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Graphical matrices are used to generate the Hosoya matrices which in turn produce the Hoso-

ya-Wiener indices. The computer program to generate graphical matrices of acyclic structures,

the corresponding numerical matrices and double invariants is delineated.
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INTRODUCTION

In 1971, Haruo Hosoya introduced a molecular descrip-

tor1 that became known in the literature as the Hosoya

index.2,3 This descriptor has been amply used in the

structure-property-activity modeling.4 In the same paper,

Hosoya also introduced the term topological index that

has remained in everyday use5 and presented a new way

to compute the Wiener index of a given structure from

its distance matrix.

In 1994, Randi} proposed a novel graph-theoretical

matrix that he named the Hosoya matrix.6 He derived two

versions of the Hosoya matrix: the sparse and the dense

variants of the matrix. Randi} used these matrices as

sources for two novel molecular descriptors.

Randi} and co-workers7,8 also introduced a new type

of graph-theoretical matrices that they named graphical

matrices. Graphical matrices are matrices whose ele-

ments are subgraphs of the graph rather than numbers.

There are a number of ways how to construct these ma-

trices.9–11 However, they cannot be used in this non-nu-

merical form, they need to be transferred into a nume-

rical form. This is the advantage of graphical matrices,

since they offer many possibilities of numerical realiza-

tions. In order to obtain a numerical form of a graphical

matrix, one needs to select a molecular descriptor and



replace all the graphical elements (subgraphs of some

form) by the corresponding numerical values of the se-

lected descriptor. In this way, the numerical form of the

graphical matrix is established and can be used to derive

the final descriptor – an invariant of the matrix – to be

used in the structure-property-activity modeling.

The numerical realization of graphical matrices can

be done by various molecular descriptors. We have al-

ready pointed out that Hosoya matrices may be regarded

as the numerical realization of a given graphical matrix.9

Here, we will demonstrate the construction of graphical

matrices for trees representing alkanes and their nume-

rical realizations by using the Hosoya index.

The aim of the present report is to show how the pro-

cedure to generate the graphical matrices can be carried

out by a computer instead of, as it was previously done,

by hand, which has so far limited the use of double in-

variants in the structure-property-activity modeling.

The report is structured as follows. After the intro-

ductory words, in the second section, we discuss graphi-

cal matrices and the computer program, and in the third

section the Hosoya matrices and the related double in-

variants. We end our report with concluding remarks.

GRAPHICAL MATRICES

We demonstrate the construction of grahical matrices, de-

noted by G, using a branched tree representing the car-

bon skeleton of 2,2-dimethylhexane. The labeled hydro-

gen-depleted 2,2-dimethylhexane tree, denoted by T, is

shown in Figure 1.

There are several ways to construct graphical matri-

ces, which depend on how one selects the subgraphs con-

stituting the matrix. Here, we present four ways of ge-

nerating graphical matrices of trees. One way is to define

the elements of the graphical matrix [G]ij as the subgraphs

obtained after consecutive removal of the edges connect-

ing vertices i and j from tree T. We call this matrix the

edge-graphical matrix and denote it by eG, where e stands

for the edge. The eG matrices are sparse matrices because

they contain only a few non-vanishing elements corres-

ponding to the removed edges. The edge-graphical ma-

trix of T is given in Figure 2. We give only the upper

triangle of the matrix since it is a square, V × V, sym-

metrical matrix, where V is the total number of vertices

in T. Similarly, all other graphical matrices in this report

will be given in the same way.

If, however, we generate a graphical matrix by con-

secutive removal of the paths joining vertices i and j in-

stead of edges, the obtained matrix is dense, that is, all

its elements but the diagonal elements are non-zero. We

call this matrix the path-graphical matrix and denote it

by pG, where p stands for the path. The path-graphical

matrix of T is given in Figure 3.

Instead of removing edges, one can remove adjacent

vertices i and j, and the incident edges from a tree. The
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Figure 1. A labeled branched tree T depicting the carbon skeleton
of 2,2-dimethylhexane.
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Figure 2. The edge-graphical matrix eG of tree T. The removed edges are not shown.



obtained graphical matrix is necessarily sparse because

it contains only a few non-vanishing elements correspond-

ing to the removed adjacent vertices. We call this matrix

the sparse vertex-graphical matrix and denote it by svG,

where s stands for sparse. The sparse vertex-graphical

matrix of T is given in Figure 4.

Finally, we can remove pairs of vertices i and j at in-

creasing distances and incident edges. The obtained gra-
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Figure 3. The path-graphical matrix pG of tree T. The removed paths are not shown.
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Figure 4. The sparse vertex-graphical matrix svG of tree T. The removed vertices are shown as empty circles. The removed edges are not shown.



phical matrix is dense. We call this matrix the dense ver-

tex-graphical matrix and denote it by dvG, where d stands

for dense. The dense vertex-graphical matrix of T is given

in Figure 5.

It should be pointed out that only the edge-graphical

matrix and the sparse vertex-graphical matrix can be

straightforwardly used for structures containing cycles.

There was a problem with graphical matrices – they

were generated by hand. This is perhaps the reason why

their use so far was rather limited. However, we deve-

loped a computer program that allows the construction

of graphical matrices and computation of selected double

invariants for trees representing carbon skeletons of acyc-

lic hydrocarbons. The block-diagram of this program is

presented in Figure 6.

HOSOYA MATRICES

To get the Hosoya matrices, it is necessary to replace sub-

trees in graphical matrices by Hosoya indices.1 The num-

bers that replace the subgraphs in graphical matrices can

be obtained either by summing up or by multiplying their

Hosoya indices. Here, we multiplied the Hosoya indices

while generating the Hosoya matrices. The Hosoya indi-

ces of subtrees are taken from our book on computatio-

nal chemical graph theory.12 However, they can be com-

puted by the following formula:

Z = p k

k

V

( ; )
/

G

=
∑

0

2[ ]

where Z denotes the Hosoya index, G stands for a simple

connected graph, V is the number of vertices in G and
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Figure 5. The dense vertex-graphical matrix dvG of tree T. The removed vertices are shown as empty circles.
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Figure 6. The block-diagram of the program Dubrovnik Graphical

Matrices Calculator.



p(G;k) is the number of independent sets of k edges of

G. A set S of k edges is independent if no two edges of

set S are adjacent in G. The Gaussian brackets [] above

the summation denote the integer part of V/2. The empty

set and all singleton sets are independent, hence p(G;0) =

1 and p(G;1) = the number of edges in G.

The edge-graphical matrix gives a rise to a numeri-

cal matrix that we call the edge-Hosoya matrix and de-

note it by eZ. As already stated, Randi}6 called this ma-

trix the sparse Hosoya matrix. The eZ matrix of T is gi-

ven below.

eZ(T) =

0 18 0 0 0 0 0 0

0 20 0 0 0 18 18

0 15 0 0 0 0

0 18 0 0 0

0 14 0 0

0 0 0

0 0

0































If we sum up the elements in the above matrix-tri-

angle in the way how Hosoya calculated the Wiener in-

dex from the distance matrix,1 we obtain an index that

we should like to call the edge-Hosoya-Wiener index

and denote it by eZW. Since two topological indices (two

graph invariants) are used to generate eZW, indices of

this type are called by Randi} et al.6 double invariants.

The eZW index of T is 121.

Similarly, the path-Hosoya matrix, denoted by pZ, re-

presents the numerical realization of the corresponding

path-graphical matrix. Randi}6 called this matrix comple-

te Hosoya matrix. The path-Hosoya matrix of T is given

below.

pZ(T) =

0 18 15 9 6 3 13 13

0 20 12 8 4 18 18

0 15 10 5 15 15

0 18 9 9 9

0 14 6 6

0 3 3

0 13

0































If we sum up the elements in the above matrix-tri-

angle, we obtain an index that we like to call the path-

Hosoya-Wiener index and denote it by pZW. The pZW in-

dex of T is 293.

The sparse vertex-graphical matrix gives a rise to a

numerical matrix that we call the sparse vertex-Hosoya

matrix and denote it by svZ. The svZ matrix of T is given

below.

svZ(T) =

0 5 0 0 0 0 0 0

0 3 0 0 0 5 5

0 8 0 0 0 0

0 5 0 0 0

0 9 0 0

0 0 0

0 0

0
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












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



If we sum up the elements in the above matrix-tri-

angle, we obtain an index that we like to call the sparse

vertex-Hosoya-Wiener index and denote it by svZW. The
svZW index of T is 40.

Similarly, the dense vertex-Hosoya matrix, denoted

by dvZ, represents the numerical realization of the cor-

responding dense vertex-graphical matrix. The dense ver-

tex-Hosoya matrix of T is given below.

dnZ(T) =

0 5 9 6 6 11 13 13

0 3 2 2 3 5 5

0 8 4 8 9 9

0 5 5 8 8

0 9 7 7

0 11 11

0 13

0































If we sum up the elements in the above matrix-tri-

angle, we obtain an index that we like to call the dense

vertex-Hosoya-Wiener index and denote it by dvZW. The
dvZW index of T is 205.

It is of interest to note that the Hosoya-Wiener index

of two of the four graphical matrices eG, pG, svG and dvG,

namely of eG and svG, can be calculated without produc-

ing graphical matrices by the procedure described as

follows. The edge-graphical matrix is defined by [eG]ij =

G i j ij E

ij E

− − ∈
∉





, ( )

, ( )

G

G0
, where E(G) is the set of edges of

G. The vertex-graphical matrix is defined by svGij = G –

i – j.

Let us calculate eZW. Denote by ak the number of par-

tial matchings in G with k edges. Note that each partial

matching in some eGij is also a partial matching in G. Also,

note every partial matching with k edges in G is calculat-

ed in all subgraphs (i.e., in all eGij, i > j) that do not con-

tain any of its double bonds, hence:

eZW(G) =
 

k

n

=
∑

0

2/

(e(G) – k) ⋅ ak = e ⋅ hG(1) – hG'(1) ,

where e(G) is the number of edges of G, hG is the Hosoya

polynomial of G and h'G is the first derivative of hG.
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Let us calculate svZW. Note that each partial match-

ing in some svGij is also a partial matching in G. Also,

note every partial matching with k edges in G is calcu-

lated in all subgraphs (i.e., in all svGij, i > j) that do not

contain any of vertices incident to its double bonds. Note

that k double bonds are incident with 2k vertices; hence,

they are not counted in
2

2

k









svGij-graphs such that i > j.

Therefore:

 
s

k

n

ZW
k

an
n

( )
( )

/

G
G

=








 −


















⋅

=
∑

2

2

20

2

k =

  n( )
( )

/
G

2
2 1

0

2 







 − ⋅ − +









⋅

=
∑ k k k a

k

n

k =

n( )
( ) " ( ) ' ( )

G
G G G

2
1 2 1 1









⋅ − ⋅ +h h h ,

where hG'' is the second derivative of hG.

CONCLUDING REMARKS

In this report, we used the Hosoya index, one of the first

descriptors that was proposed to be used in the structure-

-property-activity studies. The Hosoya index was delibe-

rately chosen for illustrating our computational approach

in order to show our appreciation of Haruo Hosoya for

his ground-breaking work in mathematical chemistry.

Since he has also introduced an easy way to compute the

Wiener index, we selected this index as a matrix inva-

riant and thus produced the double invariant that we call

the Hosoya-Wiener index, linking in this way the names

of the two great mathematical chemistry pioneers Wie-

ner and Hosoya.

We have also demonstrated that the graphical matri-

ces of alkanes can be efficiently generated by using the

computer approach and how the numerical form of these

matrices can be obtained by using the molecular descrip-

tor of choice. Our computer program is currently limited

to acyclic structures.

We have not applied the Hosoya-Wiener index beca-

use it has been already demonstrated by Randi} and his

co-workers6,7 that the invariants have a future in the mo-

deling of molecular properties and activities. The program

for computing double invariants is freely available at the

address www.pmfst.hr/~vukicevi.
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Hosoyine matrice kao numeri~ka realizacija grafi~kih matrica i izvedeni strukturni deskriptori

Du{anka Jane`i~, Bono Lu~i}, Ante Mili~evi}, Sonja Nikoli}, Nenad Trinajsti} i Damir Vuki~evi}

Grafi~ke matrice su upotrijebljene za generiranje Hosoyinih matrica, koje su zatim upotrijebljene za ra~u-

nanje Hosoya-Wienerovih indeksa. Prikazan je ra~unalni program za generiranje grafi~kih matrica acikli~kih

struktura, njihovih numeri~kih matrica i dvostrukih strukturnih invarijanata.
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