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Abstract. Given a category C, a certain category pro∗-C on inverse
systems in C is constructed, such that the usual pro-category pro-C may
be considered as a subcategory of pro∗-C. By simulating the (abstract)
shape category construction, Sh(C,D), an (abstract) coarse shape category

Sh∗
(C,D)

is obtained. An appropriate functor of the shape category to the

coarse shape category exists. In the case of topological spaces, C = HTop
and D = HPol or D = HANR, the corresponding realizing category for
Sh∗ is pro∗-HPol or pro∗-HANR respectively. Concerning an operative
characterization of a coarse shape isomorphism, a full analogue of the well
known Morita lemma is proved, while in the case of inverse sequences, a
useful sufficient condition is established. It is proved by examples that for
C = Grp (groups) and C = HTop, the classification of inverse systems in
pro∗-C is strictly coarser than in pro-C. Therefore, the underlying coarse

shape theory for topological spaces makes sense.

1. Introduction

The standard homotopy theory has successfully solved many classifying
problems for some classes of locally nice spaces (polyhedra, CW-complexes
ANR’s, . . . ). Unfortunately, when one is to study a class of locally bad spaces
it cannot help significantly. To overcome this defect, K. Borsuk [1, 2] was
founded in 1968 the shape theory of (metrizable) compacta. The correspond-
ing classification of compacta is generally coarser than the homotopy type
classification, while on the subclass of locally nice spaces (compact polyhedra,
finite CW-complexes, compact ANR’s, . . . ) it coincides with the homotopy
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type classification. The most significant step forward in this course was made
by S. Mardešić and J. Segal [14]. They had successfully used the inverse sys-
tem approach and the language of a pro-category to describe the shape theory.
They also had extended the shape theory to the class of compact Hausdorff
spaces. Finally, Mardešić [10] and K. Morita [18] had extended the shape
theory to all topological spaces.

Since 1976 a few new classifications of compacta have been considered.
For instance, Borsuk [3] introduced the relations of quasi-affinity and quasi-
equivalence, while Mardešić [11] introduced the S-equivalence relation be-
tween compacta. All of them are shape type invariant relations. These
classifications are strictly coarser than the shape type classification [3, 6, 9].
Moreover, the quasi-equivalence and S-equivalence on compact ANR’s and
compact polyhedra coincide with the homotopy type classification. However,
the mentioned relations, being defined only on the class of objects, were not
supported by the appropriate with them associated theories. In other words,
it was not clear whether these relations are categorical. Furthermore, if such
an equivalence relation admits a category characterization, there should exist
a functor relating the shape category and the new category.

The reason why these new classifications was, for example, the problem
of the shape types of fibers of a shape fibration. In 1977 D. Coram and P. F.
Duvall [4] introduced and studied the approximate fibrations between compact
ANR’s. These are a shape analogue of the standard (Hurewicz) fibrations. In
1978 S. Mardešić and T. B. Rushing [13] generalized approximate fibrations to
shape fibrations between metric compacta. The following important question
was asking for the answer (analogously to the same homotopy type of the fibers
of a fibration): Whether all the fibers of a shape fibration (over a continuum)
have the same shape? In 1979 J. Keesling and S. Mardešić [9] gave a negative
answer. However, Mardešić [11] had proved before that all those fibers are
mutually S-equivalent. He also proved that some shape invariant classes of
compacta (FANR’s, movable compacta, compacta having shape dimension
≤ n, . . . ) are actually S-invariant.

In recent years the interest for the mentioned relations has arisen. So
N. Uglešić [20] studied the Borsuk’s quasi-equivalence and quasi-affinity and
introduced some new ones, Mardešić and Uglešić [16] described the S∗-
equivalence (a uniformization of the S-equivalence) in a category framework,
Uglešić and B. Červar [21, 22] derived the Sn-equivalences, n ∈ N, from the
S-equivalence and constructed a categorical subshape spectrum for compacta,
while A. Kadlof, N. Koceić Bilan and Uglešić [8] proved (solved the problem
stated in [3]) that the Borsuk quasi-equivalence is not transitive.

In this paper, the results of Mardešić and Uglešić [16] for metric compacta
are fully generalized to all topological spaces. More precisely, in the first step,
the Mardešić-Uglešić category S∗ is described as a kind of the pro-category
on inverse sequences of compacta (Theorems 3.1 and 3.2), such that the usual
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morphism sets are significantly enriched. Then, in the second step, it is no-
ticed that this description enables us to apply the construction to any category
C and obtain a category, denoted by tow∗-C, on the inverse sequences in C.
Even more, as a third step, the construction admits a generalization from in-
verse sequences to arbitrary inverse systems in C to obtain a category, denoted
by pro∗-C, so that one may consider pro-C to be its subcategory having the
same object class. Further, given a category pair (C,D), where D is dense in C
(in the shape-theoretical sense), the construction of the abstract “shape” cat-
egory Sh∗(C,D) can be fully simulated by means of the “pro-category” pro∗-D,

i.e.,

Sh∗(C,D)(X,Y ) ≈ pro∗-D(X,Y ),

where X and Y are any D-expansions of the C-objects X and Y respectively.
There also exists an abstract “shape” functor

S∗(C,D) : C → Sh∗(C,D),

which keeps the objects fixed, while, for every C-morphism f , S∗(C,D)(f) is rep-

resented by a unique pro∗-D equivalence class 〈f∗〉. The functor S∗(C,D) factor-

izes through the abstract shape category Sh(C,D), i.e., S∗(C,D) = J(C,D)S(C,D),

where S(C,D) : C → Sh(C,D) is the abstract shape functor, and

J(C,D) : Sh(C,D) → Sh∗(C,D).

is the “inclusion” (faithful) functor. The classification of objects of D in
Sh∗(C,D) is the same as in Sh(C,D) as well as in D, while the classification of

objects of C in Sh∗(C,D) is coarser than in Sh(C,D). Therefore, one might speak

of an underlying abstract coarse shape theory (for C).
In the case C = HTop (the homotopy category of topological spaces)

and D = HPol (the homotopy category of polyhedra) (or D = HANR - the
homotopy category of ANR’s for metric spaces), one obtains the coarse shape
category of topological spaces

Sh∗ ≡ Sh∗(HTop,HPol)
∼= Sh∗(HTop,HANR),

realized via the category pro∗-HPol (or pro∗-HANR), and the coarse shape
functor

S∗ : HTop→ Sh∗,

which factorizes through the shape category Sh of topological spaces, i.e.,
S∗ = JS, where S : HTop→ Sh is the shape functor and

J : Sh→ Sh∗

is the “inclusion” (faithful) functor. The underlying theory is called the coarse
shape theory for topological spaces. In the subspecial case C = HcM ⊆ HTop
(the homotopy category of compact metric spaces) and D = HcPol ⊆ HPol
(the homotopy category of compact polyhedra) (or D = HcANR ⊆ HANR
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- the homotopy category of compact ANR’s), one obtains the coarse shape
category of compacta

Sh∗(cM) ≡ Sh∗(HcM,HcPol)
∼= Sh∗(HcM,HcANR),

realized “sequentially” via the category tow∗-HcPol (or tow∗-HcANR), and
the (restriction of the) coarse shape functor

S∗ : HcM → Sh∗(cM),

such that S∗ = JS, where S : HcM → Sh(cM) is the shape functor on
compacta, while

J : Sh(cM)→ Sh∗(cM)

is the corresponding “inclusion” functor. We have proved (Corollary 5.3)
that, in general, the coarse shape classification of compacta is indeed (strictly)
coarser than the shape classification.

Since the problem of an easy recognition of an isomorphism in pro∗-C
is the most important, we have established an analogue (Theorem 6.1) of
the well known Morita lemma in pro-Top [17], such that its reduction to the
pro-category is exactly the Morita lemma. Hereby an analogue in pro∗-C
of the “reindexing theorem” in pro-C has been needed, since a morphism of
pro∗-C, in general, does not admit a level representative. Concerning inverse
sequences (a level representative is not indispensable), we have got a very
operative sufficient condition (Theorem 6.4) for an isomorphism in tow∗-C.

At the end we have constructed a pair of pro-groups G,H such that
G ∼= H in pro∗-Grp, while G and H are not isomorphic in pro-Grp (Example
7.1), as well as a pair of pro-spaces X,Y such that X ∼= Y in pro∗-HPol ⊆
pro∗-HTop, while X and Y are not isomorphic in pro-HTop (Example 7.2).
They confirm that the coarse shape theory is indeed a new nontrivial tool for
studying and classifying locally bad spaces.

2. Preliminaries

For the sake of completeness, let us briefly recall the well known notions
and main facts concerning a pro-category and a shape category (see [15]) as
well as the recently constructed category S∗ (see [16]). The category language
follows [7].

Let C be a category. An inverse system in C, denoted by X =
(Xλ, pλλ′ ,Λ), consists of a directed preordered set (Λ,≤), called the index set,
of C-objects Xλ for each λ ∈ Λ, called the terms of X, and of C-morphisms
pλλ′ : Xλ′ → Xλ (pλλ = 1Xλ

), for each related pair λ ≤ λ′ in Λ, called the
bonding morphisms of X, such that

pλλ′pλ′λ′′ = pλλ′′ ,

whenever λ ≤ λ′ ≤ λ′′. A morphism of inverse systems (f, fµ) : X → Y =
(Yµ, qµµ′ ,M) consists of a function f : M → Λ, called the index function, and
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of C-morphisms fµ : Xf(µ) → Yµ for each µ ∈M , such that, for every related
pair µ ≤ µ′, there exists λ ∈ Λ, λ ≥ f(µ), f(µ′), for which

fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

The composition of morphisms of inverse systems is defined as follows: Given
any (f, fµ) : X → Y and any (g, gν) : Y → Z = (Zν , rνν′ , N), then
(g, gν)(f, fµ) = (h, hν) : X → Z, where h = fg : N → Λ and hν = gνfg(ν) :
Xh(ν) → Zν . Finally, the identity morphism on X is (1Λ, 1Xλ

) : X → X. In
this way is obtained a category, denoted by inv-C, whose objects are all in-
verse systems in C and whose morphisms are all morphisms of inverse systems
described above.

Notice that, for every index set Λ, there exists a full subcategory CΛ

of inv-C determined by all inverse systems indexed by Λ. If Λ = N, then
CN ⊆ inv-C is the full subcategory of all inverse sequences in C.

A morphism (f, fµ) : X → Y is said to be equivalent to a morphism
(f ′, f ′µ) : X → Y , denoted by (f, fµ) ∼ (f ′, f ′µ), provided each µ ∈M admits
λ ∈ Λ, λ > f(µ), f ′(µ), such that

fµpf(µ)λ = f ′µpf ′(µ)λ.

This defines an equivalence relation on each set inv-C(X,Y ). The equivalence
class [(f, fµ)] of (f, fµ) is denoted by f . Furthermore, the equivalence relation
respects the composition in inv-C, i.e., if (f, fµ) ∼ (f ′, f ′µ) and (g, gν) ∼
(g′, g′ν), then (g, gν)(f, fµ) ∼ (g′, g′ν)(f ′, f ′µ), whenever these compositions are
defined. Therefore, there exists the corresponding quotient category (inv-
C)/ ∼, denoted by pro-C and called the pro-category for the category C. Its
objects are all inverse systems X in C and its morphisms are all equivalence
classes f of morphisms of inv-C. The full subcategory of pro-C determined
by all inverse sequences in C (corresponding to CN/ ∼) is usually called the
tow-category of C and is denoted by tow-C.

Recall that, if the index set M of an inverse system Y is cofinite (every
µ ∈M has at most finitely many predecessors), then every f : X → Y admits
a representative (f, fµ) , such that the index function f : M → Λ is increasing
and, for every related pair µ ≤ µ′,

fµpf(µ)f(µ′) = qµµ′fµ′ .

Such a representative is called a simple morphism of inverse systems. A simple
morphism (1Λ, fλ), belonging to a subcategory CΛ, is called a level morphism.
Finally, recall that every inverse system X admits an isomorphic (in pro-C)
X ′ having a cofinite index set.

Let D be a full subcategory of C. Given X ∈ ObC, a D-expansion of X is
a morphism p = [(c, pλ)] : X → X of pro-C (X is a rudimentary system and
c is the constant function), where X belongs to pro-D, such that, for every
Y in pro-D and every p′ : X → Y in pro-C, there exists a unique morphism
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f : X → Y (in pro-D) satisfying fp = p′. D is said to be dense in C provided
every C-object X admits a D-expansion p : X →X.

Every two D-expansions of the same object are naturally isomorphic (as
the objects of pro-D, by a unique isomorphism), and every system which is
isomorphic to a D-expansion of X is also a D-expansion of X . A D-expansion
p : X → X is characterized by the following two properties:

(E1) for every P ∈ Ob(D) and every g : X → P in C, there exist λ ∈ Λ and
an f : Xλ → P in D, such that fpλ = g;

(E2) if f, f ′ : Xλ → P in D satisfy fpλ = f ′pλ, then there exists λ′ ≥ λ
such that fpλλ′ = f ′pλλ′ .

Let p : X → X and p′ : X → X ′ be D-expansions of the same object
X of C, and let q : Y → Y and q′ : Y → Y ′ be D-expansions of the same
object Y of C. Then there exist two natural isomorphisms i : X → X ′ and
j : Y → Y ′. A morphism f : X → Y is said to be pro-D equivalent to a
morphism f ′ : X ′ → Y ′, denoted by f ∼ f ′, provided the following diagram
in pro-D commutes:

X
i−→ X ′

f ↓ ↓ f ′

Y
j−→ Y ′

It defines an equivalence relation on the appropriate subclass of Mor(pro-D).
The equivalence class of f is denoted by 〈f〉. If f ∼ f ′ and g ∼ g′, then
gf ∼ g′f ′ whenever it is defined. Further, given p, p′, q, q′ and f , there
exists a unique f

′ such that f ∼ f
′.

For given pair (C,D), where D is dense in C, one defines the (abstract)
shape category Sh(C,D) for (C,D) as follows. The objects of Sh(C,D) are all
the objects of C. A morphism F ∈ Sh(C,D)(X,Y ) is the pro-D equivalence
class 〈f〉 of a morphism f : X → Y , with respect to any choice of a pair of
D-expansions p : X → X , q : Y → Y . In other words, a shape morphism
F : X → Y is given by a diagram

X
p←− X

f ↓ � F

Y
q←− Y

The composition of F : X → Y , F = 〈f〉 and G : Y → Z, G = 〈g〉, is well
defined by the representatives, i.e., GF : X → Z, GF = 〈gf 〉. The identity
shape morphism on an object X , 1X : X → X , is the pro-D equivalence class
〈1X〉 of the identity morphism 1X in pro-D. Since

Sh(C,D)(X,Y ) ≈ pro−D(X ,Y )

is a set, the shape category Sh(C,D) is well defined. One often says that pro-D
is the realizing category for the shape category Sh(C,D).
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For every f : X → Y in C and every pair of D-expansions p : X → X,
q : Y → Y , there exists a unique f : X → Y in pro-D, such that the following
diagram in pro-C commutes:

X
p←− X

f ↓ ↓ f

Y
q←− Y

.

The same f and another pair of D-expansions p′ : X → X ′, q′ : Y → Y ′

yield a unique f ′ : X ′ → Y ′ in pro-D. Then, however, f ∼ f ′ in pro-D must
hold. Thus, every morphism f ∈ C(X,Y ) yields a unique pro-D equivalence
class 〈f 〉, i.e., a unique shape morphism F ∈ Sh(C,D)(X,Y ). If one defines
S(X) = X , X ∈ ObC, and S(f) = F = 〈f 〉, f ∈MorC, then

S : C → Sh(C,D)

becomes a functor, called the (abstract) shape functor. The restriction of S
to D into the full subcategory of Sh(C,D), determined by ObD, is a category
isomorphism. Therefore, P and Q are isomorphic objects of D if and only if
they are isomorphic in Sh(C,D), i.e., they are of the same shape. Finally, if
X ∈ ObC and P ∈ ObD, then every shape morphism F : X → P admits a
unique morphism f : X → P in C such that S(f) = F . Thus, the restriction
function (of S)

S|· : C(X,P )→ Sh(C,D)(X,P )

is a bijection. The most interesting example of the above construction is
C = HTop - the homotopy category of topological spaces and D = HPol
- the homotopy category of polyhedra (or D = HANR - the homotopy
category of ANR’s for metric spaces, which yields the same theory, since
Ob(Pol) and Ob(ANR) are homotopy equivalent classes). Namely, the (full)
subcategory HPol ⊆ HTop is dense in HTop, since every space X ad-
mits a HPol-expansion p = ([pλ]) : X → X = (Xλ, [pλλ′ ],Λ), which
is obtained by applying the homotopy functor to a polyhedral resolution
(pλ) : X → X = (Xλ, pλλ′ ,Λ) of X , [12]. In this case, one speaks about
the (ordinary or standard) shape category Sh(HTop,HPol) ≡ Sh of topological
spaces and (ordinary or standard) shape functor S : Htop → Sh. Clearly,
the realizing category for Sh is the pro-category pro-HPol (or pro-HANR).
The underlying theory is called the (ordinary or standard) shape theory for
topological spaces.

Let HcM ⊆ HTop denote the homotopy subcategory of compact metric
spaces, and let HcPol ⊆ HPol denote the homotopy subcategory of com-
pact polyhedra. Since HcPol ⊆ HcM is a “sequentially” dense subcate-
gory (every compactum X admits a HcPol-expansion p = ([pi]) : X →
X = (Xi, [pii′ ],N), which is obtained by applying the homotopy functor
to the limit (pi) : X → X = (Xi, pii′ ) of an inverse sequence of compact
polyhedra, X = limX, [5]), there exists the shape category of compacta,
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Sh(HcM,HcPol) ≡ Sh(cM), which is a full subcategory of Sh. Notice that the
realizing category for Sh(cM) is the tow-category tow-HcPol. Clearly, since
the classes Ob(cPol) and Ob(cANR) (all compact ANR’s for metric spaces)
are homotopy equivalent, the tow-category tow-HcANR may also serve as
the realizing category for the shape category Sh(cM).

Let us now recall the Mardešić-Uglešić category S∗, [16]. Its object class
(indeed a set) consists of all compact metric spaces, while the morphisms
are more sophisticated than the corresponding shape morphisms. First, an
S∗-mapping (f, [fn

j ]) : X → Y of an inverse sequence of metric compacta

X = (Xi, [pii′ ]) ∈ Ob
(
HcMN

)
to another one Y = (Yj , [qjj′ ]) consists of

an increasing and unbounded function f : N→ N and of a set of homotopy
classes [fn

j ] of mappings fn
j : Xf(j) → Yj , n ∈ N, j ∈ N, such that there

exists an increasing unbounded function γ : N→ N, called the commutativity
radius for (f, [fn

j ]), which has the property that, for every n ∈ N, the following
(finite) diagram is commutative:

(1)
Xf(1) ← Xf(2) ← · · · ← Xf(γ(n))

[fn
1 ] ↓ ↓ [fn

2 ] · · · ↓ [fn
γ(n)]

Y1 ← Y2 ← · · · ← Yγ(n)

.

(The case γ(n) = 1 is trivial, i.e., the diagram consisting of a single homotopy
class [fn

1 ] is also considered to be commutative.) If (f, [fn
j ]) : X → Y and

(g, [gn
k ]) : Y → Z are the S∗-mappings, then their composition (h, [hn

k ]) :
X → Z is defined by h = fg and hn

k = gn
k f

n
g(k). For every X, the S∗-

mapping (1N, [1
n
Xj

]) : X →X , where 1n
Xj

: Xj → Xj is the identity mapping

for every pair j, n ∈ N, is the S∗-identity mapping on X.
An S∗-mapping (f, [fn

j ]) : X → Y is said to be homotopic to an S∗-

mapping (f ′, [f ′nj ]) : X → Y , (f, [fn
j ]) ' (f ′, [f ′′n

′

j ]), provided there exists
an increasing function σ : N → N, σ ≥ f, f ′, called the shift function for
(f, [fn

j ]), (f ′, [f ′nj ]), and there exists an increasing and unbounded function

χ : N → N ∪ {0}, called the homotopy radius for (f, [fn
j ]), (f ′, [f ′nj ]), such

that, for every n ∈ N and every j, 1 ≤ j ≤ χ (n),

[fn
j ][pf(j)σ(j)] = [f ′nj ][pf ′(j)σ(j)].

The homotopy relation ' is a natural equivalence relation on the class
of all S∗-mappings. The homotopy class [(f, [fn

j ])] of an S∗-mapping

(f, [fn
j ]) : X → Y is briefly denoted by f ∗. The composition of such ho-

motopy classes is well defined by putting g∗f∗ = h∗ ≡ [(h, [hn
k ])], where

(h, [hn
k ]) = (g, [gn

k ])(f, [fn
j ]). Let S∗ be the collection consisting of the class

Ob
(
(HcM)N

)
= Ob(tow − HcM) of objects and of the class MorS∗ of all

the sets S∗ (X,Y ) of all f∗ : X → Y . Then S∗, endowed with the above
composition and all the identities 1∗X , makes a category. There, also, exists
a functor J : tow-HcM → S∗, which keeps the objects fixed and, for every
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f = [(f, fj)] : X → Y in tow-HcM , J(f ) = f∗ : X → Y in S∗, where f ∗ is
the homotopy class of the S∗-mapping (f, [fn

j ]), fn
j = fj for every n ∈ N. (In

[16], the functor J is denoted by S∗!)
Now, let the objects of S∗ be all compact metric spaces. The morphisms

of S∗ are defined quite analogously to the shape morphisms in Sh(cM). Let
p = ([pi]) : X → X, p′ = ([p′i]) : X → X ′ and q = ([qj ]) : Y → Y ,
q′ = ([q′j ]) : Y → Y ′ be two sequential HcANR-expansions of X and Y

respectively. Let i : X → X ′ and j : Y → Y ′ be the (unique) natural
isomorphisms in tow-HcANR. f∗ ∈ S∗(X ,Y ) is said to be equivalent to
f∗′ ∈ S∗(X ′,Y ′), denoted by f ∗ ∼ f∗′, provided S∗(j)f∗ = f∗′S∗(i). This
relation is a natural equivalence relation on MorS∗. The equivalence class
of f∗ is denoted by 〈f ∗〉. Finally, a morphism F ∗ ∈ S∗(X,Y ) is the S∗
equivalence class 〈f∗〉 of a morphism f∗ : X → Y , with respect to any choice
of a pair of sequential HcANR-expansions p : X →X, q : Y → Y . In other
words, a morphism F ∗ : X → Y in S∗ is given by a diagram

X
p←− X

f∗ ↓ � F∗

Y
q←− Y

.

The composition of F ∗ : X → Y , F ∗ = 〈f∗〉 and G∗ : Y → Z, G∗ = 〈g∗〉,
is defined by the representatives, i.e., G∗F ∗ : X → Z, G∗F ∗ = 〈g∗f∗〉. The
identity on an object X in S∗, 1∗X : X → X , is the S∗ equivalence class 〈1∗X〉
of the identity morphism 1∗X in S∗. Since

S∗(X,Y ) ≈ S∗(X ,Y )

is a set, the category S∗ is well defined. One may say that S∗ is the realizing
category for the category S∗. There also exists a functor J : Sh(cM) → S∗
which keeps the objects fixed and, for every F = 〈f〉 ∈ Sh(X,Y ), f =
[(f, fj)] : X → Y , J(F ) = F ∗ = 〈f∗〉, f∗ = J(f ). (In [16], the functor J is
denoted by S∗!)

The category S∗ classifies compacta (by its isomorphisms) strictly coarser
than the shape category, [16]. This classification coincides with the classifi-
cation of compacta by the Mardešić-Uglešić S∗-equivalence, which is a uni-
formization of the Mardešić S-equivalence, [11]. On compact polyhedra and
compact ANR’s, it coincides with the shape type classification, i.e., with the
homotopy type classification.

3. The pro∗-categories

3.1. The category tow∗-C. First of all, we shall characterize the basic con-
ditions for the category S∗ by means of conditions which are quite similar
to those for the usual tow-category. This description will indicate how to
generalize, for any category C, the whole “S∗-structure” to obtain a category
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tow∗-C on the inverse sequences in C as well as a category pro∗-C on the
inverse systems in C.

Theorem 3.1. Let X = (Xi, [pii′ ]) and Y = (Yj , [qjj′ ]) be inverse se-
quences of metric compacta. Let f : N → N be an increasing unbounded
function and let, for every n ∈ N and for every j ∈ N, fn

j : Xf(j) → Yj be a
mapping. Then the following three conditions are equivalent:

(i) (f, [fn
j ]) : X → Y is an S∗-mapping.

(ii) For every related pair j ≤ j ′ in N, there exists n ∈ N such that, for
every n′ > n,

(2) [fn′

j ][pf(j)f(j′)] = [qjj′ ][f
n′

j′ ].

(iii) For every j ∈ N, there exists n ∈ N such that, for every n′ ≥ n,
(2
′

) [fn′

j ][pf(j)f(j+1)] = [qjj+1][f
n′

j+1].

Proof. Let (f, [fn
j ]) : X → Y be an S∗-mapping. Let γ : N → N be a

commutative radius for (f, [fn
j ]). Let any pair j ≤ j′ in N be given. Since γ

is unbounded, there exists n ∈ N such that γ (n) > j ′. Let n′ ≥ n. Since γ
increases, diagram (1) implies that

[fn′

j ][pf(j)f(j′)] = [qjj′ ][f
n′

j′ ].

Therefore, (i) implies (ii). The implication (ii) ⇒ (iii) is trivial (j ′ = j + 1).
Let us now prove that (iii) implies (i). Let an increasing unbounded function
f : N → N and a set of mappings fn

j : Xf(j) → Yj , n ∈ N, j ∈ N, be given,
such that, for every j ∈ N, there exists n ≡ nj ∈ N so that, for every n′ ≥ nj ,
condition (2′) holds. Let us define a function γ : N→ N to be a commutative
radius for

(
f,
[
fn

j

])
. Consider a strictly increasing sequence (mk) in N ∪ {0},

k ∈ N ∪ {0}, defined by induction as follows:

m0 = 0, m1 = max{n1,m0 + 1}, . . . , mk+1 = max {nk+1,mk + 1} , . . . .
Then put γ (n) = k + 1, n ∈ N, where k = k(n) is the unique element of
N ∪ {0} satisfying mk ≤ n < mk+1. Thus, for every n, mγ(n)−1 ≤ n < mγ(n).
Clearly, the function γ is increasing and unbounded. Let n ∈ N. If γ(n) = 1,
then there is nothing to prove. Let γ(n) > 1. Then, by construction, n >
n0 = max{n1, . . . , nγ(n)−1}, and thus, for every j = 1, . . . , γ(n)− 1,

[fn
j ][pf(j)f(j+1)] = [qjj+1][f

n
j+1].

Therefore, the appropriate diagram (1) commutes, i.e., (f,
[
fn

j

]
) is an S∗-

mapping of X to Y .

Theorem 3.2. An S∗-mapping (f, [fn
j ]) : X → Y is homotopic to an

S∗-mapping (f ′, [f ′nj ]) : X → Y if and only if, for every j ∈ N, there exists

i ∈ N, i ≥ f (j) , f ′ (j), and there exists n ∈ N such that, for every n′ > n

(3) [fn′

j ][pf(j)i] = [f ′n
′

j ][pf ′(j)i].
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Proof. Let (f, [fn
j ]) ' (f ′, [f ′nj ]) be realized via σ and χ. Given any j ∈

N, put i = σ(j) ∈ N and choose n ∈ N such that χ (n) > j (χ is unbounded).
Since χ increases, χ(n′) ≥ j whenever n′ ≥ n. Hence, relation (3) holds.
Conversely, assume that, for every j ∈ N, there exist i ≡ ij , n ≡ nj ∈ N,
ij ≥ f (j) , f ′ (j), such that, for every n′ ≥ nj , relation (3) holds. Let us
define a shift function σ : N→ N by induction as follows:

σ (1) = i1, σ (2) = max {i2, σ (1)} , . . . , σ (j + 1) = max {ij+1, σ (j)} , . . .
Then, obviously, σ is increasing and σ ≥ f, f ′. Further, consider a strictly
increasing sequence (mk) in N∪ {0}, k ∈ N∪ {0}, defined by induction in the
following way:

m0 = 0, m1 = max{n1,m0 + 1}, . . . , mk+1 = max {nk+1,mk + 1} , . . . .
Let us define a homotopy radius χ : N→ N∪ {0} by putting χ(n) = k, where
k = k(n) is the unique element of N∪{0} satisfyingmk ≤ n < mk+1. Thus, for
every n, mχ(n) ≤ n < mχ(n)+1. Clearly, χ is increasing and unbounded. Let
n ∈ N. If χ(n) = 0, then there is nothing to prove. Let χ(n) > 0. Then, by
construction, n ≥ n0 = max{n1, . . . , nχ(n)}. Thus, for every j = 1, . . . , χ(n),

fn
j pf(j)σ(j) ' f ′nj pf ′(j)σ(j),

which shows that the functions σ and χ realize the homotopy relation
(f, [fn

j ]) ' (f ′, [f ′nj ]).

We shall now use condition (iii) of Theorem 3.1 to define an analogue
of S∗-mapping of inverse sequences in any category C. The conditions that
the index function has to be increasing and that the corresponding rectangles
commute will be relaxed in the usual way.

Definition 3.3. Let C be a category, and let X = (Xi, pii′ ) and Y =
(Yj , qjj′ ) be inverse sequences in C. An S∗-morphism of inverse sequences

in C, (f, fn
j ) : X → Y , consists of a function f : N → N, called the index

function, and of a set of morphisms fn
j : Xf(j) → Yj , n ∈ N, j ∈ N, in C,

such that, for every j ∈ N, there exists i ∈ N, i > f(j), f (j + 1), and there
exists n ∈ N so that, for every n′ > n,

fn′

j pf(j)i = qjj+1f
n′

j+1pf(j+1)i.

If the index function f is increasing and, for every j ∈ N, i = f(j + 1),
then (f, fn

j ) is said to be a simple S∗-morphism. If, in addition, f = 1N,
then (1N, f

n
j ) is said to be a level S∗-morphism. Further, an S∗-morphism

(f, fn
j ) : X → Y is said to be commutative, provided, for every j ∈ N, one

may put n = 1.

Remark 3.4. (a) One can easily verify that the analogous definition of an
“S∗-morphism” of inverse sequences by means of condition (ii) of Theorem 3.1
(i.e., . . . for every related pair j ≤ j ′ in N, there exists i ∈ N, i > f (j) , f (j ′)
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and there exists n ∈ N such that, for every n′ ≥ n, . . . ) yields the same
notion.

(b) The additional condition for a simple S∗-morphism is a (non-essential)
property of an S∗-mapping by its definition.

(c) Notice that a commutative S∗-morphism of inverse sequences (f, fn
j ) :

X → Y yields a sequence of morphisms (fn = f, fn
j ) : X → Y , n ∈ N, in CN.

On the other side, every sequence of simple morphisms (fn, fn
j ) : X → Y ,

n ∈ N, in CN, such that fn = f for all n, determines the unique commutative
S∗-morphism of the inverse sequences (f, fn

j ) : X → Y . This fact indicates
the huge difference between the standard morphisms of inverse sequences and
the new S∗-morphisms.

Lemma 3.5. Let (f, fn
j ) : X → Y and (g, gn

k ) : Y → Z = (Zk, rkk′ ) be

S∗-morphisms of inverse sequences in C. Then (h, hn
k ), where h = fg and

hn
k = gn

kf
n
g(k), is an S∗-morphism of X to Z.

Proof. Let k ∈ N. Since (g, gn
k ) is an S∗-morphism, there exists j ∈ N,

j ≥ g(k), g(k + 1), and there exists n0 ∈ N such that, for every n′ ≥ n0,

gn′

k qg(k)j = rkk+1g
n′

k+1qg(k+1)j .

Since (f, fn
j ) is an S∗-morphism, for the indices g(k), g(k + 1), j, there exist

i1 ≥ fg(k), f(g(k) + 1), i2 ≥ fg(k + 1), f(g(k + 1) + 1), i3 ≥ f(j), f(j + 1),
and there exist n1, n2, n3 ∈ N such that, for every n′ ≥ n1, every n′ ≥ n2 and
every n′ ≥ n3, the appropriate relations for (f, fn

j ) hold respectively. Notice

that j + 1 ≥ g(k) + 1, g(k+ 1) + 1. Put i = max{i1, i2, i3} ≥ fg(k), fg(k+ 1)
and n = max{n0, n1, n2, n3}. Then, for every n′ ≥ n, one straightforwardly
establishes

gn′

k f
n′

g(k)pfg(k)i = rkk+1g
n′

k+1f
n′

g(k+1)pfg(k+1)i,

which proves that (h = fg, hn
k = gn

kf
n
g(k)) : X → Z is an S∗-morphism.

Lemma 3.5 enables us to define the composition of S∗-morphisms (f, fn
j ) :

X → Y and (g, gn
k ) : Y → Z to be (fg, gn

kf
n
g(k)) : X → Z. Since the

composition of functions and composition of morphisms in C are associative,
the composition of S∗-morphisms is associative.

Lemma 3.6. The composition of commutative S∗-morphisms of inverse
sequences in C is a commutative S∗-morphism.

Proof. It suffices to observe that in the proof of Lemma 3.5, in this case,
one may put n0 = n1 = n2 = n3 = 1. The conclusion follows.

Given an inverse sequence X = (Xi, pii′) in C, let (1N, 1
n
Xi

) be defined by
the identity function 1N on N and by the identity morphisms 1Xi

: Xi → Xi

in C, i ∈ N, i.e., 1n
Xi

= 1Xi
for every n ∈ N. Then (1N, 1

n
Xi

) : X → X is
an S∗-morphism (commutative and leveled). One readily sees that, for every
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(f, fn
j ) : X → Y and every (g, gn

i ) : Z → X, (f, fn
j )(1N, 1

n
Xi

) = (f, fn
j ) and

(1N, 1
n
Xi

)(g, gn
i ) = (g, gn

i ) hold. Thus, (1N, 1
n
Xi

) may be called the identity
S∗-morphism on X.

As a summary, for every category C, there exists a category, denoted by
(CN)∗, consisting of the object class Ob(CN)∗ = ObCN and of the morphism
class Mor(CN)∗ of all the sets (CN)∗(X,Y ) of all S∗-morphisms (f, fn

j ) of
X to Y , endowed with the composition and identities described above. By
Lemma 3.6, there exists a subcategory (CN)∗ω of (CN)∗ with the same object
class and with the morphism class Mor(CN)∗ω consisting of all commutative
S∗-morphisms of inverse sequences in C.

Remark 3.7. Let (f, fj) be a morphism in CN. For every n ∈ N, put
fn = f and fn

j = fj for all j ∈ N. Consider all such sequences (fn, fn
j )n∈N

to be new morphisms, and define the new composition coordinatewise. Then,
clearly, the new category with the same object class Ob(CN) is isomorphic to
CN. On the other hand, it is obvious that the new category is a subcategory
of (CN)∗ω. Consequently, the category CN may be considered as a subcategory
of (CN)∗ in a way that the morphism sets are significantly enriched.

We shall now use Theorem 3.2 to define an equivalence relation on a set
(CN)∗(X ,Y ).

Definition 3.8. An S∗-morphism (f, fn
j ) : X → Y of inverse sequences

in C is said to be equivalent to an S∗-morphism (f ′, f ′nj ) : X → Y , denoted

by (f, fn
j ) ∼ (f ′, f ′nj ), provided every j ∈ N admits i ∈ N, i > f(j), f ′(j), and

n ∈ N, such that, for every n′ > n,

fn′

j pf(j)i = f ′n
′

j pf ′(j)i.

Lemma 3.9. The relation ∼ is an equivalence relation on each set
(CN)∗(X ,Y ). The equivalence class [(f, fn

j )] of an S∗-morphism (f, fn
j ) :

X → Y is briefly denoted by f
∗.

Proof. The relation ∼ is obviously reflexive and symmetric. To prove
transitivity, one should take, for given j ∈ N, the maximums of pairs of
indices {i1, i2} and {n1, n2}, which exist by (f, fn

j ) ∼ (f ′, f ′nj ) (i1 and n1)

and (f ′, f ′nj ) ∼ (f ′′, f ′′nj ) (i2 and n2).

Lemma 3.10. Let (f, fn
j ), (f ′, f ′nj ) : X → Y and (g, gn

k ), (g′, g′nk ) : Y → Z

be S∗-morphisms in (CN)∗. If (f, fn
j ) ∼ (f ′, f ′nj ) and (g, gn

k ) ∼ (g′, g′nk ), then
(g, gn

k )(f, fn
j ) ∼ (g′, g′nk )(f ′, f ′nj ).

Proof. According to Lemma 3.9 (transitivity), it suffices to prove that
(g, gn

k )(f, fn
j ) ∼ (g, gn

k )(f ′, f ′nj ) and (g, gn
k )(f, fn

j ) ∼ (g′, g′nk )(f, fn
j ). Given

k ∈ N, choose i ∈ N, i ≥ fg(k), f ′g(k), and n ∈ N, by (f, fn
j ) ∼ (f ′, f ′nj ) for

j = g(k). Then, for every n′ ≥ n,

gn′

k f
n′

g(k)pfg(k)i = gn′

k f
′n′

g(k)pf ′g(k)i.
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Thus, (g, gn
k )(f, fn

j ) ∼ (g, gn
k )(f ′, f ′nj ). Further, if (g, gn

k ) ∼ (g′, g′nk ), then, for

given k ∈ N, there exist j ≥ g(k), g′(k) and n1 such that

gn′

k qg(k)j = g′n
′

k qg′(k)j ,

whenever n′ ≥ n1. Since (f, fn
j ) is an S∗-morphism, there exist

i ≥ max{fg(k), f(g(k) + 1), fg′(k), f(g′(k) + 1), f(j), f(j + 1)}
and n2 large enough, such that, for every n′ ≥ n2, the n′-coordinate of (f, fn

j )
commutes at the indices g(k), g′(k) and j with “the tail” at i. Thus,

fn′

j1 pf(j1)i = qj1j2f
n′

j2 pf(j2)i,

where j1 = min{g(k), g′(k)} and j2 = max{g(k), g′(k)}. Consequently, for
every n′ ≥ n = max{n1, n2},

gn′

k f
n′

g(k)pfg(k)i = g′n
′

k fn′

g′(k)pfg′(k)i.

Therefore, (g, gn
k )(f, fn

j ) ∼ (g′, g′nk )(f, fn
j ).

By Lemmata 3.9 and 3.10, one may compose the equivalence classes of
S∗-morphisms of inverse squences by putting g∗f∗ = h∗ ≡ [(h, hn

k )], where
(h, hn

k ) = (g, gn
k )(f, fn

j ) = (fg, gn
kf

n
g(k)). The corresponding quotient category(

CN
)∗
/∼ is denoted by tow∗-C. There exists a subcategory tow∗ω-C ⊆ tow∗-

C determined by all equivalence classes having commutative representatives.
Clearly, tow∗ω-C is isomorphic to the quotient category

(
CN
)∗
ω
/∼. According

to Remark 3.7, one may consider tow-C = (CN)/ ∼ as a subcategory of tow∗ω-C
and, consequently, as a subcategory of tow∗-C. Namely, by Theorem 3.2, the
equivalence relations ∼ in CN and in (CN)∗ω are of the same kind. (See also
Proposition 3.13 below.)

Proposition 3.11. Every morphism f
∗ = [(f, fn

j )] : X → Y in tow∗-C
admits a simple representative (f ′, f ′nj ). Moreover, one can achieve the index

function f ′ to be strictly increasing.

Proof. Let (f, fn
j ) be any representative of f∗. Then, for every j ∈ N,

there exists i ≡ ij ∈ N, i > f (j) , f (j + 1), and there exists n ≡ nj ∈ N so
that, for every n′ > n,

fn′

j pf(j)i = qjj+1f
n′

j+1pf(j+1)i.

Let us define a function f ′ : N→ N by induction as follows:

f ′ (1) = f (1) ,

f ′ (2) = max {i1, f ′ (1) + 1} , . . . ,
f ′ (j + 1) = max {ij , f ′ (j) + 1} , . . .



THE COARSE SHAPE 159

Clearly, f ′ is strictly increasing and f ′ ≥ f . Further, for every n ∈ N and
every j ∈ N, let f ′nj = fn

j pf(j)f ′(j) : Xf ′(j) → Yj . Now, given any j ∈ N, put
i = f ′(j + 1) and n = nj . Then, for every n′ ≥ n, the above relation implies

f ′n
′

j pf ′(j)f ′(j+1) = qjj+1f
′n′

j+1.

Thus, (f ′, f ′nj ) : X → Y is a simple S∗-morphism. Furthermore, given any
j ∈ N, put i = f ′(j) and n = 1. Then, for every n′ > 1,

fn′

j pf(j)i = fn′

j pf(j)f ′(j) = f ′n
′

j = f ′n
′

j pf ′(j)f ′(j) = f ′n
′

j pf ′(j)i,

which proves that (f, fn
j ) ∼ (f ′, f ′nj ).

Let us observe that in the case C = HcM , Proposition 3.11 yields the
following corollary:

Corollary 3.12. The category tow∗-HcM is isomorphic to the category
S∗. An isomorphism tow∗-HcM → S∗ is given by the identity on the object
class and by [(f, [fn

j ])] 7→ [(f ′, [f ′nj ])], where (f ′, [f ′nj ]) is a simple representa-

tive of [(f, [fn
j ])].

Let us define a functor J ≡ JC : tow-C → tow∗-C, which keeps the objects
fixed, by putting J(f ) = f∗, where f = [(f, fj)], f∗ = [(f, fn

j )] and (f, fn
j )

is induced by (f, fj) in the following way: The index function f is the same,
while, for every n ∈ N, fn

j = fj for all j ∈ N. It is readily seen that J(f)
is well defined and that J is indeed a functor. Notice that every induced
(f, fn

j = fj) is a commutative S∗-morphism of inverse sequences. Hence, J is
actually a functor of tow-C to tow∗ω-C ⊆ tow∗-C.

Proposition 3.13. Functor J is faithful. Therefore, one may consider
tow-C to be a subcategory of tow∗ω-C and, consequently, a subcategory of tow∗-
C.

Proof. Let f ,f ′ ∈ tow-C(X ,Y ), f = [(f, fj)],f
′ = [(f ′, f ′j)], be given

such that J(f ) = J(f ′). Then, (f, fn
j ) ∼ (f ′, f ′nj ), where (f, fn

j ), (f ′, f ′nj )

are induced by (f, fj), (f ′, f ′j) respectively. Thus, for every j ∈ N, there exist
i, n ∈ N such that, for every n′ ≥ n,

fn′

j pf(j)i = f ′n
′

j pf ′(j)i.

This means
fjpf(j)i = f ′jpf ′(j)i,

i.e., (f, fj) ∼ (f ′, f ′j). Therefore, f = f ′.

Remark 3.14. Given any category C, the category tow∗-C is constructed
as a quotient category (CN)∗/ ∼ on the inverse sequences in C. It is a full
analogue of the known category S∗ on compact metric inverse sequences (C =
HcM). According to Remark 3.4(a), one can construct in the same manner,
for any directed preordered set (Λ,≤), the appropriate category (CΛ)∗ as well
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as the corresponding quotient category (CΛ)∗/ ∼. Moreover, there also exists
a faithful functor of (CΛ)/ ∼ to (CΛ)∗ω/ ∼ ⊆ (CΛ)∗/ ∼. We shall not do this
explicitly because we may even abandon the fixed index set and work in the
most general setting of arbitrary inverse systems, i.e., in any inv-category.

3.2. The category pro∗-C. The next definition is based on condition (ii) of
Theorem 3.1 (compare Definition 3.3 and Remark 3.4(a)).

Definition 3.15. Let C be a category and let X = (Xλ, pλλ′ ,Λ) and
Y = (Yµ, qµµ′ ,M) be inverse systems in C. An S∗-morphism of inverse

systems, (f, fn
µ ) : X → Y , consists of a function f : M → Λ, called the

index function, and of a set of morphisms fn
µ : Xf(µ) → Yµ, n ∈ N, µ ∈M,

in C, such that, for every related pair µ ≤ µ′ in M , there exists λ ∈ Λ,
λ > f(µ), f (µ′), and there exists n ∈ N so that, for every n′ > n,

fn′

µ pf(µ)λ = qµµ′f
n′

µ′ pf(µ′)λ.

If the index function f is increasing and, for every pair µ ≤ µ′, one may
put λ = f(µ′), then (f, fn

µ ) is said to be a simple S∗-morphism. If, in
addition, M = Λ and f = 1Λ, then (1Λ, f

n
λ ) is said to be a level S∗-morphism.

Further, an S∗-morphism of inverse systems (f, fn
µ ) : X → Y is said to be

commutative, provided, for every pair µ ≤ µ′, one may put n = 1.

Remark 3.16. Similarly to Remark 3.4(c), a commutative S∗-morphism
of inverse systems (f, fn

µ ) : X → Y yields a sequence of morphisms (fn =
f, fn

µ ) : X → Y , n ∈ N, in inv-C. On the other side, every sequence of
simple morphisms (fn, fn

µ ) : X → Y , n ∈ N, in inv-C, such that fn = f
for all n, determines the unique commutative S∗-morphism of the inverse
systems (f, fn

µ ) : X → Y . This indicates the significant difference between
the standard morphisms of inverse systems and the new S∗-morphisms.

Lemma 3.17. Let
(
f, fn

µ

)
: X → Y and (g, gn

ν ) : Y → Z = (Zν , rνν′ , N)
be S∗-morphisms of inverse systems. Then (h, hn

ν ) , where h = fg and hn
ν =

gn
ν f

n
g(ν), n ∈ N, ν ∈ N , is an S∗-morphism of X to Z.

Proof. Let ν, ν′ ∈ N , ν ≤ ν′, be given. Since (g, gn
ν ) is an S∗-morphism,

there exists µ ∈ M , µ ≥ g(ν), g(ν ′), and there exists n0 ∈ N such that, for
every n′ ≥ n0,

gn′

ν qg(ν)µ = rνν′g
n′

ν′ qg(ν′)µ.

Since
(
f, fn

µ

)
is an S∗-morphism, for the pair g(ν) ≤ µ, there exist λ1 ≥

fg(ν), f(µ) and n1 ∈ N such that, for every n′ ≥ n1,

fn′

g(ν)pfg(ν)λ1
= qg(ν)µf

n′

µ pf(µ)λ1
.

Further, for the pair g(ν ′) ≤ µ, there exist λ2 ≥ fg(ν′), f(µ) and n2 ∈ N such
that, for every n′ ≥ n2,

fn′

g(ν′′)pfg(ν′)λ2
= qg(ν′)µf

n′

µ pf(µ)λ2
.
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Since Λ is directed, there exists λ ∈ Λ, λ ≥ λ1, λ2. Put n = max{n0, n1, n2}.
Then, for every n′ ≥ n, one straightforwardly establishes

gn′

ν f
n′

g(ν)pfg(ν)λ = rνν′g
n′

ν′ f
n′

g(ν′)pfg(ν′)λ,

which proves that (h = fg, hn
ν = gn

ν f
n
g(ν)) : X → Z is an S∗-morphism.

Lemma 3.17 enables us to define the composition of S∗-morphisms of in-
verse systems: If (f, fn

µ ) : X → Y and (g, gn
ν ) : Y → Z, then (g, gn

ν )(f, fn
µ ) =

(h, hn
ν ) : X → Z, where h = fg i hn

ν = gn
ν f

n
g(ν). Clearly, this composition is

associative.

Lemma 3.18. The composition of commutative S∗-morphisms of inverse
systems in C is a commutative S∗-morphism.

Proof. It suffices to observe that in the proof of Lemma 3.17, in this
case, one may put n0 = n1 = n2 = 1. The conclusion follows.

Given an inverse system X = (Xλ, pλλ′ ,Λ) in C, let
(
1Λ, 1

n
Xλ

)
, consists

of the identity function 1Λ and of the identity morphisms 1n
Xλ

= 1Xλ
in

C, for every n ∈ N and every λ ∈ Λ. Then (1Λ, 1
n
Xλ

) : X → X is an
S∗-morphism (commutative and leveled). One readily sees that, for every
(f, fn

µ ) : X → Y and every (g, gn
λ) : Z → X, (f, fn

µ )(1Λ, 1
n
Xλ

) = (f, fn
µ ) and

(1Λ, 1
n
Xλ

)(g, gn
λ) = (g, gn

λ) hold. Thus, (1Λ, 1
n
Xλ

) may be called the identity
S∗-morphism on X.

By summarizing, for every category C, there exists a category, denoted
by (inv-C)∗, consisting of the object class Ob(inv-C)∗ = Ob(inv-C) and of
the morphism class Mor(inv-C)∗ of all the sets (inv-C)∗(X ,Y ) of all S∗-
morphisms (f, fn

µ ) of X to Y , endowed with the composition and identities
described above. By Lemma 3.18, there exists a subcategory (inv-C)∗ω of
(inv-C)∗ with the same object class and with the morphism class Mor(inv-
C)∗ω consisting of all commutative S∗-morphisms of inverse systems in C.

Similarly to Definition 3.8, we shall use Theorem 3.2 to define an equiv-
alence relation on each set (inv-C)∗(X,Y ).

Definition 3.19. An S∗-morphism (f, fn
µ ) : X → Y of inverse systems

in C is said to be equivalent to an S∗-morphism (f ′, f ′nµ ) : X → Y , denoted
by (f, fn

µ ) ∼ (f ′, f ′nµ ), provided every µ ∈ M admits λ ∈ Λ, λ > f(µ), f ′(µ),
and n ∈ N, such that, for every n′ > n,

fn′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ.

Lemma 3.20. The relation ∼ is an equivalence relation on each set (inv-
C)∗(X,Y ). The equivalence class [(f, fn

µ )] of an S∗-morphism (f, fn
µ ) : X →

Y is briefly denoted by f
∗.

Proof. The relation ∼ is obviously reflexive and symmetric. To prove
transitivity, one should take, for given µ ∈ M , the maximums of pairs of
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indices {λ1, λ2} and {n1, n2}, which exist by (f, fn
µ ) ∼ (f ′, f ′nµ ) (λ1 and n1)

and (f ′, f ′nµ ) ∼ (f ′′, f ′′nµ ) (λ2 and n2).

Lemma 3.21. Let (f, fn
µ ), (f ′, f ′nµ ) : X → Y and (g, gn

ν ), (g′, g′nν ) : Y → Z

be S∗-morphisms of inverse systems in C. If (f, fn
µ ) ∼ (f ′, f ′nµ ) and (g, gn

ν ) ∼
(g′, g′nν ), then (g, gn

ν )(f, fn
µ ) ∼ (g′, g′nν )(f ′, f ′nµ ).

Proof. According to Lemma 3.20 (transitivity), it suffices to prove that
(g, gn

ν )(f, fn
µ ) ∼ (g, gn

ν )(f ′, f ′nµ ) and (g, gn
ν )(f, fn

µ ) ∼ (g′, g′nν )(f, fn
µ ). Given

ν ∈ N , choose λ ∈ Λ, λ ≥ fg(ν), f ′g(ν), and n ∈ N, by (f, fn
µ ) ∼ (f ′, f ′nµ ) for

µ = g(ν). Then, for every n′ ≥ n,

gn′

ν f
n′

g(ν)pfg(ν)λ = gn′

ν f
′n′

g(ν)pf ′g(ν)λ.

Thus, (g, gn
ν )(f, fn

µ ) ∼ (g, gn
ν )(f ′, f ′nµ ). Further, if (g, gn

ν ) ∼ (g′, g′nν ), then, for
given ν ∈ N , there exist µ ≥ g(ν), g′(ν) and n1 such that

gn′

ν qg(ν)µ = g′n
′

ν qg′(ν)µ,

whenever n′ ≥ n1. Since (f, fn
µ ) is an S∗-morphism, there exist λ ≥

max{fg(ν), fg′(ν), f(µ)} and n2 large enough, such that, for every n′ ≥ n2,
the n′-coordinate of (f, fn

µ ) commutes at the pairs g(ν) ≤ µ and g′(ν) ≤ µ
with “the tail” at λ. Thus,

fn′

µ1
pf(µ1)λ = qµ1µ2f

n′

µ2
pf(µ2)λ,

where µ1 = min{g(ν), g′(ν)} and µ2 = max{g(ν), g′(ν)}. Consequently, for
every n′ ≥ n = max{n1, n2},

gn′

ν f
n′

g(ν)pfg(ν)λ = g′n
′

ν fn′

g′(ν)pfg′(ν)λ.

Therefore, (g, gn
ν )(f, fn

µ ) ∼ (g′, g′nν )(f, fn
µ ).

By Lemmata 3.20 and 3.21, one may compose the equivalence classes of
S∗-morphisms of inverse systems by putting g∗f∗ = h∗ ≡ [(h, hn

ν )], where
(h, hn

ν ) = (g, gn
ν )(f, fn

µ ) = (fg, gn
ν f

n
g(ν)). The corresponding quotient category

(inv-C)∗/∼ is denoted by pro∗-C. There exists a subcategory pro∗ω-C ⊆ pro∗-
C determined by all equivalence classes having commutative representatives.
Clearly, pro∗ω-C is isomorphic to the quotient category (inv-C)∗ω/∼. Similarly
to a tow-category, one may consider pro-C = (inv-C)/ ∼ as a subcategory of
pro∗ω-C and, consequently, as a subcategory of pro∗-C (see also Proposition
3.24 below). First, recall the well known lemma (see [15, Lemma I.1.1]):

Lemma 3.22. Let (Λ,≤) be a directed set and let (M,≤) be a cofinite
directed set. Then every function f : M → Λ admits an increasing function
f ′ : M → Λ such that f ≤ f ′.

Lemma 3.23. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse
systems in C with M cofinite. Then every morphism f ∗ = [(f, fn

µ )] : X → Y

in pro∗-C admits a simple representative (f ′, f ′nµ ) : X → Y .
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Proof. Let µ ∈ M . If µ has no predecessors, choose any λ ∈ Λ, λ ≥
f(µ), and put ϕ(µ) = λ. If µ is not an initial element of M , let µ1, . . . , µm ∈
M , m ∈ N, be all the predecessors of µ (M is cofinite). Since (f, fn

µ ) is an S∗-
morphism, for every i = 1, . . . ,m and every pair µi ≤ µ, there exists λi ∈ Λ,
λi ≥ f(µi), f(µ), and there exists ni ∈ N, such that, for every n′ ≥ ni, the
appropriate condition holds. Choose any λ ∈ Λ, λ ≥ λi for all i = 1, . . . ,m
(Λ is directed), and put ϕ(µ) = λ. This defines a function ϕ : M → Λ.
Notice that f ≤ ϕ. By Lemma 3.22, there exists an increasing function
f ′ : M → Λ such that ϕ ≤ f ′. Hence, f ≤ f ′. Now, for every µ ∈ M , put
f ′nµ = fn

µ pf(µ)f ′(µ). One readily verifies that (f ′, f ′nµ ) : X → Y is a simple
S∗-morphism and that (f ′, f ′nµ ) ∼ (f, fn

µ ).

Let us define a functor J ≡ JC : pro-C → pro∗-C (an extension of the
already defined functor J : tow-C → tow∗-C). Put J (X) = X, for every
inverse system X in C. If f ∈ pro-C(X,Y ) and if (f, fµ) is any representative
of f , put

J (f) = f∗ = [(f, fn
µ )] ∈ pro∗-C(X,Y ),

where
(
f, fn

µ

)
is induced by (f, fµ), i.e., for every n ∈ N, fn

µ = fµ for all
µ ∈ M . One straightforwardly verifies that J (f) is well defined and that J
is indeed a functor. Notice that every induced S∗-morphism is commutative.
Therefore, J is a functor of pro-C to the subcategory pro∗ω-C ⊆ pro∗-C.

Proposition 3.24. The functor J : pro-C → pro∗ω-C ⊆ pro∗-C is faithful.

Proof. Let f ∗ = J (f ) = J(f ′) = f ′∗. Let (f, fµ) and
(
f ′, f ′µ

)
be

any representatives of f and f ′ respectively. By definition of the functor J ,
f∗ = [(f, fn

µ = fµ)] and f ′∗ = [(f ′, f ′nµ = f ′µ)]. Since (f, fn
µ ) ∼ (f ′, f ′nµ ), for

every µ ∈M , there exist λ ≥ f(µ), f ′(µ) and n such that, for every n′ ≥ n,

fn′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ.

This means

fµpf(µ)λ = f ′µpf ′(µ)λ.

Therefore, (f, fµ) ∼
(
f ′, f ′µ

)
, i.e., f = f ′.

Remark 3.25. The functor J is not full. For instance, let us consider
the restriction pro-C (X,T ) → pro∗ω-C (X,T ), where T = (T0 ≡ T ) is a
rudimentary inverse system. Let f ∈ pro-C (X,T ). Then every representative
(f, f0) of f is uniquely determined by λ0 ∈ Λ (f(0) = λ0) and by a morphism
f0 ≡ fλ0 ∈ C(Xλ, T ). However, it is not the case for f ∗ ∈ pro∗ω-C (X,T ).
Indeed, if (f, fn

0 ) is a representative of f∗, then f(0) = λ0 ∈ Λ, while (fn
0 ≡

fn
λ0

)n∈N is a sequence of morphisms fn
λ0
∈ C(Xλ0 , T ). Notice that (f, fn

0 ) ∼
(f ′, f ′n0 ) if and only if

(∃λ > λ0, λ
′
0) (∃n) (∀n′ > n) fn′

0 pλ0λ = f ′n
′

0 pλ′0λ.
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By the well known “Mardešić trick”, every inverse system X in C is
isomorphic (in pro-C) to a cofinite inverse system X ′. If f : X → X ′ is an
isomorphism in pro-C, then J (f) : X → X ′ is an isomorphism in pro∗-C.
Therefore, the next corollary holds.

Corollary 3.26. Every inverse system X in C is isomorphic in pro∗-C
to a cofinite inverse system X ′.

A morphism f∗ : X → Y in pro∗-C does not admit, in general, a level
representative. However, the following “reindexing theorem” will help to over-
come some technical difficulties concerning this fact.

Theorem 3.27. Let f ∗ ∈ pro∗-C(X,Y ). Then there exist inverse sys-
tems X ′ and Y ′ in C having the same cofinite index set (N,≤), there exists
a morphism f

′∗ : X ′ → Y ′ having a level representative (1N , f
′n
ν ) and there

exist isomorphisms i∗ : X → X ′ and j∗ : Y → Y ′ in pro∗-C, such that the
following diagram in pro∗-C commutes:

X
f∗→ Y

i∗ ↓ ↓ j∗

X ′
f ′∗→ Y ′

Proof. Let f
∗ ∈ pro∗-C(X,Y ). By Corollary 3.26, there exist cofi-

nite inverse systems X̃ = (X̃α, p̃αα′ , A) and Ỹ = (Ỹβ , q̃ββ′ , B), and there

exist isomorphisms u∗ : X → X̃ and v∗ : Y → Ỹ in pro∗-C. Let

f̃
∗

= v∗f∗(u∗)−1 : X̃ → Ỹ . By Lemma 3.23, there exists a simple rep-

resentative (w,wn
β ) of f̃

∗
. Let

N = {ν ≡ (α, β) | α ∈ A, β ∈ B,w(β) ≤ α} ⊆ A×B,

and define (N,≤) coordinatewise, i.e., ν = (α, β) ≤ (α′, β′) = ν′ if and only
if α ≤ α′ in A and β ≤ β′ in B. Clearly, N is preordered. Let any ν =
(α, β) , ν′ = (α′, β′) ∈ N be given. Since B is directed, there exists β0 ≥ β, β′.
Since A is directed, there exists α0 ≥ α, α′, w(β0). Then (α0, β0) ≡ ν0 ∈ N
and ν0 ≥ ν, ν′. Thus, N is directed. Further, since A and B are cofinite
and since N ⊆ A × B is (pre)ordered coordinatewise, the set N is cofinite
too. Let us now construct desired inverse systems X ′ = (X ′ν , p

′
νν′ , N) and

Y ′ = (Y ′ν , q
′
νν′ , N). Given ν = (α, β) ∈ N , put X ′ν = Xλ and Y ′ν = Yµ;

for every related pair ν = (α, β) ≤ (α′, β′) = ν′ in N , put p′νν′ = p̃αα′ and
q′νν′ = q̃ββ′ . Now, for every ν = (α, β) ∈ N , put f ′nν = wn

β p̃w(β)α : X ′ν → Y ′ν .

Then (1N , f
′n
ν ) : X ′ → Y ′ is a simple S∗-morphism. Indeed, if ν ≤ ν′, then

β ≤ β′, Since (w,wn
β ) is simple, there exists n ∈ N such that, for every n′ ≥ n,

wn′

β p̃w(β)w(β′) = q̃ββ′w
n′

β′ .
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Since α ≥ w(β), α′ ≥ w(β′), w(β′) ≥ w(β) and α′ ≥ α, it implies

f ′n
′

ν p′νν′ = wn′

β p̃w(β)αp̃αα′ = wn′

β p̃w(β)w(β′)p̃w(β′)α′

= q̃ββ′w
n′

β′ p̃w(β′)α′ = q′νν′f
′n′

ν′ .

Let s : N → Λ be defined by putting s (ν) = α, where ν = (α, β), and let,

for every n ∈ N, sn
ν : X̃α → X ′ν = X̃α be the identity 1X̃α

in C for each

ν ∈ N . In the same way, let t : N → M be defined by putting t (ν) = β,

and let, for every n, tnν : Ỹβ → Y ′ν = Ỹβ be the identity 1Ỹβ
for each ν. It is

readily seen that s∗ = [(s, sn
ν )] : X̃ → X ′ and t∗ = [(t, tnν )] : Ỹ → Y ′ are

simple commutative morphisms. Even more, they are induced by morphisms
(s, sν = 1X̃α

) and (t, tν = 1Ỹβ
) of inv-C respectively. Notice that, in pro-C,

s = [(s, sn
ν )] : X̃ → X ′ and t = [(t, tnν )] : Ỹ → Y ′ are isomorphisms. Since

s∗ = J(s) and t∗ = J(t), we infer that s∗ and t∗ are isomorphisms in pro∗-C.
Moreover, for every ν = (α, β) ∈ N and every n ∈ N,

tnνw
n
t(ν)p̃wt(ν)α = wn

β p̃w(β)α = f ′nν = f ′nν sn
ν ,

which implies (t, tnν )(w,wn
β ) ∼ (1N , f

′n
ν )(s, sn

ν ). Therefore, t∗f̃
∗

= f
′∗

s∗. Fi-

nally, put i∗ ≡ s∗u∗ : X → X ′ and j∗ ≡ t∗v∗ : Y → Y ′, which are
isomorphisms in pro∗-C. Then

j∗f∗ = t∗v∗f∗ = t∗f̃
∗
u∗ = f ′∗s∗u∗ = f ′∗i∗.

4. The coarse shape category

Let D be a full (not essential, but a convenient condition) and dense
subcategory of C. Let p : X → X and p′ : X → X ′ be D-expansions of the
same object X of C, and let q : Y → Y and q′ : Y → Y ′ be D-expansions of
the same object Y of C. Then there exist two natural (unique) isomorphisms
i : X → X ′ and j : Y → Y ′ in pro-D. Consequently, i∗ ≡ J(i) : X → X ′

and j
∗ ≡ J(j) : Y → Y ′ are isomorphisms in pro∗-D. A morphism f

∗ : X →
Y is said to be pro∗-D equivalent to a morphism f ′∗ : X ′ → Y ′, denoted by
f∗ ∼ f ′∗, provided the following diagram in pro∗-D commutes:

X
i∗−→ X ′

f∗ ↓ ↓ f ′∗

Y
j∗−→ Y ′

.

According to the analogous facts in pro-D, and since J is a functor, it defines
an equivalence relation on the appropriate subclass of Mor(pro∗-D), such
that f∗ ∼ f ′∗ and g∗ ∼ g′∗ imply g∗f∗ ∼ g′∗f ′∗ whenever it is defined. The
equivalence class of f ∗ is denoted by 〈f∗〉. Further, given p, p′, q, q′ and f∗,
there exists a unique f ′∗ (= j∗f∗(i∗)−1) such that f ∗ ∼ f ′∗.
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We are now to define the (abstract) coarse shape category Sh∗(C,D) for

(C,D) as follows. The objects of Sh∗(C,D) are all the objects of C. A morphism

F ∗ ∈ Sh∗(C,D)(X,Y ) is the pro∗-D equivalence class 〈f ∗〉 of a morphism f
∗ :

X → Y , with respect to any choice of a pair of D-expansions p : X → X,
q : Y → Y . In other words, a coarse shape morphism F ∗ : X → Y is given
by a diagram

X
p←− X

f∗ ↓ � F∗

Y
q←− Y

The composition of F ∗ : X → Y , F ∗ = 〈f∗〉 and a G∗ : Y → Z, G∗ = 〈g∗〉,
is defined by the representatives, i.e., G∗F ∗ : X → Z, G∗F ∗ = 〈g∗f∗〉. The
identity coarse shape morphism on an object X , 1∗X : X → X , is the pro∗-D
equivalence class 〈1∗X〉 of the identity morphism 1∗X in pro∗-D. Since

Sh∗(C,D)(X,Y ) ≈ pro∗-D(X ,Y )

is a set, the coarse shape category Sh∗(C,D) is well defined. One may say that

pro∗-D is the realizing category for the coarse shape category Sh∗(C,D).

For every f : X → Y in C and every pair of D-expansions p : X → X,
q : Y → Y , there exists f

∗ : X → Y in pro∗-D, such that the following
diagram in pro∗-C commutes:

X
p←− X

f∗ ↓ ↓ f

Y
q←− Y

.

(Hereby, we consider C ⊆ pro-C to be subcategories of pro∗-C!) The same f
and another pair of D-expansions p′ : X →X ′, q′ : Y → Y ′ yield f ′∗ : X ′ →
Y ′ in pro∗-D. Then, however, f∗ ∼ f ′∗ in pro∗-D must hold. Thus, every
morphism f ∈ C(X,Y ) yields a pro∗-D equivalence class 〈f∗〉, i.e., a coarse
shape morphism F ∗ ∈ Sh∗(C,D)(X,Y ). If one defines S∗(X) = X , X ∈ ObC,
and S∗(f) = F ∗ = 〈f∗〉, f ∈MorC, then

S∗(C,D) : C → Sh∗(C,D)

becomes a functor, called the abstract coarse shape functor. Comparing to
the abstract shape functor, we shall show that the restriction of S∗ to D
into the full subcategory of Sh∗(C,D), determined by ObD, is not a category

isomorphism (Example 7.4). Nevertheless, we shall prove that P and Q are
isomorphic objects of D if and only if they are isomorphic in Sh∗(C,D), i.e.,

they are of the same abstract coarse shape (Claim 3 below). Thus, clearly,
the abstract coarse shape type classification on D coincides with the abstract
shape type classification. Further, recall that for every X ∈ ObC and every
Q ∈ ObD, the abstract shape functor induces a bijection

S|· : C(X,Q)→ Sh(C,D)(X,Q).
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However, we shall see that, in the same circumstances, the abstract coarse
shape functor induces an injection

S∗|· : C(X,Q)→ Sh∗(C,D)(X,Q),

which, in general, is not a surjection (Example 7.4). Finally, the functor S∗(C,D)

factorizes as S∗(C,D) = J(C,D)S(C,D), where S(C,D) : C → Sh(C,D) is the abstract

shape functor, while J(C,D) : Sh(C,D) → Sh∗C,D) is induced by the “inclusion”

functor J ≡ JD : pro-D → pro∗-D. (This implies that the induced function
C(X,Q)→ Sh∗(C,D)(X,Q) is an injection.)

As in the case of the abstract shape, the most interesting example of
the above construction is C = HTop - the homotopy category of topological
spaces and D = HPol - the homotopy category of polyhedra, or D = HANR
- the homotopy category of ANR’s for metric spaces. In this case, one speaks
about the (ordinary or standard) coarse shape category

Sh∗(HTop,HPol) ≡ Sh∗(Top) ≡ Sh∗

of topological spaces and of (ordinary or standard) coarse shape functor

S∗ : HTop→ Sh∗,

which factorizes as S∗ = JS, where S : HTop→ Sh is the shape functor, and
J : Sh → Sh∗ is induced by the “inclusion” functor J ≡ pro-HPol → pro∗-
HPol. The realizing category for Sh∗ is the category pro∗-HPol (or pro∗-
HANR). The underlying theory might be called the (ordinary or standard)
coarse shape theory (for topological spaces). Clearly, on locally nice spaces
(polyhedra, CW-complexes, ANR’s, . . . ) the coarse shape type classifica-
tion coincides with the shape type classification and, consequently, with the
homotopy type classification.

Similarly to the case of the shape of compacta, let us consider the ho-
motopy (sub)category of compact metric spaces, HcM ⊆ HTop. Since
HcPol ⊆ HcM and HcANR ⊆ HcM are “sequentially” dense (and ho-
motopically equivalent) subcategories, there exist the coarse shape category
of compacta,

Sh∗(cM) ≡ Sh∗(HcM,HcPol)
∼= Sh∗(HcM,HcANR),

and the corresponding (restriction of the) coarse shape functor

S∗ : HcM → Sh∗(cM),

such that S∗ = JS, where S : HcM → Sh(cM) is the shape functor on
compacta, and J : Sh(cM)→ Sh∗(cM) is induced by the “inclusion” functor
J : tow-HcPol → tow∗-HcPol (or J : tow-HcANR → tow∗-HcANR). The
category Sh∗(cM) is a full subcategory of Sh∗. Notice that the realizing
category for Sh∗(cM) is the category tow∗-HcPol as well as the category
tow∗-HcANR.
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The category tow∗-HcANR, being isomorphic to the category S∗ re-
stricted to inverse sequences of compact ANR’s (Corollary 3.12), classifies
(by its isomorphisms) compact ANR inverse sequences strictly coarser than
the category tow-HcANR (see [22] and Corollary 5.3 below as well as [16]
and our Example 7.2).

Let D be a full and dense subcategory of C, let X ∈ ObC and let p = (pλ) :
X →X = (Xλ, pλλ′ ,Λ) be a D-expansion of X . Further, let Q ∈ ObD and let
a sequence (Φn) of morphisms Φn : X → Q, n ∈ N, in C be given. We say that
(Φn) uniformly factorizes through p provided there exists a fixed λ ∈ Λ such
that, for every n, Φn factorizes through Xλ. Such a sequence (Φn) determines
a coarse shape morphism F ∗ : X → Q. Namely, there is λ ∈ Λ such that,
for every n ∈ N, there exists a morphism fn : Xλ → Q of D (D ⊆ C is
full) satisfying Φn = fnpλ. Hence, the sequence (fn) determines a morphism
f∗ : X → Q = (Q) of pro∗-D. Since 1 : Q → Q is a D-expansion of Q,
the morphism f ∗ determines a coarse shape morphism F ∗ = 〈f∗〉 : X → Q.
We say that such F ∗ is induced by (Φn). Notice that the above construction
depends on the index λ.

Claim 1. Let X ∈ ObC, let p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) be a
D-expansion of X and let Q ∈ ObD. Then every coarse shape morphism
F ∗ : X → Q is induced by a sequence of morphisms Φn : X → Q in C, n ∈ N,
such that (Φn) uniformly factorizes through p.

Proof. Let F ∗ : X → Q be a coarse shape morphism. For D-expansions
p = (pλ) : X → X and 1 : Q → Q = (Q), there exists a representative
f∗ : X → Q in pro∗-D of F ∗. Consequently, there exists a sequence (fn) of
morphisms fn : Xλ → Q, n ∈ N, in D which determines f∗. Thus, by putting
Φn = fnpλ, n ∈ N, one obtains the desired sequence (Φn).

Let (Φn) and (Φ′n) uniformly factorize through the same p : X → X

(via λ and λ′ respectively). Then (Φn) and (Φ′n) is said to be almost equal
provided there exist n0 ∈ N and λ0 ≥ λ, λ′ such that, for every n ≥ n0,
fnpλλ0 = f ′npλ′λ0 . Obviously, (Φn) and (Φ′n) are almost equal if and only if
Φn = Φ′n for almost all n.

Claim 2. Let (Φn) and (Φ′n) uniformly factorize through the same p :
X → X. Let F ∗ : X → Q and F ′∗ : X → Q be induced by (Φn) and (Φ′n)
respectively. Then F ∗ = F ′∗ if and only if (Φn) and (Φ′n) are almost equal.

Proof. Let (Φn) and (Φ′n) uniformly factorize through the same p :
X → X , i.e., let there exist λ, λ′ ∈ Λ such that, for every n ∈ N, Φn = fnpλ

and Φ′n = f ′npλ′ , where fn : Xλ → Q and f ′n : Xλ′ → Q are morphisms
of D. Let F ∗ : X → Q and F ′∗ : X → Q be coarse shape morphisms
induced by (Φn) and (Φ′n) respectively. Let f∗,f ′∗ : X → Q = (P ) in
pro∗-D be representatives of F ∗, F ∗ respectively. Now, if F ∗ = F ′∗ then
f∗ = f ′∗, and f∗, f ′∗ are determined by the sequences (fn), (f ′n) respectively.
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Therefore, there exist λ0 ≥ λ, λ′ and n0 ∈ N such that, for every n ≥ n0,
fnpλλ0 = f ′npλ′λ0 . This means that (Φn) and (Φ′n) are almost equal.

Conversely, if (Φn) and (Φ′n) are almost equal, then the corresponding
sequences (fn) and (f ′n) induce the same morphism f∗ : X → Q in pro∗-D.
Thus, the sequences (Φn) and (Φ′n) induce the same coarse shape morphism
F ∗ = 〈f∗〉 = F ′∗.

Consider now the special case where X ≡ P ∈ ObD too. Then 1 : P →
P = (P ) and 1 : Q → Q = (Q) are D-expansions. Thus, every coarse shape
morphism F ∗ : P → Q is induced by a sequence of morphisms fn : P → Q in
D, n ∈ N. Furthermore, any two such sequences (fn), (f ′n) induce the same
coarse shape morphism if and only if fn = f ′n for almost all n. This implies
that there is a surjection

(C(P,Q))N → Sh∗(C,D)(P,Q)

of the set of all sequences of C-morphisms P → Q onto the set of all coarse
shape morphisms P → Q. Finally, one can readily see that if F ∗ : P → Q is
induced by (fn) and G∗ : Q → R is induced by (gn), then the composition
G∗F ∗ : P → R is induced by (gnfn).

Claim 3. For every pair P,Q ∈ ObD, the following assertions are equiv-
alent:

(i) P and Q are isomorphic objects in D;
(ii) P and Q have the same abstract shape;
(iii) P and Q have the same abstract coarse shape.

Proof. The equivalence (i)⇔ (ii) is the well known fact. The implication
(ii) ⇒ (iii) follows by the functor J(C,D) : Sh(C,D) → Sh∗(C,D). Let P,Q ∈
ObD have the same coarse shape. Then there exists a pair of coarse shape
isomorphisms F ∗ : P → Q, G∗ : Q→ P such thatG∗F ∗ = 1∗P and F ∗G∗ = 1∗Q
in Sh∗(C,D). By the above consideration, there exist sequences (fn) and (gn)

of morphisms fn : P → Q and gn : Q → P in D, n ∈ N, which induce F ∗

and G∗ respectively. Furthermore, the sequences (gnfn) and (fngn) induce
1∗P and 1∗Q. Since the constant sequences (1P ) and (1Q) also induce 1∗P and
1∗Q respectively, Claim 2 implies that gnfn = 1P and fngn = 1Q for almost

all n ∈ N. Consequently, P and Q are isomorphic objects of D, and thus, (iii)
⇒ (i).

5. An application

In [3], K. Borsuk had defined the relation of quasi-equivalence
q' of com-

pacta in terms of sequences of fundamental sequences between compacta lying
in AR-spaces. In order to characterize this relation in a category framework,
the second named author adapted in [20] the original definitions in terms of
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the Mardešić-Segal shape theory [15]. Let us briefly sketch the indispensable
definitions and facts from [20].

Let f = (f, [fj ]),f
′ = (f ′, [f ′j ]) ∈ tow-HcM(X,Y ) and let s ∈ N. Then

f is said to be s-homotopic to f ′, denoted by f 's f ′, provided

(∀j ∈ [1, s]N)(∃i = i(j) ≥ f(j), f ′(j)) [fj ][pf(j)i] = [f ′j ][pf ′(j)i].

Observe that f ' f ′ if and only if f 's f ′ for every s ∈ N, where ' is
the usual homotopy (equivalence) relation of morphisms of inverse sequences.
Then,

(i) for every s ∈ N, the relation 's is an equivalence relation on each set
tow-HcM(X,Y );

(ii) (∀s′ ≤ s) (f 's f ′ ⇒ f 's′ f ′).

Moreover, for every s ∈ N, the relation 's is compatible with respect to the
composition to the right, i.e.,

(∀h : W →X)(f 's f
′ ⇒ fh 's f

′
h).

On the other side, if g : Y → Z, then f 's f ′ implies gf 's′ gf ′ whenever
g[[1, s′]N] ⊆ [1, s]N.

Let X and Y be compact ANR inverse sequences. Then X is said to be

quasi-equivalent to Y , denoted by X
q' Y , provided for every n ∈ N there

exist morphisms f : X → Y and g : Y → X such that gf 'n 1X and
fg 'n 1Y .

This relation
q' is an isomorphism invariant relation. By [20, Theorem

3.1] if X, Y are compact metrizable spaces and if X, Y are arbitrary with
them associated compact ANR inverse sequences respectively (via the inverse
limits), then

X
q' Y ⇔X

q' Y .

Consequently, a compactum X is quasi-equivalent to a compactum Y (in the

sense of Borsuk),X
q' Y , if and only if, for every n ∈ N, there exist morphisms

fn : X → Y and gn : Y → X such that gnfn 'n 1X and fngn 'n 1Y .
One may assume, without loss of generality, that all the morphisms realizing

the relations X
q' Y are simple. We may also assume that n′ ≥ n implies

fn′ ≥ fn and gn′ ≥ gn. Further, it is obvious that the defining conditions

for X
q' Y can be relaxed to the conditions gnfn 'sn

1X and fngn 'tn

1Y respectively, where (sn) and (tn) are increasing unbounded sequences in
{0} ∪ N.

In [20] is constructed a certain category K which describes the relation
q'

by means of an appropriate relation on the morphisms of K. The objects of
K are all compact ANR inverse sequences, while

K(X ,Y ) = {F = (fn) | fn ∈ tow-HcM(X,Y ) simple, n ∈ N}.
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The composition in MorK is the coordinatewise composition, i.e.,

GF = (gnfn) = ((fngn, [gn
kf

n
gn(k)])),

while the identity morphism on an object X ∈ ObK is 1X = (1n
X), where

1n
X = 1X for each n ∈ N. A morphism F = (fn) ∈ K(X ,Y ) is said to be

quasi-homotopic to a morphism F ′ = (f ′n) ∈ K(X,Y ), denoted by F
q' F ′,

provided there exists an increasing and unbounded sequence (sn) in {0} ∪ N
such that fn 'sn

f ′n, whenever sn > 0. The quasi-homotopy relation
q' is

an equivalence relation on each set K(X,Y ). It is also natural from the right,
i.e.,

(∀H ∈ K(W ,X))(∀F, F ′ ∈ K(X ,Y ))(F
q' F ′ ⇒ FH

q' F ′H).

Unfortunately, the quasi-homotopy relation
q' is not natural from the left, so

there is no corresponding quotient category. Nevertheless, by [20, Theorem
3.27],

X
q' Y if and only if there exist morphisms F ∈ K(X,Y )

and G ∈ K(Y ,X) such that GF
q' 1X and FG

q' 1Y .

It was also shown in [20] that for a slight strengthening of the Borsuk
quasi-equivalence, reinterpreted as above, there exists a complete category
characterization. Let X and Y be inverse sequences in HcANR. Then X is

said to be q-equivalent to Y , denoted by X
q' Y , provided X

q' Y and there
exists a pair F = (fn), G = (gn) of morphisms realizing this relation in the
category K such that, for every i ∈ N and every j ∈ N, the sequences (fn(j))
and (gn(i)) are bounded.

For a pair X , Y of compacta, we define X
q' Y provided X

q' Y for
some (equivalently, any) pair X, Y of the associated compact ANR inverse
sequences.

Let K be the subcategory of K consisting of ObK = ObK and of MorK ⊆
Mor K such that each K(X ,Y ) ⊆ K(X,Y ) consists of all the morphisms F =
(fn), where all fn = (fn, [fn

j ]) have a unique index function f = fn, n ∈ N.

Such a morphism is denoted by F = (f,fn). The key fact is that the quasi-

homotopy relation
q' is a natural equivalence relation on MorK. Therefore,

there exists the corresponding quotient category K/ q
'
≡ Q. Moreover, the

quotient category Q yields the associated category Q on compacta such that

ObQ = Ob(cM) and Q(X,Y ) ≈ Q(X,Y ),

where X, Y are any compact ANR inverse sequences associated with X , Y
respectively. (For given pair X,Y , any set Q(X,Y ) may represent Q(X,Y ).)
An important result is the following one ([20, Theorem 6]):

X
q' Y if and only if X ∼= Y in Q.
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Consequently, for every pair X, Y of compacta, X
q' Y if and only if

X ∼= Y in Q. Moreover ([20, Theorem 7]), there exist functors

Q : HcM → Q and Γ : Sh(cM)→ Q,

which keep the objects fixed and ΓS = Q, where S : HcM → Sh(cM) is the
ordinary shape functor.

According to [20, Remark 8(b)], the quasi-homotopy relation admits a
slight strengthening in the following way. A morphism F = (f,fn) ∈
K(X ,Y ) is said to be uniformly quasi-homotopic to a morphism F ′ =

(f ′,f ′n) ∈ K(X,Y ), denoted by F
q∗' F ′, provided F

q' F ′ and there ex-
ists a sequence (ij) in N, ij ≥ f(j), f ′(j), such that

(∀n ∈ N)(∀j ∈ [1, sn]N) [fn
j ][pf(j)ij

] = [f ′nj ][pf ′(j)ij
],

where (sn) is a realizing sequence for F
q' F ′. It is readily seen that

q∗'
is a natural equivalence relation on K. Thus, there exist the corresponding
quotient category

K/q∗

'
≡ Q∗

and the associated category Q∗ on compacta. Further, there exist functors

Q∗ : HcM → Q∗ and Γ∗ : Sh(cM)→ Q∗,
which keep the objects fixed and Γ∗S = Q∗. Moreover, there exists a functor

Π : Q∗ → Q,

such that Q = ΓQ∗ and Γ = ΠΓ∗.
Let X, Y be a pair of compact ANR inverse sequences. Then, X is said

to be q∗-equivalent to Y , denoted by X
q∗' Y , provided there exists a pair of

morphisms F : X → Y , G : Y → X in K such that GF
q∗' 1X and FG

q∗' 1Y .

Clearly, this means X ∼= Y in Q∗. Let the q∗-equivalence of compacta be the
induced equivalence relation in the category Q∗.

We want to relate the categories Q∗ and Q∗ to our categories tow∗-
HcANR and Sh∗(cM) respectively.

Theorem 5.1. The category Q∗ is isomorphic to the subcategory tow∗ω-
HcANR ⊆ tow∗-HcANR. Consequently, the category Q∗ is isomorphic to
the corresponding subcategory Sh∗ω(cM) of the coarse shape category Sh∗(cM)
of compacta.

Proof. The object classes of Q∗ and of tow∗ω-HcANR coincide: It is the
class of all compact ANR inverse sequences X having the homotopy classes

of mappings to be the bonding morphisms. A morphism F ∈ Q∗(X,Y ) is
the equivalence class [F ]q∗

'
, where F = (f,fn) ∈ K(X,Y ). Observe that

(f,fn) = (f, [fn
j ]) : X → Y is a commutative S∗-mapping, i.e., F = (f, [fn

j ])
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is also a morphism in the category (HcANRN)∗. Further, the homotopy rela-

tion
q∗' guarantees that F

q∗' F ′ = (f ′,f ′n) in K implies (f, [fn
j ]) ' (f ′, [f ′nj ])

in (HcANRN)∗. (Put σ(j) = ij and χ(n) = sn.) However, the converse holds
too. Namely, a commutative S∗-mapping (f, [fn

j ]) in (HcANRN)∗ is also the

morphism (f,fn) = F inQ∗, and (f, [fn
j ]) ' (f ′, [f ′nj ]) in (HcANRN)∗ implies

(f,fn) = F
q∗' F ′ = (f ′,f ′n) in K. (Put ij = σ(j) and sn = χ(n).) Finally, it

is obvious that (fg, gnfn) in K becomes (fg, [gn
k ][fn

g(k)]) in (HcANRN)∗, and

that (1N,1
n
X) in K becomes (1N, [1

n
Xj

]) in (HcANRN)∗. Therefore, there exists

a functor Φ : Q∗ → tow∗ω-HcANR, defined by Φ(X) = X and Φ(F ) = f∗,
where f ∗ = [(f, [fn

j ])], (f, [fn
j ]) = (f,fn) = F , [F ]q∗

'
= F , which is an iso-

morphism of the categories. The statement for the categories on compacta
follows immediately.

The next corollary relates the coarse shape classification of compacta to
the classification in the subcategory Sh∗ω(cM).

Corollary 5.2. The isomorphism classification in the subcategory
Sh∗ω(cM) is strictly finer than the isomorphism (coarse shape type) classi-
fication in Sh∗(cM), i.e., for every pair X, Y of metric compacta, Sh∗ω(X) =
Sh∗ω(Y ) implies Sh∗(X) = Sh∗(Y ), while there exists such a pair so that
Sh∗(X) = Sh∗(Y ) and Sh∗ω(X) 6= Sh∗ω(Y ).

Proof. It is clear that Sh∗ω(X) = Sh∗ω(Y ) implies Sh∗(X) = Sh∗(Y ).
By Corollary 3.12, Sh∗(X) = Sh∗(Y ) is equivalent to S∗(X) = S∗(Y ), and by

Theorem 5.1, Sh∗ω(X) = Sh∗ω(Y ) is equivalent to X
q∗' Y . Now, if Sh∗(X) =

Sh∗(Y ) would imply Sh∗ω(X) = Sh∗ω(Y ), then S∗(X) = S∗(Y ) would imply

X
q∗' Y , which contradicts [22, Corollary 7].

One can now see that the coarse shape is indeed coarser than the shape:

Corollary 5.3. For every pair X, Y of metric compacta, Sh(X) =
Sh(Y ) implies Sh∗(X) = Sh∗(Y ), while there exists such a pair so that
Sh∗(X) = Sh∗(Y ) and Sh(X) 6= Sh(Y ).

Proof. It is clear that Sh(X) = Sh(Y ) implies Sh∗(X) = Sh∗(Y ) as
well as Sh∗ω(X) = Sh∗ω(Y ). If Sh∗(X) = Sh∗(Y ) would imply Sh(X) =
Sh(Y ), then Sh∗(X) = Sh∗(Y ) would imply Sh∗ω(X) = Sh∗ω(Y ), which con-
tradicts Corollary 5.2.

At the end of this section, let us describe a coarse shape morphism F ∗ ∈
Sh∗(X,Y ), where Y has the homotopy type of a polyhedron (equivalently, an
ANR) as well as Y has the coarse shape type a polyhedron (compare Claim 1).



174 N. KOCEIĆ BILAN AND N. UGLEŠIĆ

Proposition 5.4. Let F ∗ : X → Y be a coarse shape morphism of a
space X to a space Y , where Y has the homotopy type of a polyhedron. Then
there exists a representative f ∗ ∈ pro∗-HPol(X,Y ) of F ∗ = 〈f∗〉, such that
every representative (f, [fn

µ ]) ∈ inv∗-HPol(X,Y ) of f∗ = [(f, [fn
µ ])] consists

of a sequence of homotopy class [fn
λ ], n ∈ N, of a single term Xλ of X to the

polyhedron. Therefore, F ∗ is represented by a sequence ([hn]) of the homotopy
classes [hn] : X → Y , n ∈ N, uniformly factorizing through p : X →X.

Proof. Let q : Q→ Y be a homotopy equivalence, where Q is a polyhe-
dron. Then q = ([qµ] = [q]−1) : Y → Y = (Qµ = Q, qµµ′ = 1Q,M = {µ}) is
a HPol-expansion of Y . Let F ∗ : X → Y be a coarse shape morphism. Then
there exists a morphism f ∗ : X = (Xλ, pλλ′ ,Λ) → Y of pro∗-HPol such
that F = 〈f∗〉. Let (f, [fn

µ ]) : X → Y in inv∗-HPol be any representative

of f∗. Since Y = (Q) is a rudimentary system, the index function f is a
constant function of the singleton M = {µ} to λ ∈ Λ and, for all n ∈ N, the
homotopy classes [fn

µ ] are a single homotopy class [fn
λ ] : Xλ → Q. Finally,

put [hn] = [qfn
λ pλ], n ∈ N.

Proposition 5.5. Let F ∗ : X → Y be a coarse shape morphism of a space
X to a space Y , where Y has the coarse shape type of a polyhedron. Then
there exists a representative f ∗ ∈ pro∗-HPol(X,Y ) of F ∗ such that, for every
representative (f, [fn

µ ]) ∈ inv∗-HPol(X,Y ) of f ∗, the index function f is λ-
constant and all [fn

µ ] : Xλ → Yµ factorize through the polyhedron. Therefore,
F ∗ is represented by a family ([hn

µ]) of the homotopy classes [hn
µ] : X → Yµ,

n ∈ N, µ ∈ M , uniformly factorizing through p : X → X and through the
polyhedron.

Proof. Let G∗ : Q → Y be a coarse shape isomorphism, where Q is a
polyhedron. Then there exists a representative g∗ : (Qν = Q)→ Y of G∗ such
that, for every representative (g, [gn

µ ]) of g∗, g is the constant function and
[gn

µ ] : Q→ Yµ, n ∈ N, µ ∈M . Let F ∗ : X → Y be a coarse shape morphism.

Then F ∗ = G∗H∗, whereH∗ = (G∗)−1F ∗ : X → Q. By Proposition 5.4, there
exists a representative h∗ : X → (Q) of H∗ such that every its representative
(h, [hn

ν ]) consists of a sequence of homotopy classes [hn] : Xλ → Q, n ∈ N,
with a fixed λ. Thus, every representative of f ∗ ≡ g∗h∗ ∈ F ∗ is a family
([fn

µ ]), n ∈ N, µ ∈ M , where fn
µ = gn

µh
n : Xλ → Q→ Yµ for a unique λ ∈ Λ.

Finally, put hn
µ = fn

µ pλ : X → Yµ.

Remark 5.6. Concerning Proposition 5.4, recall that a shape morphism
F : X → Y , Y ' Q, is represented by a unique homotopy class [hλ] = [qfλpλ] :
X → Y . On the other hand, by Proposition 5.5, a coarse shape morphism
F ∗ : X → Y , Sh(Y ) = Sh(Q), is represented by a family ([fµ])µ∈M : X → Y ,
such that every [fµ] : X → Yµ factorizes through a unique Xλ and through Q.
Further, according to [21, Lemma 3 and Remark 3(a)], since the same shape
type implies the same coarse shape type, Proposition 5.5 applies to FANR’s.
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6. A coarse shape isomorphism

In this section, we are going to establish an analogue of the well known
Morita lemma [17], which should characterize a coarse shape isomorphism
in an elegant and rather operative manner. According to the “reindexing
theorem” (Theorem 3.27) and definition of the abstract coarse shape category
Sh∗(C,D), it suffices to characterize an isomorphism f ∗ ∈ pro∗-D(X,Y ) which

admits a level representative (1Λ, f
n
λ ) : X → Y in inv∗-D. In the case of

inverse sequences, a strictly increasing simple representative will do. Since
the characterization does not depend on the objects of D, we shall consider
such f∗ in pro∗-C as well as in tow∗-C.

Theorem 6.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yλ, qλλ′ ,Λ) be inverse
systems in C over the same index set. Let a morphism f ∗ : X → Y in pro∗-C
admit a level representative (1Λ, f

n
λ ). Then f

∗ is an isomorphism if and only
if, for every λ ∈ Λ, there exist λ′ ≥ λ and n ∈ N such that, for every n′ ≥ n,
there exists a morphism hn′

λ : Yλ′ → Xλ in C, so that the following diagram
in C commutes:

(4)
Xλ ←− Xλ′

fn′

λ ↓ hn′

λ ↖ ↓ fn′

λ′

Yλ ←− Yλ′

.

Proof. Let f
∗ : X → Y be an isomorphism in pro∗-C which admits a

level representative (1Λ, f
n
λ ). Let g∗ = [(g, gn

λ)] : Y → X be the inverse of
f∗, i.e.,

(g, gn
λ)(1Λ, f

n
λ ) ∼ (1Λ, 1Xλ

) ∧ (1Λ, f
n
λ )(g, gn

λ) ∼ (1Λ, 1Yλ
).

Given any λ ∈ Λ, choose λ′1, λ
′
2 ∈ Λ according to the above equivalence

relations. Then there exists λ′ ≥ λ′1, λ
′
2. Thus λ′ ≥ λ, g(λ). Further,

choose n1, n2 ∈ N according to the above equivalence relations and the
given λ. Since (1Λ, f

n
λ ) is an S∗-morphism, for the pair g(λ) ≤ λ′, there

exists n3 ∈ N such that the appropriate commutativity condition holds.
Put n = max{n1, n2, n3}. Let us define, for every n′ ≥ n, a morphism

hn′

λ : Yλ′ → Xλ in C by putting

hn′

λ = gn′

λ qg(λ)λ′ .

We are proving that diagram (4) commutes. First, according to the second
equivalence relation,

fn′

λ hn′

λ = fn′

λ gn′

λ qg(λ)λ′ = qλλ′ .

Thus, the left (lower) triangle in (4) commutes. Further, since n′ > n3,

hn′

λ f
n′

λ′ = gn′

λ qg(λ)λ′f
n′

λ′ = gn′

λ f
n′

g(λ)pg(λ)λ′ ,
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while, according to the first equivalence relation,

gn′

λ f
n′

g(λ)pg(λ)λ′ = pλλ′ .

Therefore,

hn′

λ f
n′

λ′ = pλλ′ ,

which proves commutativity of the right (upper) triangle in (4).
Conversely, suppose that a morphism f∗ = [(1Λ, f

n
λ )] : X → Y in pro∗-

C fulfils the condition of the theorem. Let g : Λ → Λ be defined by that
condition, i.e., g(λ) = λ′ ≥ λ. Further, given any λ ∈ Λ, choose n = nλ ∈ N
by the condition. Let us define, for every n ∈ N and every λ ∈ Λ, a morphism
gn

λ : Yg(λ) → Xλ in C by putting

gn
λ =

{
hnλ

λ ; n < nλ

hn
λ; n > nλ

,

where hn
λ comes from the condition. We have to prove that (g, gn

λ) : Y →X is
an S∗-morphism. Let a pair λ ≤ λ′ be given. Choose λ0 ≥ g(λ), g(λ′) and put
λ1 = g(λ0). Since (1Λ, f

n
λ ) is an S∗-morphism, for the pairs g (λ) ≤ λ0 and

g (λ′) ≤ λ0, there exist n1, n2 ∈ N such that the appropriate commutativity
conditions hold respectively. Put

n = max {nλ, nλ′ , nλ0 , n1, n2} .
For every n′ ≥ n, consider the following diagram:

(5)

Xλ ←− Xλ′ ←− Xg(λ′)

↖ ↖ ↓ ↖
Xg(λ) ←− Xλ0

↓ Yg(λ′) ↓
↖ ↖ ↖

Yg(λ) ←− Yλ0 ←− Yλ1

We are going to prove, by chasing diagram (5), that

(6) gn′

λ qg(λ)λ1
= pλλ′g

n′

λ′ qg(λ′)λ1
.

Since n′ > nλ0 , the condition of the theorem implies

(7) gn′

λ qg(λ)λ1
= hn′

λ qg(λ)λ0
fn′

λ0
hn′

λ0
.

Since n′ > n1,

(8) hn′

λ qg(λ)λ0
fn′

λ0
hn′

λ0
= hn′

λ f
n′

g(λ)pg(λ)λ0
hn′

λ0
.

Since n′ > nλ, nλ′ , the condition of the theorem implies

(9) hn′

λ f
n′

g(λ)pg(λ)λ0
hn′

λ0
= pλλ0h

n′

λ0
= pλλ′h

n′

λ′f
n′

g(λ′)pg(λ′)λ0
hn′

λ0
.

Since n′ > n2,

(10) pλλ′h
n′

λ′f
n′

g(λ′)pg(λ′)λ0
hn′

λ0
= pλλ′h

n′

λ′qg(λ′)λ0
fn′

λ0
hn′

λ0
.
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Finally, since n′ > nλ0 , the condition of the theorem implies

(11) pλλ′h
n′

λ′qg(λ′)λ0
fn′

λ0
hn′

λ0
= pλλ′h

n′

λ′qg(λ′)g(λ0) = pλλ′g
n′

λ′ qg(λ′)λ1
.

Now, by combining (7) , (8) , (9), (10) and (11), one establishes (6), which
proves that (g, gn

λ) is an S∗-morphism. Moreover, by the condition of the
theorem, it is readily seen that, for every λ ∈ Λ and every n′ ∈ N, n′ > nλ,

gn′

λ f
n′

g(λ) = hn′

λ f
n′

g(λ) = pλg(λ) ∧ fn′

λ gn′

λ = fn′

λ hn′

λ = qλg(λ).

This shows that

(g, gn
λ)(1Λ, f

n
λ ) ∼ (1Λ, 1Xλ

) ∧ (1Λ, f
n
λ )(g, gn

λ) ∼ (1Λ, 1Yλ
),

which means that g∗ = [(g, gn
λ)] : Y → X is the inverse of f∗. Therefore, f∗

is an isomorphism in pro∗-C.
Remark 6.2. (a) Let us consider pro-C to be a subcategory of pro∗-C (see

Proposition 3.24). Then, in pro-C, Theorem 5.1 allows to put nλ = 1 for every
λ. Consequently, for each λ, the sequence (hn

λ) reduces to a single morphism
hλ. Thus, Theorem 5.1 in the subcategory pro-C becomes the original Morita
lemma.

(b) One can easily verify that the condition (of Theorem 5.1) character-
izing an isomorphism may be reduced to a cofinal subset Λ′ ⊆ Λ. Thus, the
following corollary holds.

Corollary 6.3. If f∗ = [(1Λ, f
n
λ )] : X → Y in pro∗-C admits a cofinal

subset Λ′ ⊆ Λ such that, for every λ′ ∈ Λ′, there exists n ∈ N, so that, for
every n′ ≥ n, fn′

λ′ is an isomorphism in C, then f ∗ is an isomorphism.

According to the proof of Theorem 3.1 and Definition 3.3, one can charac-
terize an S∗-morphism (f, fn

j ) in any category (CN)∗ in the “original” terms of
a commutativity radius γ. Further, by the proof of Theorem 3.2 and Defini-
tion 3.8, the equivalence relation (f, fn

j ) ∼ (f ′, f ′nj ) in any category (CN)∗ can
be characterized in the “original” terms of a shift function σ and a homotopy
radius χ. Concerning isomorphisms of inverse sequences, this provides a very
useful sufficient condition by means of a simple representative (see Proposition
3.11):

Theorem 6.4. Let X = (Xi, pii′) and Y = (Yj , qjj′′ ) be inverse sequences
in a category C, let f ∗ : X → Y be a morphism in tow∗-C and let (f, fn

j ) be

any simple representative of f∗ with a commutativity radius γ and f strictly
increasing. If for every n ∈ N and every j = 1, . . . , γ(n) − 1, there exists a
morphism hn

j : Yj+1 → Xf(j) in C such that the diagram

Xf(j) ←− Xf(j+1)

fn
j ↓ hn

j ↖ ↓ fn
j+1

Yj ←− Yj+1

commutes, then f ∗ is an isomorphism in tow∗-C.
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Conversely, if f∗ is an isomorphism in tow∗-C, then, for every j ∈ N,
there exist j′ ≥ j and n ∈ N such that, for every n′ ≥ n, there exists a
morphism hn′

j : Yj′ → Xf(j) in C so that the following diagram in C commutes:

Xf(j) ←− Xf(j′)

fn′

j ↓ hn′

j ↖ ↓ fn′

j′

Yj ←− Yj′

Proof. Since f : N→ N is strictly increasing, one can define g : N→ N
by putting

g(i) =

{
1, i ∈ [1, f(1)]N

j + 1, i ∈ [f(j) + 1, f(j + 1)]N, j ∈ N .

Let n ∈ N. If γ(n) = 1, put gn
i : Yg(i) → Xi, i ∈ N, to be arbitrary

morphisms in C. If γ(n) > 1, then the compositions of the existing morphisms
hn

j : Yj+1 → Xf(j) in C, j = 1, . . . , γ(n) − 1, and the appropriate bonding

morphisms pii′ determine morphisms gn
i : Yg(i) → Xi in C, i = 1, . . . , f(γ(n)−

1). Observe that gn
1 , . . . , g

n
f(γ(n)−1) commute with the corresponding bonding

morphisms pii′ and qjj′ . If i > f(γ(n)−1), put gn
i : Yg(i) → Xi to be arbitrary

morphisms in C. Then (g, gn
i ) : Y → X is an S∗-morphism in tow∗-C having

γ′ : N → N, γ′(n) = f(γ(n) − 1), as a commutativity radius. (Since γ is
increasing and unbounded and since f is strictly increasing, the function γ ′ is
increasing and unbounded.) It is obvious now, by construction, that

(∗) (g, gn
i )(f, fn

j ) ∼ (1N, 1
n
Xi

) ∧ (f, fn
j )(g, gn

i ) ∼ (1N, 1
n
Yj

).

Indeed, for the first relation, the shift function is σ = fg and the homotopy
radius is χ = f(γ − 1N), while for the second relation, the shift function is
σ′ = gf and the homotopy radius is χ′ = γ−1N. This proves that g∗f∗ = 1∗X
and f∗g∗ = 1∗Y , where g∗ = [(g, gn

i )]. Therefore, f ∗ is an isomorphism in
tow∗-C.

Conversely, let g∗ = [(g, gn
i )] : Y → X be the inverse of f∗. Let the

equivalence relations (∗) be realized via σ, χ and σ′, χ′ respectively. Then,
given j ∈ N, put j′ = max{σ(j), σ′(j)} and choose n ∈ N such that χ′(n) ≥ j′
(χ′ is unbounded!). Finally, for every n′ ≥ n, put hn′

j = gn′

f(j)qgf(j)j′ : Yj′ →
Xf(j). The conclusion follows.

Let us finally prove that the “S∗-condition” characterizes an isomorphic
pair of inverse sequences in tow∗-C [16, Definition 6]).

Theorem 6.5. Let X = (Xi, pii′) and Y = (Yj , qjj′ ) be inverse sequences
in a category C. Then X ∼= Y in tow∗-C if and only if the following “S∗-
condition” is fulfilled:

(∀j1 ∈ N)(∃i1 ∈ N)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1) · · ·
(∀jk+1 ≥ j′k)(∃ik+1 ≥ i′k)(∀i′k+1 ≥ ik+1)(∃j′k+1 ≥ jk+1) · · ·
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and, for every n ∈ N, there exist C-morphisms fn
k : Xik

→ Yjk
, k = 1, . . . , n,

and gn
l : Yj′

l
→ Xi′

l
, l = 1, . . . , n−1 and n > 1, such that the following diagram

commutes:

(12)

Xi1 ←− Xi′1
←− Xi2 ←− · · · ←− Xi′n−1

←− Xin

fn
1 ↓ ↑ gn

1 ↓ fn
2 ↑ gn

n−1 ↓ fn
n

Yj1 ←− Yj′1
←− Yj2 ←− · · · ←− Yj′

n−1
←− Yjn

.

Proof. Let X ∼= Y in tow∗-C. Then there exist isomorphisms f
∗ : X →

Y and g∗ : Y → X such that g∗f∗ = 1∗X and f∗g∗ = 1∗Y in tow∗-C. By
Proposition 3.11, there exist simple representatives (f ′, f ′nj ) and (g′g′ni ) of

f∗ and g∗ respectively, such that the index functions f ′ and g′ are strictly
increasing. Let the equivalence relations

(g′, g′ni )(f ′, f ′nj ) ∼ (1N, 1
n
Xi

) and (f ′, f ′nj )(g′, g′ni ) ∼ (1N, 1
n
Yj

)

be realized via (σ, η) and (σ′, η′) respectively. We are to prove that the “S∗-
condition” for X and Y holds. Given j1 ∈ N, put i1 = f(j1). For every
i′1 ≥ i1, put j′1 = max{σ′(j1), g′(i′1)}. Suppose that, for any k ∈ N, the indices
i1, j

′
1, . . . , i′k, j′k are defined. Given jk+1 ≥ j′k, put ik+1 = max{σ(i′k), f ′(jk)},

and for every i′k+1 ≥ i′k, put j′k+1 = max{σ′(jk), g′(i′k)}. Observe that, for
(f ′, f ′nj ), there exists an increasing sequence (nj) in N such that, for every
j ∈ N,

f ′nj′ pf ′(j′)f ′(j) = qj′jf
′n
j

whenever j′ ≤ j and n ≥ nj . (Indeed, if γ is a commutativity radius for
(f ′, f ′nj ), then, for every j ∈ N, there exists n ≡ nj ∈ N such that γ(n) ≥ j.)

In the same way, for (g′, g′ni ), there exists an increasing sequence (n′i) in N
such that, for every i ∈ N,

g′ni′ qg′(i′)g′(i) = pi′ig
′n
i

whenever i′ ≤ i and n ≥ n′i. Given any n ∈ N, put

m′n = max{njn
, n′i′n−1

},
m′′n = max{η(i′l), η′(jk) | l = 1, . . . , n− 1, k = 1, . . . , n},

and choose m ≥ mn = max{m′n,m′′n}. Now, for every k = 1, . . . , n, put

fn
k = fm

jk
pf ′(jk)ik

: Xik
→ Yjk

,

and, for every l = 1, . . . , n− 1 and n > 1, put

gn
l = g′mi′

l
qg′(i′

l
)j′

l
: Yj′

l
→ Xi′

l
.

A straightforward verification shows that, for every k = 1, . . . , n and n > 1,

fn
k piki′

k
gn

k = qjkj′
k
,

and, for every l = 1, . . . , n− 1,

gn
l qj′ljl+1

fn
l = pi′

l
il+1

.
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Thus, diagram (12) in C commutes. Conversely, let X and Y be inverse
sequences in C satisfying the “S∗-condition”. Then, for j1 = 1 choose i1, and
for i′1 = i1 + 1 choose j′1 ≥ j1; . . . ; for jk+1 = j′k + 1 choose ik+1 ≥ i′k, and
for i′k+1 = ik+1 + 1 choose j′k+1 ≥ jk+1; . . . Further, for every n ∈ N, there
exist morphisms fn

k : Xik
→ Yjk

, k = 1, . . . , n, and gn
k : Yj′

k
→ Xi′

k
, k =

1, . . . , n−1, in C such that the corresponding diagram (12) commutes. Let us
define functions f ′, g′ : N→ N, by putting f ′(j) = ik whenever jk−1 < j ≤ jk,
k ∈ N (j0 = 0), and g′(i) = j′l whenever i′l−1 < i ≤ i′l, l ∈ N (i′0 = 0). Let
n ∈ N. For jk−1 < j ≤ jk and k = 1, . . . , n, let

f ′nj = qjjk
fn

k : Xf ′(j) → Yj ,

and for every j > jn, let f ′nj be any C-morphism Xf ′(j) → Yj . (The “S∗-
condition” assures that the set C(Xf ′(j), Yj) is not empty!) Further, let the C-
morphisms g′1i : Yg′(i) → Xi, i ∈ N, be chosen arbitrarily (the set C(Yg′(i), Xi)
is not empty), while for n > 1, i′l−1 < i ≤ i′l and l = 1, . . . , n− 1, let

g′ni = pii′
k
gn

k : Yg′(i) → Xi,

and for i > i′n−1, let g′ni be any C-morphism Yg′(i) → Xi (the set C(Yg′(i), Xi)
is not empty). It is readily seen that (f ′, f ′nj ) : X → Y and (g′, g′ni ) : Y →X

are S∗-morphisms, i.e., the morphisms of (CN)∗. It is obvious by construction
that γ : N → N, γ(n) = jn, is a commutativity radius for (f ′, f ′nj ) as well

as that γ′ : N → N, γ′(1) = 1 and γ′(n) = i′n−1, n > 1, is a commutativity
radius for (g′, g′ni ). Put f

∗ = [(f ′, f ′nj )] and g∗ = [(g′, g′ni )]. Let us define
σ : N → N by putting σ(i) = il+1, whenever i′l−1 < i ≤ i′l, l ∈ N, and let
us define χ : N → N ∪ {0} by putting χ(n) = i′n−1. Then, a straightforward
examination shows that σ is a shift function and χ is a homotopy radius for
the equivalence of S∗-morphisms (f ′g′, g′ni f

′n
g′(i)), (1N, 1

n
Xi

) : X →X, i.e.,

(g′, g′ni )(f ′, f ′nj ) ∼ (1N, 1
n
Xi

).

Thus, g∗f∗ = 1∗X in tow∗-C. Similarly,

(f ′, f ′nj )(g′, g′ni ) ∼ (1N, 1
n
Yj

)

holds via (σ′, χ′), where σ′ : N → N, σ′(j) = j′k, jk−1 < j ≤ jk, k ∈ N, and
χ′ : N→ N∪ {0}, χ′(n) = jn−1. Thus, f∗g∗ = 1∗Y in tow∗-C. Hence, X ∼= Y

in tow∗-C.

7. The examples

It is clear that isomorphic inverse systems in pro-C are also isomorphic in
pro∗-C. We shall now show that the converse does not hold. This will indicate
that, beside the shape theory, the coarse shape theory might be a non artificial
and useful new one, and therefore, a new geometric (and algebraic - by passing
to pro∗-Grp) tool for studying and classifying locally bad spaces. The first
example is constructed for the pair pro-Grp ⊆ pro∗-Grp.
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Example 7.1. Let G = (Gi, pii′ ) and H = (Hj , qjj′ ) be inverse sequences
of groups Gi = Hj = Z2, for all i, j ∈ N, and homomorphisms pii′ : Z2 → Z2

and qjj′ : Z2 → Z2 defined via pii+1 and qjj+1 respectively as follows:
For every i ∈ N, pii+1 is given by the integral matrix

Pi =

[
1 0
0 −24i

]
;

for every j ∈ N, qjj+1 is given by the integral matrix

Qj =

[
−1 0
22j −24j

]
.

Then, G and H are not isomorphic in pro-Grp, while G ∼= H in pro∗-Grp
(actually, they are isomorphic in the subcategory tow∗-Grp).

In order to prove the statement, let us first consider an arbitrary mor-
phism f : G → H in pro-Grp. Let (f, fj) : G → H be a representative of
f . Without loss of generality, we may assume that (f, fj) is a simple mor-
phism of inverse sequences in Grp with the strictly increasing index function
f : N→ N, and that each homomorphism fj : Gf(j) = Z2 → Z2 = Hj , j ∈ N,
is given by an integral matrix

Fj =

[
αj γj

βj δj

]
.

Then, for every j ∈ N, qjj+1fj+1 = fjpf(j)f(j+1), i.e.,

QjFj+1 = FjPf(j) · · ·Pf(j+1)−1.

This means [
−1 0
22j −24j

][
αj+1 γj+1

βj+1 δj+1

]
=

[
αj γj

βj δj

][
1 0
0 σj

]
,

where [
1 0
0 σj

]
= Pf(j) · · ·Pf(j+1)−1,

and σj = (−1)f(j+1)−f(j)22kj , kj = (f(j+ 1)− 1)f(j+ 1)− (f(j)− 1)f(j). It
implies that, for every j ∈ N,

−αj+1 = αj , 22jαj+1 − 24jβj+1 = βj .

Thus, αj = (−1)jα for some α ∈ Z, while

βj+1 =
(−1)j−122jα− βj

24j
.

This recursive relation admits the following estimation (β ≡ β1)

| βj+1 |≤
(22 + 28 + · · ·+ 22j2

) | α | + | β |
22j(j+1)

.
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Then, clearly,

| βj+1 |<
| α |
22j−1

+
| β |

22j(j+1)
,

which implies that there exists j0 ∈ N, so that, for every j > j0, | βj |<
1. Since each βj ∈ Z, we infer that βj = 0 for all j > j0. Then, by the
recursive relation, α = 0 must hold. Therefore, αj = 0 for all j ∈ N. This
further implies that βj0 = · · · = β1 = 0. Consequently, for every j ∈ N, the
homomorphism fj is represented by a singular integral matrix

Fj =

[
0 γj

0 δj

]
.

Since all the bonding homomorphisms are represented by regular matrices
(detPi 6= 0 6= detQj), f cannot be an isomorphism. Thus, G and H are not
isomorphic in pro-Grp. (Moreover, neither G ≤ H nor H ≤ G in pro-Grp
can hold.)

Let us now prove that the inverse sequences G and H are isomorphic
in the subcategory tow∗-Grp ⊆ pro∗-Grp. Consider a level S∗-morphism
(1N, f

n
j ) : G→H defined by induction as follows:

If n = 1, let f1
1 : Z2 → Z2 be any homomorphism, and let f1

j = 0 :

Z2 → Z2 be the trivial homomorphism for every j > 1; assume that, for
n ∈ N and each k = 1, . . . , n, all homomorphisms fk

j , j ∈ N, are defined; let

fn+1
n+1 = 1Z2 : Z2 → Z2 be the identity given by the identity matrix

Fn+1
n+1 = I =

[
1 0
0 1

]
,

let fn+1
j be given by an integral matrix F n+1

j defined inductively via the
commutativity relation

Fn+1
j Pj = QjF

n+1
j+1 ,

j = n, . . . , 1, and let fn+1
j = 0 for all j > n + 1. One can verify, by a

straightforward calculation, that all F n+1
j ∈M2(Z), j = n, . . . , 1, exist. More

precisely,

Fn+1
n =

[
−1 0
22n 1

]
, Fn+1

n−1 =

[
1 0

−(22(n−1) + 26(n−1)+2) 1

]
,

Fn+1
n−2 =

[ −1 0

22(n−2) + 26(n−2)+2 + 210(n−2)+8 1

]
, . . . ,

Fn+1
1 =

[
(−1)n 0

(−1)n−1(22 + 28 + · · ·+ 22n2

) 1

]
.

The commutativity relations assure that (1N, f
n
j ) : G → H is indeed an S∗-

morphism of pro-groups. Let us prove that f ∗ = [(1N, f
n
j )] : G → H is an

isomorphism of pro-grops in pro∗-Grp. According to Theorem 6.1, given any



THE COARSE SHAPE 183

j ∈ N, put j′ = j + 1 and n = j + 1. We have to prove that, for every n′ ≥ n,
there exists a homomorphism hn′

j : Z2 → Z2 such that

hn′

j f
n′

j+1 = pjj+1 ∧ fn′

j hn′

j = qjj+1.

This means that we have to verify

Hn′

j Fn′

j+1 = Pj ∧ Fn′

j Hn′

j = Qj ,

where Hn′

j ∈ M2(Z) represents hn′

j . By Theorem 6.4, it suffices to verify the
following condition: For every n ∈ N and every j = 1, . . . , n, there exists
Hn+1

j ∈M2(Z) such that

Hn+1
j Fn+1

j+1 = Pj ∧ Fn+1
j Hn+1

j = Qj .

A straightforward calculation yields

Hn+1
n = Pn =

[
1 0
0 −24n

]
, Hn+1

n−1 =

[ −1 0

−26(n−1)+2 −24(n−1)

]
,

Hn+1
n−2 =

[
1 0

−26(n−2)+2 − 210(n−2)+8 −24(n−2)

]
, . . . ,

Hn+1
1 =

[
(−1)n−1 0

−28 − 218 − · · · − 22n2 −24

]
.

This completes the proof.
The following example is constructed in a quite similar way for the cate-

gory pair pro-HTop ⊆ pro∗-HTop. First, recall that by a result of W. Schef-
fer [19], every homotopy class between compact connected abelian groups,
[f ] : X → Y , contains a continuous homomorphism h : X → Y , h ∈ [f ]. Con-
sequently, every homotopy class [f ] : T → T of a 2-torus to itself (T ≈ S1×S1,
where the multiplicative group S1 is the standard unit circle in the complex
plane) is (uniquely) represented by an integral matrix F ∈M2(Z).

Example 7.2. Let X = (Xi, [pii′ ]) and Y = (Yj , [qjj′ ]) be inverse se-
quences in HcPol having each term equal to a 2-torus, i.e., Xi = Yj = T
for all i, j ∈ N, and with the bonding homotopy classes [pii′ ] : T → T and
[qjj′ ] : T → T defined via [pii+1] and [qjj+1] respectively as follows:

For every i ∈ N, [pii+1] is given by the integral matrix

Pi =

[
−1 0
0 22i

]
;

for every j ∈ N, [qjj+1] is given by the integral matrix

Qj =

[
1 0
2j −22j

]
.

Then, X and Y are not isomorphic in pro-HTop, while X ∼= Y in pro∗-HTop
(actually, they are isomorphic in the subcategory tow∗-HcPol).
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Similarly to Example 7.1, let us first consider an arbitrary morphism
f : X → Y in pro-HTop. Let (f, [fj ]) : X → Y be a representative of f .
We may assume that (f, [fj ]) is a simple morphism of inverse sequences in
HcPol with the strictly increasing index function f : N → N, and that each
homotopy class [fj ] : Xf(j) = T → T = Yj , j ∈ N, is given by an integral
matrix

Fj =

[
αj γj

βj δj

]
.

Then, for every j ∈ N, [qjj+1][fj+1] = [fj ][pf(j)f(j+1)], i.e.,

QjFj+1 = FjPf(j) · · ·Pf(j+1)−1.

This means[
1 0
2j −22j

] [
αj+1 γj+1

βj+1 δj+1

]
=

[
αj γj

βj δj

] [
(−1)f(j+1)−f(j) 0

0 2kj

]
,

where [
(−1)f(j+1)−f(j) 0

0 2kj

]
= Pf(j) · · ·Pf(j+1)−1,

and kj = (f(j+1)−1)f(j+1)−(f(j)−1)f(j). Without loss of generality, we
may assume that, for every j ∈ N, f(j + 1)− f(j) is an even integer. Hence,
for every j ∈ N,

αj+1 = αj , 2jαj+1 − 22jβj+1 = βj ,

and thus (αj ≡ α ∈ Z for all j),

βj+1 =
2jα− βj

22j
.

This recursive relation yields the following estimation (β1 ≡ β ∈ Z)

| βj+1 |≤
(2 + 24 + · · ·+ 2j2

) | α | + | β |
2j(j+1)

.

Therefore,

| βj+1 |<
| α |
2j−1

+
| β |

2j(j+1)
,

which implies that there exists j0 ∈ N, so that, for every j > j0, | βj |< 1.
Since each βj ∈ Z, we infer that βj = 0 for all j > j0. Then, by the recursive
relation, α = 0 and, thus, αj = 0 for all j ∈ N. This further implies that
βj0 = · · · = β1 = 0. Consequently, for every j ∈ N, the homotopy class [fj ] is
represented by a singular integral matrix

Fj =

[
0 γj

0 δj

]
.

Since all the bonding homotopy classes are represented by regular matrices
(detPi 6= 0 6= detQj), f cannot be an isomorphism. Thus, X and Y are
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not isomorphic in pro-HTop. (Moreover, neither X ≤ Y nor Y ≤ X in
pro-HTop can hold.)

Let us now prove that the inverse sequences X and Y are isomorphic in
the subcategory tow∗-HcPol (⊆ pro∗-HcPol ⊆ pro∗-HTop). Consider a level
S∗-morphism

(
1N, [f

n
j ]
)

: X → Y defined by induction as follows:

If n = 1, let [f1
1 ] : T → T be any homotopy class, and let [f 1

j ] = [c] :
T → T , j > 1, be the homotopy class of a constant mapping; assume that,
for n ∈ N and each k = 1, . . . , n, all homotopy classes [f k

j ] : T → T , j ∈ N,

are defined; let [fn+1
n+1 ] = [1T ] : T → T be the homotopy class of the identity

mapping, which is represented by the identity matrix

Fn+1
n+1 = I =

[
1 0
0 1

]
,

let [fn+1
j ] be represented by an integral matrix F n+1

j defined inductively via
the commutativity relation

Fn+1
j Pj = QjF

n+1
j+1 ,

j = n, . . . , 1, and let [fn+1
j ] = [c] for all j > n + 1. One can verify, by a

straightforward calculation, that all F n+1
j ∈M2(Z), j = n, . . . , 1, exist. More

precisely,

Fn+1
n =

[
−1 0
−2n −1

]
, Fn+1

n−1 =

[
1 0

2n−1 − 23(n−1)+1 1

]
,

Fn+1
n−2 =

[ −1 0

−(2n−2 − 23(n−2)+1 + 25(n−2)+4) −1

]
, . . . ,

Fn+1
1 =

[
(−1)n 0

(−1)n(2− 24 + · · ·+ (−1)n−12n2

) (−1)n

]
.

The commutativity relations assure that (1N, [f
n
j ]) : X → Y is indeed an

S∗-morphism of the inverse sequences. Let us prove that f ∗ = [(1N, [f
n
j ])] :

X → Y is an isomorphism in tow∗-HcPol. According to Theorem 6.1, given
any j ∈ N, put j′ = j + 1 and n = j + 1. We have to prove that, for every
n′ ≥ n, there exists a homotopy class [hn′

j ] : T → T such that

[hn′

j ][fn′

j+1] = [pjj+1] ∧ [fn′

j ][hn′

j ] = [qjj+1].

This means

Hn′

j Fn′

j+1 = Pj ∧ Fn′

j Hn′

j = Qj ,

where Hn′

j ∈ M2(Z) represents [hn′

j ]. By Theorem 6.4, it suffices to prove

that, for every n ∈ N and every j = 1, . . . , n, there exists Hn+1
j ∈M2(Z) such

that

Hn+1
j Fn+1

j+1 = Pj ∧ Fn+1
j Hn+1

j = Qj .
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A straightforward calculation yields

Hn+1
n = Pn =

[
−1 0
0 22n

]
, Hn+1

n−1 =

[
1 0

23(n−1)+1 −22(n−1)

]
,

Hn+1
n−2 =

[
−1 0

−(23(n−2)+1 − 25(n−2)+4) 22(n−2)

]
, . . . ,

Hn+1
1 =

[
(−1)n 0

(−1)n(24 − 29 + · · ·+ (−1)n2n2

) −22

]
.

This completes the proof.

Remark 7.3. Both examples from above have their roots in the example
of Keesling and Mardešić [9, Section 4]. One can also compare [20, Example
5 and Claim 3], [16, Section 4] and [6].

The final example shows that, in general, by the coarse shape functor
induced function

S∗|· : C(X,Q)→ Sh∗(C,D)(X,Q)

is not surjective (even in the case X ≡ P ∈ ObD).

Example 7.4. Let C = HTop and D = HPol. Let P = {∗} be a singleton
and let Q = {∗} t {∗} (disjoint union). Then

card(HPol(P,Q)) ≡ card([P,Q]) = card(Sh(P,Q)) = 2,

while (see Claim 2 in Section 4)

card(Sh∗(P,Q)) = (card([P,Q]))ℵ0 = 2ℵ0 .

Consequently, the induced function

S∗|· : [P,Q]→ Sh∗(P,Q)

cannot be a surjection.
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[5] H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math.

4 (1933), 145-234.
[6] K. R. Goodearl and T. B. Rushing, Direct limit groups and the Keesling-Mardešić
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