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University of Zagreb, Croatia and University of Maribor, Slovenia
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Abstract. Let J (τ) be Lipscomb’s one-dimensional space and Ln(τ)

= {x ∈ J (τ)n+1 | at least one coordinate of x is irrational} ⊆ J (τ)n+1

Lipscomb’s n-dimensional universal space of weight τ ≥ ℵ0. In this paper
we prove that if X is a complete metrizable space and dimX ≤ n, wX ≤ τ ,
then there is a closed embedding of X into Ln(τ). Furthermore, any map

f : X → J (τ)n+1 can be approximated arbitrarily close by a closed em-

bedding ψ : X → Ln(τ). Also, relative and pointed versions are obtained.
In the separable case an analogous result is obtained, in which the clas-
sic triangular Sierpiński curve (homeomorphic to J (3)) is used instead of
J (ℵ0).

1. Introduction and definitions

If a topological space is embedded into a topologically complete metriz-
able space (i.e., into a space that can be endowed by a complete metric) as
a closed subset, it must be topologically complete metrizable itself. On the
other hand, if a topologically complete metrizable space is embedded into an-
other such space, the embedding need not be closed (embedding of R as an
open interval in itself, or N as {1/m |m ∈ N} into R, are easy examples for this
claim). The problem of the existence of closed embeddings of topologically
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complete metrizable spaces has been extensively treated in the theory of uni-
versal spaces. K. Tsuda [15, 16], A. Waśko [17], Y. Hattori [3], W. Olszewski,
L. Pia̧ntkiewicz [13], A. Nagórko [12] have proved results about existence of
closed embeddings of complete metric spaces into several universal spaces.
This often required special modifications of the previously known universal
spaces. Also, in all cases the proofs were obtained by the use of the Baire
category theorem. For Lipscomb’s universal space no results on existence of
closed embeddings have appeared yet. In this paper we prove that the direct
approach of obtaining embeddings into Lipscomb’s universal space, developed
in [9, 10] and later exploited in [4, 5, 6, 11], yields closed embeddings with
no further changes made, in case when the embedded space is topologically
complete.

In his papers [7, 8] S. L. Lipscomb has defined the space J (τ) as a factor-
space of Baire’s universal 0-dimensional space and used it in his construction
of a universal n-dimensional metrizable space Ln(τ) of weight τ ≥ ℵ0, which
is a subspace of J (τ)n+1. U. Milutinović [9, 10] has proved that J (τ) is
naturally homeomorphic to a generalized Sierpiński curve Σ(τ), which is a
subspace of the Hilbert space `2(τ).

Consequently U. Milutinović obtained a geometric realization of Ln(τ).
Using such geometric realization, he has proved that Ln(τ) is topologically
complete [9, 10]. J. C. Perry, independently, also proved that J (τ) is topo-
logically complete — see [14, p. 2480, footnote]. I. Ivanšić and U. Milutinović
used the method developed in [9, 10] to prove relative [5] and pointed [6] ver-
sions of Lipscomb’s universality theorem. In [4] they proved that the classic
(fractal) Sierpiński triangle may be used instead of J (ℵ0) in the separable
case. In [11] U. Milutinović proved that any mapping into J (τ)n+1, defined
on an arbitrary n-dimensional metrizable space of weight τ ≥ ℵ0, can be
approximated by an embedding into Ln(τ).

In this paper we show that any n-dimensional complete metric space of
weight τ ≥ ℵ0 can be embedded into Ln(τ) as a closed subset. We also
prove relative and pointed versions of this result, as well as a result about
approximations of arbitrary maps by closed embeddings, and a result about
the (separable case) universal space based on the Sierpiński triangle.

We shall use the notation of [1, 7] (with a few slight modifications).
By dimension we understand the covering dimension.
For the sake of completeness we include here the descriptions of Lip-

scomb’s space J (τ), of the generalized Sierpiński curve Σ(τ), and of the
homeomorphism between them.

Baire’s universal 0-dimensional space of weight τ is the set ΛN (where
Λ is a set of cardinality τ and N = {1, 2, 3, . . .}) equipped with the product
topology, while Λ is equipped with the discrete topology. Lipscomb’s space
J (τ) is defined as the quotient space J (τ) = ΛN/∼, where the equivalence
relation ∼ is defined as follows:
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for λ = (λ1, . . . , λm, . . .), µ = (µ1, . . . , µm, . . .)
λ ∼ µ⇐⇒ λ = µ or ∃j ∈ N such that:

i) ∀k, k < j =⇒ λk = µk,
ii) ∀s ∈ N, λj = µj+s,
iii) ∀s ∈ N, λj+s = µj .

In the case µ 6= λ such a j is uniquely determined and is called the tail
index of λ and µ. We also say that the two sequences are interwoven.

The equivalence class of (λ1, . . . , λm, . . .) is denoted by [λ1, . . . , λm, . . .].
An equivalence class may be a singleton – in which case it is called an irrational
point of J (τ) – or a dyad – in which case it is called a rational point of J (τ).
J (τ) is a one-dimensional metrizable space of weight τ [7].

The classical Sierpiński triangle may be described as a (fractal) subset of
R3 as follows:

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Let ϕ1, ϕ2, ϕ3 : R3 →
R3 be the homotheties with the coefficients 1/2 and the centers e1, e2, e3,
respectively. If the convex hull of these three points (i.e., the standard 2-
simplex) is denoted by Σ it is obvious that the set obtained from Σ by k
removals of the middle triangles may be described as

(1.1) Σk =
⋃

(λ1,...,λk)∈Λk

ϕλ1 ◦ · · · ◦ ϕλk
Σ,

where Λ = {1, 2, 3}. After that, the Sierpiński triangle is obtained as the
intersection of all sets Σk.

The generalized Sierpiński curve Σ(τ) is defined analogously using the
Hilbert space `2(τ) = {(xλ) ∈ RΛ | ∑λ∈Λ x

2
λ < ∞} as the ambient space

instead of R3. Using eλ, λ ∈ Λ, defined by ∀µ ∈ Λ, eλ
µ = δλ,µ (Kronecker’s

symbol) we describe the “homotheties” with the centers eλ and the coefficients
1/2, i.e. the functions ϕλ : `2(τ) −→ `2(τ) defined by

(ϕλ(x))µ =

{
(xλ + 1)/2, µ = λ
xµ/2, µ 6= λ.

Let σ = {(xλ) ∈ `2(τ) |
∑

λ∈Λ xλ = 1 & ∀λ, 0 ≤ xλ ≤ 1}. Then Σ = Clσ =
{(xλ) ∈ `2(τ) |

∑
λ∈Λ xλ ≤ 1 & ∀λ, 0 ≤ xλ ≤ 1} is the closed convex hull of

the set {eλ |λ ∈ Λ} and it may be called the standard τ -simplex by an analogy
to the standard m-simplex. Now the generalized Sierpiński curve Σ(τ) may
be described in the same way as previously the classic curve: subspaces Σk of
`2(τ) are defined by (1.1), and then Σ(τ) is defined as

Σ(τ) =
⋂

k∈N

Σk.

The points ϕλ1◦ · · · ◦ ϕλk
(eλ), k ≥ 1, (λ1, . . . , λk) 6= (λ, . . . , λ), are called the

rational points of Σ(τ) (more precisely, for a fixed k they are called the kth
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level vertices), and all other points (including all eλs) are irrational points of
Σ(τ).

That χ : J (τ) −→ Σ(τ), defined by

(1.2) {χ([λ1, . . . , λk, . . .])} =
⋂

k∈N

ϕλ1 ◦ · · · ◦ ϕλk
Σ

is a homeomorphism mapping rational points to rational points and irrational
points to irrational points has been proved in [9], and we identify the spaces
J (τ) and Σ(τ) via χ freely, choosing the description that is more convenient
for use in the context.

Every point of Σ(τ) is thus described by a unique equivalence class of
indices [λ1, . . . , λk, . . .], where the λks are the indices of the homotheties from
(1.2). Any rational point is represented by two interwoven sequences, while
any irrational point is represented by a unique sequence. In analogy with
decimal expansion of reals, we call the elements λk ciphers of [λ1, . . . , λk , . . .].

Let U be a family of subsets of X , x ∈ X . The local order of U
at x is defined as lordx U = inf{k | x has a neighborhood intersecting k
elements of U} ∈ {0, 1, 2, . . . ,∞}. The local order of U is defined as
lordU = sup{lordx U | x ∈ X}.

BdU =
⋃

U∈U BdU , where BdU denotes the boundary of the set U ;
ClU =

⋃
U∈U ClU , where ClU denotes the closure of the set U .

A decomposition of the space X is a pairwise disjoint locally finite family
of open nonempty subsets of X whose closures cover X .

2. Indexing of decompositions method

No details of the proofs of theorems in this sections are given, since they
have appeared in [9] and [4].

In all mentioned papers of Ivanšić and Milutinović, the main tool used in
constructions of embeddings was the following theorem:

Theorem 2.1. Let X be an n-dimensional metrizable space of weight
τ ≥ ℵ0. Let X1,. . . ,Xn+1 be fixed pairwise disjoint 0-dimensional subsets
of X, such that X = X1 ∪ · · · ∪ Xn+1. Then there are decompositions Vi,j ,
Wi,j of X, and families Fi,j of pairwise disjoint closed nonempty sets, i ≥ 0,
1 ≤ j ≤ n+ 1, satisfying the following properties:

(D1) Vi,j , Wi,j are decompositions and lordVi,j ≤ 2, lordWi,j ≤ 2.
(D2) x ∈ BdWi,j ⇐⇒ there exist distinct members W1, W2 of Wi,j , such

that x ∈ BdW1 ∩ BdW2.
(D3) Wi,j = WS

i,j ∪ WB
i,j ∪ WR

i,j , where WS
i,j , WB

i,j , WR
i,j are discrete fam-

ilies which are disjoint in pairs, and WS
i,j ∪ WB

i,j is a discrete family

(superscripts S,B,R come from small, boundary and remnant, and
those are what we call the elements of the families – the terminology
is motivated by their properties).
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(D4) BdWi,j ∩ BdVi,j = ∅.
(D5) WS

i,j refines Vi,j , i.e., every member of WS
i,j is a subset of an element

of Vi,j .
(D6) WR

i,j = {V \ Cl(WS
i,j ∪WB

i,j) | V ∈ Vi,j , V \ Cl(WS
i,j ∪WB

i,j) 6= ∅}.
(D7) Fi,j = {BdV1 ∩ BdV2 | V1, V2 ∈ Vi,j , V1 6= V2, BdV1 ∩ BdV2 6= ∅}.
(D8) For each F = BdV1∩BdV2 ∈ Fi,j there is an element W ∈ WB

i,j , such
that F ⊆W ⊆ ClW ⊆ V1 ∪ F ∪ V2 (since it is uniquely determined by
F , we denote it WF ); WB

i,j = {WF | F ∈ Fi,j}.
(D9) Vi+1,j = {V ∩W | V ∈ Vi,j , W ∈ Wi,j , V ∩W 6= ∅}.

(D10) All the families are of cardinality ≤ τ .
(D11) The intersection of the elements from WB

k,j , k ≥ i, containing a fixed
F ∈ Fi,j , is F .

(D12) BdWi,j ∩Xj = ∅.
(D13)

⋃n+1
j=1 WS

i,j covers X, for all i ≥ 0.

(D14) diamW < 1/(i+ 1), for all W ∈ WS
i,j , all i ≥ 0, and all j, 1 ≤ j ≤

n+ 1.

Remark 2.2. It is important to note, that Theorem 2.1 yields all of Vi,j ,
Wi,j , Fi,j , starting from arbitrary families V0,j , F0,j , j = 1, . . . , n + 1, that
satisfy those properties (D1)–(D14) that apply to them.

Starting from V0,j , F0,j we construct Vi,j ,Wi,j , Fi,j inductively, as in the
following scheme

V0,j ,F0,j  W0,j  V1,j ,F1,j  W1,j  V2,j ,F2,j  . . .

where all steps of the form Vi,j ,Fi,j  Wi,j are realized by applications of
Lipscomb’s lemma [8, Lemma 4, p. 152], while all steps Wi,j  Vi+1,j ,Fi+1,j

are done according to (D7) and (D9).
Also, let us point out that the notation is slightly changed in comparison

with [9], due to the change of emphasis from the setsWi,j to the sets Vi,j that
happened meanwhile. For example, in [9] the members of the families Wi,j

have been indexed, while in all other papers the members of the families Vi,j

are indexed, as in the following theorem.

Theorem 2.3. Let X be an n-dimensional metrizable space of weight
τ ≥ ℵ0. Let X1,. . . ,Xn+1 be fixed pairwise disjoint 0-dimensional subsets
of X, such that X = X1 ∪ · · · ∪ Xn+1. Let Vi,j , Wi,j , and Fi,j , i ≥ 0,
1 ≤ j ≤ n + 1, be as in Theorem 2.1. Then there is an indexing of the
elements of Vi,j , i ≥ 0, 1 ≤ j ≤ n+ 1, satisfying the following properties:

(I1) Each member of Vi,j , i ≥ 0, is indexed by an element of Λi+1.
(I2) For a given F ∈ ⋃∞i=0 Fi,j , let i be the least index such that F ∈ Fi,j

(i.e., F ∈ Fi,j \ Fi−1,j ,
1 for i ≥ 1, or F ∈ F0,j, for i = 0). If

1It can be shown (i.e., see [4, Lemma 3]) that Fi−1,j ⊆ Fi,j .
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F = BdV1 ∩ BdV2 6= ∅, for V1, V2 ∈ Vi,j , V1 6= V2, then V1, V2 are
indexed either by

(A) (λ1, . . . , λk, µ), (λ1, . . . , λk, ν), µ 6= ν (for some k), or by
(B) (λ1, . . . , λk, µ, ν, . . . , ν), (λ1, . . . , λk, ν, µ, . . . , µ), µ 6= ν, (for

some k).

For any ` > i, let Ṽ1, Ṽ2 ∈ V`,j such that F = Bd Ṽ1 ∩ Bd Ṽ2.
2 Sup-

pose Ṽ1 ⊆ V(λ1 ,...,λk ,µ) and Ṽ2 ⊆ V(λ1,...,λk ,ν) (in case (A)) or Ṽ1 ⊆
V(λ1,...,λk,µ,ν,...,ν) and Ṽ2 ⊆ V(λ1,...,λk ,ν,µ,...,µ) (in case (B)).3 Then Ṽ1

is indexed by the (`+1)-tuple (λ1, . . . , λk, µ, ν, . . . , ν) ∈ Λ`+1, and simi-

larly Ṽ2 is indexed by the interwoven element (λ1, . . . , λk, ν, µ, . . . , µ) ∈
Λ`+1.

(I3) If V ∈ Vi,j , i ≥ 0, is indexed by an index having two or more identical
ciphers at the end, then there is an F ∈ F`,j, ` ≤ i, such that F =
BdV1 ∩ BdV2 6= ∅, V1, V2 ∈ Vi,j , V1 6= V2, and either V = V1 or
V = V2.

(I4) If V ∈ Vi,j , i ≥ 0, is indexed by (λ1, . . . , λi+1), and if V ′ ∈ Vk,j , k > i,
is indexed by (µ1, . . . , µk+1), then V ′ ⊆ V implies (λ1, . . . , λi+1) =
(µ1, . . . , µi+1).

Now, in order to get an embedding ψ : X → Ln(τ) ⊆ J (τ)n+1, we define
the coordinate functions

ψj : X −→ J (τ) = Σ(τ), j = 1, . . . , n+ 1,

in the same way as in [9] and [4], i.e., by the formulas

(2.1) x 7−→ [λ1, . . . , λk, µ, ν, . . . , ν, . . .] = [λ1, . . . , λk, ν, µ, . . . , µ, . . .] ,

when x belongs to the boundaries of the sets in Vi,j , i ≥ 0, indexed by the
initial segments of the sequences λ1, . . . , λk, µ, ν, . . . , ν, . . . and λ1, . . . , λk, ν,
µ, . . . , µ, . . ., or by

(2.2) x 7−→ [λ1, . . . , λk, . . .] ,

when x belongs to the sets in Vi,j , for all i ≥ 0, indexed by the initial segments
of the sequence λ1, . . . , λk, . . . and belongs to no boundary of elements of the
decompositions Vi,j .

This means, if x ∈ F , where F ∈ Fi,j , and i is the least index with this
property (cf. (I2)), where F = BdV1 ∩ BdV2 6= ∅, V1, V2 ∈ Vi,j , V1 6= V2, and
V1 and V2 are indexed according to (I2), then ψj(x) is defined to be

ψj(x) = [λ1, . . . , λk, µ, ν, . . . , ν, . . .] = [λ1, . . . , λk, ν, µ, . . . , µ, . . .] .

Hence, in this case, ψj(x) is a rational point of Σ(τ).

2We know that F must be of this form, by (D7) and by the previous footnote.
3From the obvious fact that Vi,j refines Vi−1,j , it follows that always either this is the

case, or that the formulas obtained from these by interchanging Ṽ1, Ṽ2 hold true.
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If x does not belong to any F ∈ ⋃∞i=0 Fi,j , then there is a unique sequence
λ1, λ2, . . ., such that for any i ≥ 0

(2.3) x ∈ V(λ1,...,λi+1) ∈ Vi,j .

Then we define

ψj(x) = [λ1, . . . , λk, . . .] .

Because of (I3) and (D11), ψj(x) is an irrational point of Σ(τ).
In [9] and [4] it was proved (by proving that ψ = (ψ1, . . . , ψn+1) is con-

tinuous, that the family {ψ1, . . . , ψn+1} separates points and closed sets, and
that ψ(X) ⊆ Ln(τ) ⊆ Σ(τ)n+1) that the following theorem holds true:

Theorem 2.4. Under previous assumptions and meaning of notation

ψ = (ψ1, . . . , ψn+1) : X −→ Ln(τ)

is an embedding.

3. Closed embeddability of complete spaces

In this section we prove the main result of the paper (Theorem 3.3), but
we first characterize those embeddings of complete metric spaces which are
closed.

Proposition 3.1. Let f : X −→ Y be an embedding of a complete metric
space X into a metric space Y . Then f(X) is closed in Y if and only if for any
sequence (xk) in X, the convergence of (f(xk)) in Y implies (xk) is Cauchy
in X.

Proof. If f(X) is closed and if (f(xk)) is convergent in Y , then (f(xk))
converges to f(x), for some x ∈ X . Then, by continuity of f−1 on f(X), (xk)
converges to x, hence (xk) is Cauchy.

Conversely, let y ∈ Cl f(X) be an arbitrary point. Let (xk) be a sequence
in X , such that (f(xk)) converges to y. Then (xk) is Cauchy, hence it is con-
vergent, and let x be its limit. By the continuity of f , it follows that (f(xk))
converges to f(x). Therefore y = f(x) ∈ f(X). This proves Cl f(X) ⊆ f(X);
hence Cl f(X) = f(X), and f(X) is closed.

Another key ingredient of the proof of Theorem 3.3 will be the following
lemma.

Lemma 3.2. The mapping ψj : X → Σ(τ), defined by (2.1) and (2.2),
satisfies

x ∈ V(λ1,...,λm) =⇒ ψj(x) ∈ ϕλ1 ◦ · · · ◦ ϕλm
Σ ,

for any x ∈ X and for any m ∈ N.
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Proof. If x ∈ F ∈ ⋃∞i=0 Fi,j , let i be the least index with the property
F ∈ Fi,j . Then, by (D7), F is of the form F = BdV1∩BdV2 6= ∅, V1, V2 ∈ Vi,j ,
V1 6= V2.

By (2.1), ψj(x) = [π1, π2, . . .] = [ρ1, ρ2, . . .], where π1, π2, . . . and ρ1, ρ2, . . .
are two interwoven sequences, and V1, V2 are indexed by (π1, . . . , πi+1),
(ρ1, . . . , ρi+1) (of course, the indices satisfy (A) or (B) of (I2)).

Then m < i, because x is in the open set V(λ1,...,λm) and x ∈ F ∈ Fi,j ⊆
Fi+1,j ⊆ Fi+2,j ⊆ · · · and because of (D7) (see footnote 1 and the definition
of a decomposition).

Let V ∈ Vm−1,j be such that x ∈ V . From Theorem 2.1 it follows that
V1, V2 ⊆ V ((D9), (D3), (D8)), and from (I4) it follows that (λ1, . . . , λm) =
(π1, . . . , πm) and (λ1, . . . , λm) = (ρ1, . . . , ρm). But then, by (2.1), taking into
account (1.2),

{ψj(x)} =
⋂

k∈N

ϕπ1 ◦ · · · ◦ ϕπk
Σ ⊆ ϕπ1 ◦ · · · ◦ ϕπm

Σ = ϕλ1 ◦ · · · ◦ ϕλm
Σ ,

and, redundantly,

{ψj(x)} =
⋂

k∈N

ϕρ1 ◦ · · · ◦ ϕρk
Σ ⊆ ϕρ1 ◦ · · · ◦ ϕρm

Σ = ϕλ1 ◦ · · · ◦ ϕλm
Σ .

If x does not belong to any F ∈ ⋃∞i=0 Fi,j , then by (2.3) there is a uniquely
determined sequence λ1, λ2, . . ., such that x ∈ V(λ1,...,λi), for all i ∈ N, and by
(2.2), taking into account (1.2), we get

ψj(x) ∈ ϕλ1 ◦ · · · ◦ ϕλm
Σ .

Theorem 3.3. Let (X, d) be an n-dimensional complete metric space of
weight τ ≥ ℵ0. Then there is a closed embedding of X into Ln(τ).

Proof. Applying Theorems 2.1 and 2.3 and Remark 2.2 to (X, d), and
to fixed pairwise disjoint 0-dimensional subsets X1, . . . , Xn+1 of X , such that
X = X1 ∪ . . . ∪ Xn+1, and starting from V0,j = {X}, F0,j = ∅, one gets
families Vi,j , Wi,j , Fi,j , i ≥ 0, j = 1, . . . , n + 1, satisfying (D1)–(D14), and
indexing of the elements of Vi,j , i ≥ 0, j = 1, . . . , n+ 1, satisfying (I1)–(I4).

For each j = 1, . . . , n+1 let ψj : X → Σ(τ) be defined by (2.1) and (2.2).
By Theorem 2.4, ψ = (ψ1, . . . , ψn+1) is an embedding of X into Ln(τ).

As an application of Proposition 3.1 we shall now show that ψ(X) is
closed.
Step 1. Let (xk) be an arbitrary sequence in X , such that (ψ(xk)) is conver-
gent in Ln(τ). Let y = limk ψ(xk) ∈ Ln(τ) ⊆ Σ(τ)n+1.

For each k and for any i, there is a j such that xk ∈
⋃WS

i,j , by (D13).

Then there is a j such that the set Ni,j = {k ∈ N | xk ∈
⋃WS

i,j} is infinite
for infinitely many i. If not, for each j there would be an ij such that i > ij
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implies Ni,j is finite. For any i > max{i1, . . . , in+1} the set
⋃n+1

j=1 Ni,j =

{k ∈ N | xk ∈
⋃n+1

j=1

(⋃WS
ij

)
} would be finite. But this is impossible, since⋃n+1

j=1

(⋃WS
ij

)
= X , by (D13).

Fix a j such that for infinitely many i the set Ni,j is infinite.
Step 2. First we prove that yj is irrational. If not,

yj = [λ1, . . . , λk, µ, ν, . . . , ν, . . .] = [λ1, . . . , λk, ν, µ, . . . , µ, . . .],

for some λ1, . . . , λk , µ, ν ∈ Λ. Choose an m > k + 2, such that Nm,j is
infinite. Then

Ω = Int
(
Σ(τ) ∩

(
ϕλ1 ◦ . . . ◦ ϕλk

◦ ϕµ ◦ ϕν ◦ . . . ◦ ϕνΣ

∪ϕλ1 ◦ . . . ◦ ϕλk
◦ ϕν ◦ ϕµ ◦ . . . ◦ ϕµΣ

))
,

where in both cases we have compositions of m + 2 functions ϕ, is an
open neighborhood of yj . Therefore Ω contains almost all ψj(xk), since
limk ψj(xk) = yj . Choose k, such that ψj(xk) ∈ Ω, and such that k ∈ Nm,j ,
i.e., such that xk ∈

⋃WS
m,j .

Let W be the member of the familyWS
m,j such that xk ∈W . By (D5) and

(D9), W ∈ Vm+1,j , henceW = V(κ1,...,κm+2), for some (κ1, . . . , κm+2) ∈ Λm+2,
by (I1).

Then (κ1, . . . , κm+2) 6= (λ1, . . . , λk, µ, ν, . . . , ν) ∈ Λm+2, by (I3) (no small
set can be indexed that way). Analogously

(κ1, . . . , κm+2) 6= (λ1, . . . , λk , ν, µ, . . . , µ) ∈ Λm+2.

Therefore ϕκ1◦· · ·◦ϕκm+2Σ∩Ω = ∅ (for details see [9]). Since, by Lemma 3.2,
ψj(x) ∈ ϕκ1◦· · ·◦ϕκm+2Σ, it follows that ψj(xk) 6∈ Ω, yielding a contradiction.

Hence, yj is irrational, and therefore there is a unique sequence λ1, λ2, . . .
∈ Λ, such that yj = [λ1, λ2, . . .].
Step 3. Let ε > 0 be arbitrary. Choose m, such that 1/(m+1) < ε and such
that Nm,j is infinite, i.e., such that xk ∈

⋃WS
m,j for infinitely many k.

Now, Ω′ = Int
(
Σ(τ) ∩ (ϕλ1 ◦ ϕλ2 ◦ . . . ◦ ϕλm+2Σ)

)
is an open neighbor-

hood of yj . Choose k0, such that ψj(xk) ∈ Ω′ for all k ≥ k0. Choose k, such
that k ≥ k0 and that k ∈ Nm,j , i.e., such that xk ∈

⋃WS
m,j .

If xk ∈ Fm+1,j , by (D8) and (I1), F = BdV(µ1,...,µm+2) ∩ BdV(ν1,...,νm+2),
for some µ1, . . . , µm+2, ν1, . . . , νm+2 ∈ Λ. From (1.2) and (2.1) it follows that

ψj(xk) ∈ ϕµ1 ◦ · · · ◦ ϕµm+2Σ ∩ ϕν1 ◦ · · · ◦ ϕνm+2Σ ,

and since (µ1, . . . , µm+2) 6= (ν1, . . . , νm+2), it follows that ψj(xk) is a (m+2)-
nd level vertex. Since Ω′ contains no such vertex [9], it follows that x ∈⋃Vm+1,j (recall that Vm+1,j is a decomposition of X).

Therefore (by Lemma 3.2) xk ∈ V(λ1,...,λm+2) (all other ϕκ1◦ · · · ◦ϕκm+2Σ

are disjoint with Ω′). LetW ∈ WS
m,j , such that xk ∈ W . SinceWS

m,j ⊆Vm+1,j ,
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and since Vm+1,j is a decomposition of X , it follows that V(λ1,...,λm+2) = W ∈
WS

m,j . Hence diamV(λ1,...,λm+2) < 1/(m+ 1) < ε, by (D14).

For any p, q ≥ k0, we have xp, xq ∈ V(λ1,...,λm+2) (the proof is similar as
for xk above), hence d(xp, xq) < ε, and it means that xk is a Cauchy sequence.

4. Approximation by closed embeddings

Let D be the maximum metric on Σ(τ)n+1, where the metric on Σ(τ) is
induced by the metric on `2(τ).

Theorem 4.1. Let (X, d) be an n-dimensional complete metric space of

weight wX ≤ τ , and let f : X → Σ(τ)
n+1

be a continuous map. Then
for any ε > 0 there is a closed embedding ψ : X → Ln(τ) such that ∀x ∈
X, D(f(x), ψ(x)) ≤ ε.

Proof. We choose the families V0,j , F0,j , j = 1, . . . , n + 1 as in [11]
and then continue as in the proof of Theorem 2.4. In [11] it was proved
that ψ : X → Ln(τ) obtained that way is an embedding satisfying ∀x ∈
X, D(f(x), ψ(x)) ≤ ε, and the proof of Theorem 3.3 applies in this case too
and proves that ψ is closed.

5. Pointed version

In [6] it was proved that for any n-dimensional metrizable space X of
weight τ ≥ ℵ0, and for any finite subset X ′ = {x1, . . . , xm} of X , any em-
bedding of X ′ into Ln(τ) can be extended to an embedding of X into Ln(τ).
For n ≥ 1 this was proved by including X into a larger n-dimensional space
X̃ of weight τ , and then by applying the procedure of Section 2 to X̃. After
obtaining an embedding of X̃ into Ln(τ) it was shown that its restriction to
X satisfied all required properties.

The space X̃ is defined as follows. Fix a metric d on X . Then X̃ is
obtained from the disjoint union of X and [−1, 1]×{1, 2, . . . ,m}, by identifi-

cation of each point xk with (0, k). Define d̃ : X̃ × X̃ → R as follows:

d̃(a, b) =





d(a, b) if a, b ∈ X,
d(a, xk) + |t| if a ∈ X, b = (t, k)
d(xk , b) + |t| if b ∈ X, a = (t, k)
|s− t| if a = (s, k), b = (t, k),
|s|+ d(xk , x`) + |t| if a = (s, k), b = (t, `), k 6= `.

It is easily checked that d̃ is a metric on X̃ extending d and that the dimension
and the weight of X are preserved. See Figure 1.

Lemma 5.1. [−1, 1] × {k} is closed in X̃, for k = 1, . . . ,m; X is closed

in X̃.
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Figure 1. X̃ with xm isolated in X .

Proof. The first claim follows from the compactness of these sets; the
second from X̃ \ X =

⋃m
k=1 (B((−1, k), 1) ∪ B((1, k), 1)), where B(x, r) de-

notes the open ball in (X̃, d̃) centered at x, of the radius r.

Lemma 5.2. If (X, d) is complete, then (X̃, d̃) is complete.

Proof. Let (tp) be a Cauchy sequence in (X̃, d̃).

Since d̃(tp, tq) = |s|+d(xk, x`)+|t| ≥ d(xk, x`) > 0 if tp = (s, k), tq = (t, `)
for k 6= `, it follows that there are only finitely many such pairs (tp, tq).

If there is a convergent subsequence of (tp) in [−1, 1] × {k}, it has the

limit in [−1, 1]× {k}, since [−1, 1]× {k} is closed in X̃, by Lemma 5.1. The
same holds true for convergent subsequences in X .

From compactness of [−1, 1]×{k}, from completeness of (X, d), and from
the fact that a Cauchy sequence having a convergent subsequence is itself
convergent, it follows that there are only the following three cases:

1. Almost all tp are in X . In this case (tp) converges to an element of X
(we use the completeness of (X, d)).

2. Almost all tp are in [−1, 1]× {k}, for some k = 1, . . . ,m. In this case
(tp) converges to an element of [−1, 1]× {k} (we use the compactness
of [−1, 1]× {k}).

3. There are infinitely many tp in X , and infinitely many in [−1, 1] ×
{k}, for some k = 1, . . . ,m. In this case (tp) converges to xk (the
subsequence of (tp), consisting of all tp belonging to X , has the limit
in X , the subsequence of (tp), consisting of all tp belonging to [−1, 1]×
{k}, has the limit in [−1, 1]×{k}, both limits are equal, and the only
point common to X and [−1, 1]× {k} is xk).
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Now we are able to prove

Theorem 5.3. Let X be an n-dimensional (n ≥ 0) complete metrizable
space of weight τ ≥ ℵ0. Let {x1, . . . , xm} be any ordered set of m different
points of X; similarly let {y1, . . . , ym} be any ordered set of m different points
of Ln(τ). Then there is a closed embedding ψ : X → Ln(τ) such that ψ(xk) =
yk for any k = 1, . . . ,m.

Proof. Let n ≥ 1 (the 0-dimensional case will follow from the results of
the next section).

In [6] it is explained in details how to obtain decompositions V0,j of X̃

and families F0,j of closed subsets of X̃ from which the methods of Section 2
give families Vi,j , Wi,j Fi,j and an indexing of families Vi,j satisfying (D1)–
(D14) (in fact, satisfying also certain additional properties (D15), (D16)) and
(I1)–(I4)4 (also satisfying certain (I5), (I6)), such that the resulting function

ψ̃ : X̃ → Ln(τ), satisfying (2.1) and (2.2), is an embedding, and that the

restriction ψ = ψ̃|X : X → Ln(τ) is an embedding mapping each xk to yk,
k = 1, . . . ,m.

The same proof we used in proving Theorem 3.3 shows that ψ̃(X̃) is closed

in Ln(τ). Since X is closed in X̃, by Lemma 5.1, it follows that ψ(X) = ψ̃(X)

is closed in ψ̃(X̃), hence it is closed in Ln(τ), too.

6. Relative 0-dimensional version

In [5] the following theorem was proved:

Theorem 6.1. Let X be a 0-dimensional metric space of weight τ ≥ ℵ0

and let X0 be a compact subspace of X. Then any embedding ψ0 : X0 → L0(τ)
can be extended to an embedding ψ : X → L0(τ).

Using the same reasoning as in previous sections, one may prove:

Theorem 6.2. Let X be a 0-dimensional complete metric space of weight
τ ≥ ℵ0 and let X0 be a compact subspace of X. Then any embedding ψ0 :
X0 → L0(τ) can be extended to a closed embedding ψ : X → L0(τ).

7. Separable case

In [4] it has been proved, that

Theorem 7.1. The subspace

Ln(3) = {x ∈ Σ(3)n+1 | at least one coordinate of x is irrational}
of Σ(3)n+1 is a universal space for the class of all n-dimensional separable
metrizable spaces.

4There is a minor difference, having no consequences for the rest of the proof: the
indexing set of elements of Vi,j is Λi+p, for some p ≥ 1, instead of Λi+1.
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Using the methods explained above, one can prove:

Theorem 7.2. Let (X, d) be an n-dimensional separable complete metric
space. Then there is a closed embedding of X into Ln(3).

Combining methods of [4, 11], and of the present paper, one proves:

Theorem 7.3. Let (X, d) be an n-dimensional separable complete metric

space, and let f : X → Σ(3)n+1 be a continuous map. Then for any ε > 0
there is a closed embedding ψ : X→Ln(3) such that ∀x∈X,D(f(x), ψ(x)) ≤ ε.

In this case D is the maximum metric on Σ(3)n+1, where the metric on
Σ(3) is induced by the metric on R3.
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