is 35, which is also the greatest15 element.

There are two minimal15 elements, 1 and 2, for the H dia-

gram and only one, 2, for the L diagram, which becomes

the smallest element of this diagram. This means that the

linear C8H18 alkane is the substance from the complete

set of 35 alkanes whose fate descriptors make it the most

potentially problematic compound in environmental terms.

ANALYSIS OF ALKANES FATE IN RIVERS 267

Croat. Chem. Acta 80 (2) 261¿270 (2007)

1 2

3

4

5

6

7

8

9

10

12

14

17

18

19

21

25

28

30

33

35

1

2

3

4

5

6

7

8

9

10

12

14

17

18

19

20

21

25

30

35

C8H18

C7H16

C6H14

C5H12

C8H18

C7H16

C6H14

C5H12

H L

1 2

3

4

5

6

7

8

9

10

12

14

17

18

19

21

25

28

30

33

35

1

2

3

4

5

6

7

8

9

10

12

14

17

18

19

20

21

25

30

35

C8H18

C7H16

C6H14

C5H12

C8H18

C7H16

C6H14

C5H12

H L

Figure 4. Hasse diagrams of 35 alkanes in the river scenarios H
(hilly regions) and L (lowland). Double circles indicate equivalence
classes with more than one alkane.
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Similarly, the fact of having two minimal elements in H

means that there is no alkane with simultaneous fate de-

scriptors lower than 1 and 2. When considering the L

diagram, 2 becomes the least alkane.

Comparing H and L Hasse Diagrams

In the H diagram, each subset of isomers (C5H12, C6H14,

C7H16 and C8H18) appears as a chain or as belonging to a

chain,15 except for the C5H12 subset where there is no li-

near order15 between its members. When we analyze the

effect of changing the river parameters from hilly regions

to a lowland river, we found two general changes:

i) C5H12 subset becomes a linear order, a chain.

ii) There are some internal rearrangements within

C7H16 and C8H18 subsets.

The reason for i) can be explained first by mention-

ing the reason why 1 and 2 in H are incomparable and

then why it changes in L. Chemical 1 is incomparable

with chemical 2 (1 || 2) in H because D1(1) > D1(2),

D2(1) < D2(2) and D3(1) > D3(2) (Table III); hence D2 is

the cause of incomparability. The reasons are difficult to

explain because there are many competitive processes,

which, on the one side, depend on the chemical proper-

ties and, on the other side, on the environmental ones.

For example, high accumulation in the sediment need not

necessarily be implied by a high deposition velocity of

suspended matter. When we analyze the order relations

for these two alkanes in the L diagram, we find that

D1(1) > D1(2), D2(1) > D2(2) and D3(1) > D3(2), hence

1 > 2. In summary, the linear order of the C5H12 subset

in the L diagram is due to the change in the D2 order re-

lation for 1 and 2. In other words, the change in the con-

centration of alkanes 1 and 2 in sediments is the cause of

the linear order in the C5H12 subset.

The second change in Hasse diagrams, when com-

paring H and L, is caused by the redistribution of some

equivalence classes (Scheme 1), which do not alter the

order relations among the chemicals. This is due to small

numerical variations of the descriptors defining each che-

mical in each scenario. These variations normally occur

just in one descriptor while the remaining two keep their

order relations. Moreover, these variations are within the

limits of discriminatory power of the descriptors since

they occur in the last decimal position. For instance, the

relation {28} < {21, 24} is found in H and these che-

micals are rearranged to {21, 24, 28} in L. The cause of

{28} < {21, 24} in H is that D1(28) = 0.858 is lower

than D1(21) = D1(24) = 0.859 since D2(28) = D2(21) =

D2(24) and D3(28) = D3(21) = D3(24). When varying the

river conditions from H to L, then the small numerical

difference between D1(28) and D1(21) = D1(24) becomes

an equality and 28 joins 21 and 24 in an equivalence

class. In general, all the rearrangements within isomer

subsets obey these kinds of small numerical differences.

CONCLUSIONS

The combination of basic chemical fate properties with

partial ordering concepts is an interesting tool for draw-

ing general conclusions on simultaneous analysis of fate

descriptors. The dominance degree was introduced in this

paper as a mathematical tool able to quantify the simulta-

neous effect of different descriptors on the general rank-

ing of subsets of chemicals. The dominance degree is a

measure of the number of real comparabilities between

the members of two different subsets and the theoretical

number of comparabilities holding if all the members in

one subset are "greater" or "lower" than the members of

the other subset. By applying this measure to the hilly

and lowland Hasse diagrams of alkanes we found that

the isomers with highest molecular weight dominate, or

are more problematic than the rest of the isomer subsets

following this relationship: C8H18 � C7H16 � C6H14 �

C5H12, where G' � G'' means that the subset G' do-

minates the subset G''. According to our definition of

Dom (G',G'') > 0.5, the above result means that more

than 50 % of the C8H18 isomers dominate the C7H16

ones, more than 50 % of the C7H16 isomers dominate the

C6H14 ones, etc.

The order relationships found in the dominance of

heavy alkanes over the light ones suggest the possibility

of interdependence between the dominance degree and

the molecular weight of the alkanes. To test this hypo-

thesis, it would be interesting to consider more acyclic

alkanes as objects of study.

It was found that, within each isomer subset, the li-

near alkane is the most environmentally problematic sub-

stance because of its relatively high concentrations in

the water and the sediment bodies of the river scenarios

considered.

Analysis of fate descriptors allows the conclusions

that 1) the concentration of alkanes in the fluid phase of

each scenario was determined mainly by the molecular

weight, 2) the chemical concentration in sediments and

the deposition flux were not related to the molecular

weight, nor to any molecular parameter of the alkanes,

and 3) the change of the river parameters from a river in

hilly regions to a lowland scenario caused the chemical

concentration in the fluid phase to decrease while the

concentration in sediments and the deposition flux in-

creased.

A general feature of the Hasse diagram technique is

that it is based on the qualitative comparison of the de-

scriptors characterizing the objects. Hence, the fact of

having two chemicals x and y with x < y does not ne-

cessarily exclude that their actual concentrations might

be so close that an experimental determination might yield

identical values for both x and y. Then, the practical im-

portance of the posetic results such as the ones shown in

this manuscript are the relations in the graph, rather than

the geometrical ones. This enables, when assessing che-
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micals, to determine pollutant substances, or potentially

problematic ones. However, these results must not be in-

terpreted from a geometrical point of view where, for in-

stance, x < y < z means 1 ppb < 2 ppb < 3 ppb. In fact,

x < y < z might mean 1.001 ppb < 1.002 ppb < 1.003

ppb, and if the uncertainty of the measure is ± 0.002,

then x, y and z become an equivalence class. A similar

case as the one described here are the concentrations

shown in Table III, where the aqueous concentrations

are close to each other for the majority of the alkanes be-

longing to a particular isomer subset. This situation cau-

ses minor variations within the subsets for the other two

descriptors to be responsible of the comparabilities found

between isomers but it does not mean that the "higher"

chemical represents a markedly different chemical con-

centration when compared to a "lower" chemical in the

ranking.

In this research, we considered just two river scena-

rios with the aim of checking how the order relations be-

tween chemicals change from scenario to scenario. How-

ever, this methodology can be applied to new river sce-

narios, perhaps defined by local parameters pertaining to

particular rivers, particular sets of pollutants and parti-

cular input patterns. It may also be applied to chemicals

characterized by some other risk-relevant factors such as

toxicities or some other combinations of chemical attri-

butes.

Several authors14,26 have pointed out that posetic

structures are present in different fields of chemistry and

particularly Brüggemann14 has shown the advantages of

their study in environmental chemistry. The procedure

developed here to deal with the order relations between

subsets of objects may be applied to any poset and it is

interesting to go into more details of its application

when considering chemical posets like those developed

by Randi}27 and Daza and Bernal,28 among others.
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SA@ETAK

Parcijalno ure|eni skupovi u analizi sudbine alkana u rijekama

Guillermo Restrepo, Rainer Brüggemann i Kristina Voigt

Kao matemati~ku mjeru ure|aja za podskupove parcijalno ure|enog skupa uveli smo stupanj dominacije

koji se izvodi iz svojstava njihovih elemenata. U stupnju dominacije sa`ima se parcijalni ure|aj parova eleme-

nata iz dvaju podskupova. Stupanj dominacije pokazuje koliko je ure|aj izme|u neka dva elementa iz razli~itih

podskupova, svojstven svim parovima njihovih elemenata. Stupanj dominacije primijenjen je u komparativnoj

analizi sudbine 35 acikli~kih alkana (od C5H12 do C8H18) prema rije~nim scenarijima za brdska i nizinska po-

dru~ja. Svakom kemijskom spoju pridru`ena su tri deskriptora sudbine, odre|ena pomo}u modula EXWAT iz

programskog paketa E4CHEM. Utvr|eno je da CnH2n+2 dominira nad CmH2m+2 kad je n > m, {to zna~i da

deskriptori za CnH2n+2 imaju uglavnom ve}e vrijednosti od onih za CmH2m+2. Odre|eni rezultati dobiveni su za

linearne izomere iz svakog podskupa.
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