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Abstract. It has been known for a long time that the fundamental
group of the quotient of R3 by the Case-Chamberlin continuum is nontriv-
ial. In the present paper we prove that this group is in fact, uncountable.

1. Introduction

In the 1960’s, during the early days of the decomposition theory, the quo-
tient space X3 of the Euclidean 3-space R3 by the classical Case-Chamberlin
continuum C (see [3]) was one of the most interesting examples. One of the
most important questions was whether X3 is simply connected. It was set-
tled – in the negative – by Armentrout [1] and Shrikhande [10]. However,
it remained an open problem until present day to determine how big is the
fundamental group of X3. In this paper we give the solution for this problem
– namely, we show that the fundamental group π1(R3/C) is uncountable.

Consider the Case-Chamberlin inverse sequence P (see [3], [5, p. 628]):

P0
f0←− P1

f1←− P2
f2←− · · ·

where P0 = {p0} is a singleton, Pi is a bouquet of two circles S1
ai

∨
S1

bi
, and

pi is the base point of the bouquet S1
ai

∨
S1

bi
, for every i > 0.
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Fix an orientation on each of the circles of the bouquet. Let

fi : S1
ai+1

∨
S1

bi+1
→ S1

ai

∨
S1

bi

be a piecewise linear mapping which maps the base point pi+1 to the base
point pi and maps the natural generators ai+1 and bi+1 of π1(S

1
ai+1

∨
S1

bi+1
)

to the commutators [ai, bi] and [a2
i , b

2
i ] of π1(S

1
ai

∨
S1

bi
), respectively.

The Case-Chamberlin continuum C is then defined as the inverse limit
lim← P of the Case-Chamberlin inverse sequence P (see [3]). Obviously, C
is a 1-dimensional continuum and therefore it is embeddable in R3 (see [4]).
It is well-known that the homotopy types of the quotient space R3/f(C) are
the same for all embeddings f of C into R3 (see [2]). The main result of our
paper is the following theorem:

Theorem 1.1. Let C be the Case-Chamberlin continuum embedded in
R3. Then the fundamental group π1(R3/C) of the quotient space R3/C is
uncountable.

2. Preliminaries

Let G be a group. By the commutator of the elements a an b of G we
mean the element [a, b] = a−1b−1ab of G. Let Gn be the lower central series

which is defined inductively (see [9]):

G1 = G, Gn+1 = [Gn, G],

where [Gn, G] is the group generated by the set {[a, b] : a ∈ Gn, b ∈ G}.
Obviously, Gn ⊇ Gn+1, for every n. By the weight w(g) of an element

g ∈ G we mean the maximal number n such that g ∈ Gn if such a number
exists, and ∞ otherwise. So the weight of any element of a perfect group is
equal to∞. We shall need the following result from [8, Chapter I, Proposition
10.2]:

Proposition 2.1. For any free group F the lower central series Fn has
trivial intersection, i.e.,

⋂∞
n=1 Fn = {e}.

That is, in any free group the weight of an element x is finite if and only
if x 6= e. Let

C(f0, f1, f2, . . . )

be the infinite mapping cylinder of P (see e.g. [7, 11]) and let P̃ be its na-
tural compactification by the Case-Chamberlin continuum C. Let P∗ be the

quotient space of P̃ by C.
Obviously, P∗ is homeomorphic to the one-point compactification of an

infinite 2-dimensional polyhedron C(f0, f1, f2, . . . ). Let

C(fk, fk+1, fk+2, . . . )

be the mapping cylinder of the inverse sequence:
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Pk
fk←− Pk+1

fk+1←− Pk+2
fk+2←− · · · .

We shall denote the corresponding one–point compactification by

C(fk, fk+1, fk+2, . . . )
∗.

We shall consider C(fk, fk+1, fk+2, . . . )
∗ as a subspace of P∗ and we shall

denote the compactification point by p∗.
We consider Pi, for i ≥ 0, as a subspace of C(f0, f1, . . . ) and we consider

C(fk, fk+1, fk+2, . . . ), for k ≥ 0, as a subspace of P̃. Obviously, P1 is a strong
deformation retract of C(f1, f2, . . . ). We have the following homomorphism

ϕi+1 = (f1 · · · fi)] : π1(Pi+1)→ π1(P1)

which is a monomorphism, since it is the composition of monomorphisms
(fi)] : π1(Pi+1) → π1(Pi). Note that for a fixed i, the elements [ai, bi] and
[a2

i , b
2
i ] are free generators of a subgroup (fi)](π1(Pi+1)) of π1(Pi) (see [9,

p. 119, Exercise 12]).
Since ϕi is a monomorphism, we can consider the group π1(Pi) as a sub-

group of π1(P1) = F, where F is a free group on two generators a1 and b1. In
particular, by identification, we have

a2 = [a1, b1], a3 = [a2, b2] = [[a1, b1], [a
2
1, b

2
1]], etc.

Since ai 6= e, the weight w(ai) is a finite number (cf. Proposition 2.1
above). It follows by definition of ai that w(ai) ≥ i, for every i.

Choose an increasing sequence of natural numbers {ni} as follows: Let
n0 = 1 and n1 = 2. If nk is already defined, then let nk+1 be any natural
number such that nk+1 > w(ank

) for k ≥ 1. Then we have ank
/∈ Fnk+1

.
Let Ii be the unit segment which connects the points pi+1 and pi and

which corresponds to the mapping cylinder of the mapping fi|{pi+1} of the
one-point set {pi+1} to the one-point set {pi}, for i ≥ 0.

To define a certain kind of loops we need a new notion. For two paths
f, g : I→ X satisfying f(1) = g(0), let fg : I→ X be the path defined by:

fg(s) =

{
f(2s) if 0 ≤ s ≤ 1/2,
g(2s− 1) if 1/2 ≤ s ≤ 1.

We also let

f(s) = f(1− s) for 0 ≤ s ≤ 1.

Two paths are simply said to be homotopic, if they are homotopic relative
to the end points. A loop in X is a path f : I → X , satisfying f(0) = f(1).
For a sequence of units and zeros

ε = (ε1, ε2, ε3, . . .), εi ∈ {0, 1}
define a path gε : I→ P∗ so that the following properties hold:

(1) gε(0) = p1 and gε(1) = p∗,
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(2) gε maps [(2k − 2)/(2k − 1), (2k − 1)/2k] homeomorphically onto⋃nk−1
i=nk−1

Ii starting from pnk−1
to pnk

for k ≥ 1, and

(3) gε maps [(2k − 1)/2k, 2k/(2k + 1)] onto S1
ank

as a winding in the

positive direction, if εk = 1, and gε maps [(2k − 1)/2k, 2k/(2k + 1)] to the
point set {pnk

} constantly otherwise, for k ≥ 1.

Let h : I → P∗ be a path from p∗ to p1 which maps I homeomorphically
onto

⋃∞
i=1 Ii ∪ {p∗}. Finally, let fε = gεh. Then fε is a loop with base point

p1 corresponding to

aε = an1

ε1an2

ε2an3

ε3 · · · .

3. Proof of Theorem 1.1

For our proof of Theorem 1.1 we shall need the following two lemmata:

Lemma 3.1. Let C be the Case-Chamberlin continuum embedded in R3.
Then the quotient space R3/C is homotopy equivalent to the 2-dimensional
compactum P∗.

Proof. The proof is completely analogous to the proof of the first asser-
tion of [6, Theorem 1.1] and therefore we shall omit it.

Lemma 3.2. Let p0, p1, p
∗ be distinct points in a Hausdorff space X and

let f be a loop with base point p1 such that f−1({p0}) is empty and f−1({p∗})
is a singleton. If f is null-homotopic, then there exists a loop f ′ in X\{p0, p

∗}
such that f and f ′ are homotopic in X \ {p0}.

Proof. Since f is null-homotopic, we have a homotopy F : I × I → X
from f to the constant mapping to p1, i.e.,

F (s, 0) = f(s), F (s, 1) = F (0, t) = F (1, t) = p1 for s, t ∈ I.

Let {s0} be the singleton f−1({p∗}). Let M be the connectedness component
of F−1({p∗}) containing (s0, 0), and O the connectedness component of I ×
I \M containing I× {1}. Define G : I× I→ X by:

G(s, t) =

{
F (s, t) if (s, t) ∈ O,
p∗ otherwise.

Then G is also a homotopy from f to the constant mapping to p1 and
G−1({p0}) is contained in O.

Consider G−1({p∗, p0}) ∩ O and I × I \ O. By definition of M ,
G−1({p∗, p0}) ∩ O is compact and disjoint from (I × I \ O) ∪ I × {0}. Us-
ing a polygonal neighborhood of (I× I \O)∪ I×{0} whose closure is disjoint
from G−1({p∗, p0}) ∩O, we get a piecewise linear injective path g : I→ I× I
such that

Im(G ◦ g) ⊆ X \ {p0, p
∗}, g(0) ∈ {0} × I and g(1) ∈ {1} × I
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and Im(g) divides I×I into two components, one of which contains G−1({p0})
and the other contains M ∪ I × {0}. We now see that G ◦ g is the desired
loop f ′.

Proof of Theorem 1.1. By Lemma 3.1, it clearly suffices to consider
π1(P∗) instead of π1(R3/C). Suppose therefore, that the group π1(P∗) was
at most countable. We can assume that p1 is the base point of the space P∗
and all of its subspaces considered below. Since the set of all sequences of
units and zeros is uncountable, then there would exist an uncountable set E,
such that for every ε, ε′ from E, the loops fε and fε′ with the base point p1

would be homotopy equivalent. Fix a loop fε0 (ε0 ∈ E).

Then every loop fεfε0 is null-homotopic for every ε ∈ E. Since {s :
gεgε0(s) = p∗} is a singleton, we can apply Lemma 3.2 to gεgε0 . Since fεfε0

is homotopic to gεgε0 in P∗ \ {p0}, we conclude that fεfε0 is homotopic to a
loop f ′ε in P∗ \ {p0, p

∗}, where the homotopy is in P∗ \ P0.
Since E is uncountable and P∗ \ {p0, p

∗} is homotopy equivalent to the
bouquet of two circles S1

a1

∨
S1

b1
, that is, π1(P∗ \ {p0, p

∗}) is countable, there
exist distinct ε and ε′ in E such that f ′ε is homotopic to f ′ε′ in P∗ \ {p0, p

∗}
and hence in P∗ \ P0. It follows that fεfε0 is homotopic to fε′fε0 and hence
fε is homotopic to fε′ in P∗ \ P0. Let k be the minimal number such that
εk 6= ε′k, say εk = 1 and ε′k = 0. Let Yk be the quotient space of P∗ \ P0 by
the closed subspace C(fk+1, fk+2, fk+3, . . . )

∗. Consider the projection

q : π1(P∗ \ P0)→ π1(Ynk+1
)

and let [fε] and [fε′ ] be the homotopy classes containing fε and fε′ respec-
tively. Since ank+1

, bnk+1
∈ Fnk+1

, F/Fnk+1
is a quotient group of π1(Ynk+1

).

Then, q([fε]) = q(aε1
n1

) · · · q(aεk−1
nk−1)q(ank

) and q([fε′ ]) = q(aε1
n1

) · · · q(aεk−1
nk−1).

Since ank
/∈ Fnk+1

, it follows that q(ank
) is non-trivial and hence fε is not ho-

motopic to fε′ in P∗\P0. This contradiction shows that our initial assumption
was false and therefore π1(P∗) ∼= π1(R3/C) is indeed an uncountable group,
as asserted.

Question 3.3. Let C be the Case-Chamberlin continuum embedded in
R3. Is the first singular homology group with integer coefficients H1(R3/C; Z)
of the quotient space R3/C also uncountable?
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