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ABSTRACT. It is known that if X is a metric compact space (com-
pactum) with finite shape dimension sd(X) # 2, then sd(X) is equal to
the generalized coefficient of cyclicity c[X], equivalently sd(X x S!) =
sd(X) + 1. In general, these equalities do not hold in the case of compacta
with sd(X) = 2. In this paper we prove that if X is a regularly 1-movable
connected pointed space with sd(X) = 2, then ¢[X] = 2.

1. INTRODUCTION

The shape dimension of compact metric spaces was first defined (under the
name of fundamental dimension) by K. Borsuk [B]. J. Dydak [D] generalized
this notion by defining a shape invariant for topological spaces called defor-
mation dimension ddim as follows: for a (topological) space X, ddimX < n
if any (continuous) map f from X to a polyhedron P is deformable into the
n-skeleton P™) of P, i.c., there is a homotopy H : X x [0,1] — P such
that H(z,0) = = and H(x,1) € P™ for each x € X. Deformation dimension
agrees with the notion of shape dimension sd for topological spaces introduced
by S. Mardesié¢ and J. Segal [M-S]. It is known that if (X, %) is a pointed space
then sd(X, ) = sd(X).

S. Nowak [N] has proved that if X is a compact metric space such that
sd(X) < oo and sd(X) # 2 then sd(X) = ¢[X], where ¢[X] (called the
generalized coefficient of cyclicity of X) is the maximum (finite or infinite)
of all integers n such that H" (X, £) # 0 for some generalized local system £
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of Abelian groups on X (see [N, N-S1, N-S2]). This result was generalized to
topological spaces in [N-S1]. It is known [N] that for any closed n-manifold
M™, n > 1, and any compact metric space X with sd(X) < oo, we have
sd(X x M™) = ¢[X]+mn, so in particular sd(X x S') = ¢[X]+ 1. The equality
sd(X) = ¢[X] fails, in general, if X is a compactum with sd(X) = 2. Thereis a
2-dimensional connected compact metric space X with ¢[X] < sd(X) = 2, i.e.,
such that sd(X x S!) = sd(X) = 2 (see [Sp]). In [Sp] an obstruction theory
based on cohomologies with local coefficients was used to prove some of the
required properties of the example. In a subsequent paper we will prove, in a
geometric way, a new theorem concerning maps between 2-polyhedra which
can be applied to show these properties. The following question is open.

PROBLEM ([Sp]). Is it true that c[X] = 2 for each movable (or pointed mov-
able) connected compact metric space X with sd(X) =2¢

We say that an inverse system of groups G = (G, ¢y, ') is regularly
movable if

for each v € T there exists v' € T, v/ > v, such that for any v1 € T

there exists " € T', v > ~',v1, such that g admits a right inverse.
We say that a connected pointed space X is regularly 1-movable if pro-m1(X)
is isomorphic to a regularly movable inverse system of groups. This notion is
shape invariant. We prove (Theorem 2.1) that if a connected pointed space X
with sd(X) = 2 is regularly 1-movable then ¢[X] = 2. In the proof we apply
the following theorem of J. R. Stallings and R. Swan: groups of cohomological
dimension 1 are free ([St, Sw]). Since a regularly movable continuum is regu-
larly 1-movable, we also obtain that sd(X) = ¢[X] for every regularly movable
continuum X.

In this paper by a space we understand a topological space, and by a
map a continuous map. To simplify notation, for a pointed space we use X
instead of (X, *). We also always assume, without noting, that the maps and
homotopies between pointed spaces preserve the base point. For notions and
results of pro-homotopy theory and shape theory we refer to [M-S].

2. A COHOMOLOGICAL CHARACTERIZATION OF SHAPE DIMENSION OF
REGULARLY 1-MOVABLE CONNECTED POINTED SPACES

The main result of the paper is the following

THEOREM 2.1. If X is a regularly 1-movable connected pointed space with
sd(X) =2 then c[X] = 2.

The proof of the theorem is a consequence of Lemma 2.2 and Lemma, 2.4
below.

LEMMA 2.2. Let f: P — @ and g : Q — R be maps of 2-dimensional
connected pointed CW -complezes such that



A COHOMOLOGICAL CHARACTERIZATION OF SHAPE DIMENSION 111

a) the homomorphism m (f) : m1(P) — m(Q) can be factored by a free
group, and
b) the homomorphism ma(g) : m2(Q) — m2(R) is trivial.

Then the composition go f: P — R is deformable to the 1-skeleton of R.

PROOF. Let P and @ be pointed Eilenberg-McLane spaces with P® = P,
Q® = Q and m,(P) = 7,(Q) = 0 for every n > 1. By i : P — P and
7 Q — @ we denote the inclusions and by f P — @ an extension of the
map jo f: P — Q. Note that (i) and 71 (j) are isomorphisms.

By a) there exist a free group F' and homomorphisms f’ : 7 (P) — F
and f”: F — m1(Q) such that m(f) = f" o f'. Let F be a 1-dimensional
connected pomted CW- complex with i (F ) = F. Tt is well known that there
exist maps f’ : P — F and f” ‘F — Q such that

~

m(f) = f o (m(i) ™ and m(f") =m(j)o f".
Observe that
m(f") o m(F) = m(j) o m(f) o (m (i)™ = m(f).

It follows that the maps f and ]/”7 o f’ are homotopic. So in the following
diagram

)

the square commutes and the trlangle commutes up to homotopy.
Since jo f is homotopic to f”Of'oz and Fis a 1- dimensional CW -complex
the map j o f is deformable in Q to the 1-skeleton Q M) of Q Let

H:Px[O,l]—>Q

be a homotopy such that H(z,0) = j o f(z) and H(z,1) € QW for every
z € P. Since dim P < 2, we may assume that H(Px1[0,1]) c Q®, ie., jo f
is deformable to the 1-skeleton Q M) in Q(3 .
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Since g : @ — R induces the trivial homomorphism 72(g), there is an
extension § : Q® — R of g. Note that go f = goj’o f, where j' : Q — Q® is
the inclusion map. It follows that go f is homotopic to goh, where h : P — Q)
is defined by h(z) = H(x,1) for each x € P. But h(P) ¢ Q" and so
goh(P) c R™ (without loss of generality we may assume that g(Q™) ¢ R
which implies §(Q") ¢ R™M). This finishes the proof of Lemma 2.2. O

In the sequel, we will use the following notation. Let f : X — Y be a
map of spaces and let £ be a local system of Abelian groups on Y. By £; we
denote the local system of Abelian groups on X induced by £ and f. If B is
a subspace of Y and j : B — Y is the inclusion map, we denote £; by £|B.
Note that if A is a subspace of X then £;|A = £¢)4.

In the proof of Lemma 2.4 we need

LEMMA 2.3. Let f: X — Y be a map of CW-complexes, let A and B be
subcomplezes of X and Y, respectively, such that f(A) C B and Al = x(n)
for some integer n, and let £ be a local system of Abelian groups £ on'Y . If the
map f': A — B, defined by f'(x) = f(z), induces the trivial homomorphism

(f')": H"(B,£|B) — H" (A, (£|B))
then the map f induces the trivial homomorphism
ffrH"(Y, L) — H" (X, £y).

PRrROOF. Consider the following commutative diagram

*

H™(X,L¢) <7f H"(Y,2)

H"(A,(£|B) ) «———— H™(B,£|B)
(1

wherei: A — X and j : B — Y are the inclusions. Note that (£|B)y = £¢|A.
Observe that

i*: H"(X,£5) — H"(A, £f]|A)
is a monomorphism since A is a subcomplex of X such that A = X By
the assumption (f’)* is trivial, thus (f’)* o j* and, consequently, i* o f* are
also trivial. It follows that f* is trivial. O

LEMMA 2.4. Let X be a regularly 1-movable connected pointed space with
sd(X) = 2. If ¢[X] < 2 then pro-m1(X) is isomorphic to an inverse system of
free groups.
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PROOF. By [M-S, Theorem 2, p. 96|, the space X admits an HPol,-
expansion X — X = (X, par, A), where all X are connected pointed poly-
hedra of dimension < 2. We assume that pro-m;(X) = m(X), cf. [M-S,
p.- 130]. Observe that it suffices to prove that for each A € A there is \' € A
such that the homomorphism 7 (pxx/) can be factored by a free group.

For any A € A let K denote an Eilenberg-McLane space with (K)?) =
X and 7, (Ky) = 0 for every n > 2. By iy : X\ — K\ we denote the
inclusion. Then (i) ) is an isomorphism for any A € A, and for any A\, X' € A,
A < X, the following diagram

DPaxr
Ky Ky

XA X)\/
P

is commutative, where py » : Ky — K denotes an extension of the map
TX O PAN -

Let G = (G, ¢y, I') be a regularly movable inverse system of groups
isomorphic to pro-m(X). For each v € T, let év be a connected pointed
Eilenberg-MacLane space such that Wl(év) = G, and Fn(é,y) is trivial for
each n > 1. Let gy : év/ — év, where 7,7 € T and v < 4/, be a map such

that st (ZI\'Y’YI) = q,y,y/.
Since 71 (X) and G are isomorphic, the inverse systems K = (K, px x, A)

and G = (C'\v, gy, T') are isomorphic in the category pro-HPol,. Let
f:(fA,q)):éﬂK and g:(g,y,‘ll):K—>é,
where & : A — T, f,\:@q,o\) — Ky foreach A € A, ¥ : T' — A and

Gy Kg(y) — (777 for each v € I, be morphisms of inverse systems such that
gof =idg and f o g = idk in pro-HPol..
Let us fix A € A. Since G is regularly movable for v = ®()) there exist

~" €T, v <+, such that

(a) for any v, €I there exist v € T', v > 4/, 41, such that the map g,

admits a right inverse.

Since g is a morphism and f o g = idk, there exists N € A, N > A\, ¥(y'), o
®(A), such that

9oz © ﬁ\po<1>(>\),\/ = qu>(>\)«,/ O gy © ﬁ\II('y/))\’ and fyo 2109 Oﬁlzo@(,\)x =D
in HPol... It follows that
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(b) fx©@a(n)y © gy ©Pw(yyn = Pax in HPol,.
Thus the following diagram

Py

Ky Ky
x Gyt 0D (4 )\
Gary - év’
o (x5!

commutes in HPol.. R

Now, let £ be any local system of Abelian groups on G. . The local
system of Abelian groups on K. induced by € and the map g,/ © Py (/) We
denote by £. Since ¢[X] < 2, for A’ and the local system of Abelian groups
L] X\ on Xy there is A € A, X > X, such that pyy» induces the trivial
homomorphism of the second cohomology groups

(Pavan)™ s H? (X, £|Xn) = H* (X, (E1X0)pys )+
Thus by Lemma 2.3, the map py - induces the trivial homomorphism of the
second cohomology groups
(D)t H*(Kx, £) — H*(Kxr, £p,,,,0)-
Since f is a morphism and g o f = idg in pro-HPol,, there exists 71 € T,
v >, ®(N),® o ¥(y'), such that
Fuy ©Goou(yyy = Puyia © fxr 0 Goov,
and
9y © fu(y) © Qaow () = Gy

in HPol,. It follows that

(€) gy 0 Pw(yyn © far © Ga(aryy = Gy in HPoL.

By (a) there exist v/ € T, v > ~',v1, and a map h : (A?V/ — (A?Vu such
that

(d) Gyryoh = id@wl in HPol,.
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By (c), the following diagram

ﬁ)\/)\//

Ky Ky
g_y/ Oﬁ\p(_y/))\/ f)\// O%o\ﬂ)w
é’Y, é,yll
a,Y/,YII

commutes in HPol,. Therefore, the homomorphism
(@) H(Gyr, £) — HQ(G,Y//,E%,V,,)

is trivial, because the homomorphism (py/y~)* is trivial. Thus, by (d), the
homomorphism

(zdéw,)* : H2(G\’Y'7E) - HQ(,G\’YUE)

induced by the identity map on @,Y, is trivial. So the group HQ(C'\W/,E) is
trivial for any local system of Abelian groups €. Thus cohomological dimen-
sion cd(m; (év/)) < 1. By Stallings-Swan theorem [St, Sw], the group m (év/)
is free. R

Finally, by (b), the map pax : Kx — K, is factored by G, in HPol,.
It follows that the homomorphism 71 (Pax/), and thus the homomorphism
m1(pan ), is factored by the free group 771(@7/). This finishes the proof of the
lemma. O

3. PROOF OF THEOREM 2.1

Let X be a regularly 1-movable connected pointed space with sd(X) = 2.
Let X — X = (X, pan,A) be an HPol,-expansion of the space X, where all
X\ are pointed polyhedra of dimension < 2. Suppose ¢[X] < 2.

If X is not approximatively 2-connected space with sd(X) = 2 then ¢[X] =
2 (cf. [N, Theorem 8.3, p. 35]). Thus we may assume that X is approximatively
2-connected space. It follows that for any A € A there exist X € A, X > ),
such that the homomorphism

ma(par) : m2(Xar) — m2(X))

is trivial.
By Lemma 2.4 there exist A € A, \” > X, such that the homomorphism

'/Tl(p)\’X/) : ’/Tl(XX/) — '/TI(X)\’)

can be factored by a free group.
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By Lemma 2.2, the composition pyx» = paxr © paar is deformable to the
1-skeleton of X . It follows that sd(X) = 1, which contradicts the assumption
that sd(X) = 2. Thus the proof of Theorem 2.1 is complete.
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