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Abstract. By reducing the Mardešić S-equivalence to a finite case,
i.e., to each n ∈ {0} ∪ N separately, we have derived the notions of Sn-
equivalence and Sn+1-domination of compacta. The Sn-equivalence for all

n coincides with the S-equivalence. Further, the Sn+1-equivalence implies
Sn+1-domination, and the Sn+1-domination implies Sn-equivalence. The
S0-equivalence is a trivial equivalence relation, i.e., all non empty compacta
are mutually S0-equivalent. It is proved that the S1-equivalence is strictly
finer than the S0-equivalence, and that the S2-equivalence is strictly finer
than the S1-equivalence. Thus, the S-equivalence is strictly finer than the
S1-equivalence. Further, the S1-equivalence classifies compacta which are
homotopy (shape) equivalent to ANR’s up to the homotopy (shape) types.
The S2-equivalence class of an FANR coincides with its S-equivalence class
as well as with its shape type class. Finally, it is conjectured that, for every
n, there exists n′ > n such that the Sn′ -equivalence is strictly finer than
the Sn-equivalence.

1. Introduction

In the year 1968 the shape theory of (metrizable) compacta was founded
by K. Borsuk. The corresponding classification of compacta is strictly coarser
than the homotopy type classification, while on the subclass of locally nice
spaces (compact ANR’s) it coincides with the homotopy type classification.
Since 1976 a few new classifications of compacta have been considered. For
instance, K. Borsuk [1] introduced the relations of quasi-affinity and quasi-
equivalence, while S. Mardešić [6] introduced the S-equivalence relation be-
tween compacta. All of them are the shape type invariant relations. These
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classifications are strictly coarser than the shape type classification ([1, 3,
5]). Moreover, the quasi-equivalence and S-equivalence classifications coin-
cide with the homotopy type classification on compact ANR’s.

The S-equivalence is an equivalence relation on the class of all compacta,
which is defined by means of a certain condition depending on every n ∈ N.
Mardešić and the first named author noticed in [8] that it makes sense to
consider “the finite parts” of this condition. By following this idea, we have
reduced the mentioned condition to the finite cases, i.e., to every n ∈ {0}∪N
separately. In that way we have derived the notions of Sn-equivalence and
Sn+1-domination of compacta (Definition 2.3). The Sn-equivalence for all
n ∈ {0} ∪ N coincides with the S-equivalence. Further, the Sn+1-equivalence
implies Sn+1-domination, and the Sn+1-domination implies Sn-equivalence
(Lemma 2.4). The S0-equivalence is a trivial equivalence relation, i.e., all
nonempty compacta are mutually S0-equivalent. The S1-equivalence is not
trivial (Theorem 2.6), and it is strictly coarser than the S2-equivalence (The-
orem 2.8). Thus, it is strictly coarser than the S-equivalence. The S1-
equivalence restricted to compacta having the homotopy types of ANR’s co-
incides with the homotopy type classification (Theorem 2.10). Similarly, the
S1-equivalence restricted to the class of all FANR’s (compacta having the
shapes of ANR’s, Lemma 2.13) coincides with the shape type classification
(Theorem 2.12). A pair of quasi-equivalent compacta [1] is constructed such
that they are not S1-equivalent (Theorem 2.16).

It is noticed that the following properties: connectedness, trivial shape,
shape dimension ≤ n, n-shape connectedness, are invariants of the S1-
domination (Theorem 3.3). Further, the movability and n-movability are
invariants of the S1-equivalence (Theorem 3.4), while the strong movability
(being an FANR) is an invariant of the S2-domination (Theorem 3.5). More-
over, the S2-equivalence class of an FANR coincides with its S-equivalence
class as well as with its shape type class (Corollary 3.6).

At the end, we propose the following two hypotheses (S(X) and Sn(X)
denote the S-equivalence class and Sn-equivalence class of X respectively!):

(1) For every n ∈ {0}∪N, there exists a compactum X such that S(X) &
Sn(X);

(2) There exists a compactum X such that, for every n ∈ {0}∪N, S(X) &
Sn(X).

Clearly, if (2) is true then so is (1). The “argument” (Theorems 4.3 and 4.5)
supporting both hypotheses is the strong presentiment that the S∗-equivalence
[8] should strictly imply the S-equivalence.

2. From the S- to Sn-equivalence

Let cM denote the class of all compact metrizable spaces (compacta), and
let cM denote the class of all inverse sequences over cM. By [6, Definition 1],
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two inverse sequences X,Y ∈ cM are said to be S-equivalent, denoted by
S(Y ) = S(X), provided, for every n ∈ N, the following condition is fulfilled:

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1) · · ·
· · · (∀i′n−1 ≥ in−1)(∃j′n−1 ≥ jn−1)(∀jn ≥ j′n−1)(∃in ≥ i′n−1)

and there exist mappings fk ≡ fn
jk

: Xik
→ Yjk

, k = 1, . . . , n, and gk ≡ gn
i′
k

:

Yj′
k
→ Xi′

k
, k = 1, . . . , n− 1, making the following diagram

(D)

Xi1 ← Xi′1
← · · · ← Xi′n−1

← Xin

↓ f1 ↑ g1 · · · ↑ gn−1 ↓ fn

Yj1 ← Yj′1
← · · · ← Yj′n−1

← Yjn

commutative up to homotopy. Two compacta X and Y are said to be S-
equivalent, denoted by S(Y ) = S(X), provided there exists a pair (equiv-
alently, for every pair) of limits p : X → X and q : Y → Y of inverse
sequences consisting of compact ANR’s such that S(Y ) = S(X) (see [6, Re-
marks 1 and 2, and Definition 2]). If p : X → X is the limit, then we also
say that X is associated with X .

If compacta X and Y have the same shape (type, [7]), Sh(Y ) = Sh(X),
then S(Y ) = S(X). There exist compacta X and Y such that S(Y ) = S(X)
and Sh(Y ) 6= Sh(X) (see [5, Corollary 2], and [3]).

If the choice of indices ik and j′k does not depend on a given n ∈ N
(while the mappings still depend on n, i.e., fk ≡ fn

jk
: Xik

→ Yjk
and gk ≡

gn
i′
k

: Yj′
k
→ Xi′

k
), then the S-equivalence becomes the S∗-equivalence (see

[8, Definitions 6-9] and [11, Lemmas 4 and 5]). There exists a pair X , Y of
compacta such that S∗(Y ) = S∗(X) and Sh(Y ) 6= Sh(X) (see [8]). However,
we have no example yet which could show that the S∗-equivalence is indeed
strictly finer than the S-equivalence.

Given an n ∈ N, let us denote the above condition, relating Y to X by
(D2n−1). Further, let us denote by (D2n) the following extension of (D2n−1):

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1) · · ·
· · · (∀jn ≥ j′n−1)(∃in ≥ i′n−1)(∀i′n ≥ in)(∃j′n ≥ jn)

and there exist mappings

fk ≡ fn
jk

: Xik
→ Yjk

, gk ≡ gn
i′
k

: Yj′
k
→ Xi′

k
, k = 1, . . . , n,

making diagram (D), extended by adding one rectangle, commutative up to
homotopy.

It is obvious that (relating Y to X), for every m ∈ N,

(Dm+1)⇒ (Dm).

Definition 2.1. Given any X,Y ∈ cM and n ∈ {0} ∪ N, let Sn(X,Y )
denote condition (D2n+1) relating Y to X. Further, let S+

n (X,Y ) denote
condition (D2n+2) relating Y to X.
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By the above definition the next lemma is obviously true.

Lemma 2.2. Let X,Y ∈ cM. Then, for every n ∈ N ∪ {0}, the implica-
tions

Sn+1(X,Y )⇒ (S+
n (X,Y ) ∧ S+

n (Y ,X)) and

S+
n (X ,Y )⇒ (Sn(X,Y ) ∧ Sn(Y ,X))

hold. Furthermore, the following assertions are equivalent:

(i) (∀n ∈ {0} ∪ N) Sn(X,Y );
(ii) (∀n ∈ {0} ∪ N) Sn(Y ,X);
(iii) (∀n ∈ {0} ∪ N) S+

n (X,Y );
(iv) (∀n ∈ {0} ∪ N) S+

n (Y ,X);
(v) S(Y ) = S(X).

According to [8, Remark 1], it makes sense to consider conditions (Dm)
for a given m ∈ N (i.e., conditions Sn(X,Y ) and S+

n (X,Y ) for a given
n ∈ {0}∪N) separately. To be more precise, we need the following definition:

Definition 2.3. Let X and Y be inverse sequences of compacta and let
n ∈ {0}∪N. Then Y is said to be Sn-equivalent to X, denoted by Sn(Y ) =
Sn(X), provided the both conditions Sn(X,Y ) and Sn(Y ,X) are fulfilled.
Further, Y is said to be Sn+1-dominated by X, denoted by Sn+1(Y ) ≤
Sn+1(X), provided condition S+

n (X,Y ) holds. If X and Y are compacta, then
we define Sn(Y ) = Sn(X) (Sn+1(Y ) ≤ Sn+1(X)) provided Sn(Y ) = Sn(X)
(Sn+1(Y ) ≤ Sn+1(X)) for some, equivalently: any, compact ANR inverse
sequences X, Y associated with X, Y respectively.

One can easily verify that the part of Definition 2.3 concerning compacta
is correct (compare [6, Remark 2 and Definition 2]). Consequently, conditions
(Dm), m ∈ N, as well as Sn(X,Y ) and S+

n (X,Y ), n ∈ {0}∪N, are well defined
for ordered pairs of compacta too.

Lemma 2.4. For each n ∈ {0} ∪ N the following assertions hold:

(i) The Sn-equivalence is an equivalence relation on cM.
(ii) The Sn+1-domination is a reflexive and transitive relation on cM.
(iii) (Sn+1(Y ) = Sn+1(X)) ⇒ (Sn+1(Y ) ≤ Sn+1(X) ∧ Sn+1(X) ≤

Sn+1(Y )).
(iv) (Sn+1(Y ) = Sn+1(X))⇒ (Sn(Y ) = Sn(X)).
(v) (Sn+1(Y ) ≤ Sn+1(X))⇒ (Sn(Y ) = Sn(X)).

Further, S(Y ) = S(X) if and only if, for every n ∈ {0}∪N, Sn(Y ) = Sn(X).
Analogous statements hold for compacta.

Proof. The Sn-equivalence is reflexive since condition Sn(X,X) is ob-
viously fulfilled for every X. By fitting together two appropriate diagrams,
we infer that Sn(Y ,Z) and Sn(X ,Y ) imply Sn(X,Z). Therefore, the Sn-
equivalence is transitive. Finally, it is symmetric by definition. Further, the
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Sn+1-domination is obviously reflexive. Since S+
n (X ,Y ) and S+

n (Y ,Z) imply
S+

n (X,Z), it follows that the Sn+1-domination is a transitive relation. The
rest of the proof is straightforward by applying the definitions and Lemma 2.2.

Remark 2.5. For every n ∈ {0} ∪ N and every compactum X , the
class Sn(X) consists of all compacta X ′ such that Sn(X,X ′) and Sn(X ′, X)
hold, i.e., Sn(X ′) = Sn(X). Thus, the notation Sn+1(Y ) ≤ Sn+1(X) for
the domination might sometimes cause ambiguity. However, by transitivity,
Sn+1(Y ) ≤ Sn+1(X), Sn+1(Y

′) ≤ Sn+1(Y ) and Sn+1(X) ≤ Sn+1(X
′) imply

Sn+1(Y
′) ≤ Sn+1(X

′). Hence, we believe the notation of the Sn+1-domination
is sufficiently clear.

One should observe that condition S1(∅, Y ) holds for every Y . On the
other hand, condition S1(Y, ∅) holds if and only if Y = ∅. Thus, S0(Y ) 6= S0(∅)
for every Y 6= ∅. However, for the class of all non empty inverse sequences
of compacta (non empty compacta), the S0-equivalence is the trivial relation.
Namely, it is obvious that, for every pair of non empty X,Y ∈ cM (non empty
compacta X , Y ), S0(Y ) = S0(X) (S0(Y ) = S0(X)). Therefore, for every non
empty compactum X , the class S0(X) = cM\ {∅}. Nevertheless, the next
theorem, i.e., the example, shows that, for every n > 0, the Sn-equivalence is
not trivial even for compacta which are closely related homotopically.

Theorem 2.6. There exists a pair X, Y of compacta such that Y is
homotopy dominated by X, Y ≤ X, and X is homotopy dominated by Y ,
X ≤ Y (and thus, S1(Y ) ≤ S1(X) and S1(X) ≤ S1(Y )), but Sn(Y ) 6= Sn(X)
for every n ∈ N.

Proof. One can easily prove that Y ≤ X implies S+
0 (X,Y ), and thus,

S1(Y ) ≤ S1(X) (see the proof of a stronger assertion of Theorem 2.15 below).
Therefore, it suffices to construct a pair X , Y of compacta such that Y ≤ X ,
X ≤ Y and S1(Y ) 6= S1(X). Hence, the next example gives a proof.

Example 2.7. Let X = L× S1, where L ⊆ R is the image of an injective
convergent sequence together with its limit point, while S1 is the standard
1-sphere. Let Y = {∗} tX (disjoint union). Notice that X is a retract of Y ,
and thus, X ≤ Y . On the other side, Y is homeomorphic to a retract of X ,
and thus, Y ≤ X . However, X and Y are not S1-equivalent.

To prove that S1(Y ) 6= S1(X), it suffices to show that S1(Y,X) does not
hold. Let X = (Xi, pii′ ,N), where

Xi =
it

k=1
Sk, Sk = S1, i ∈ N,

pi,i+1 : Xi+1 → Xi,

pi,i+1|Sk =

{
id : Sk → Sk, k 6= i+ 1
id : Si+1 → S1, k = i+ 1

.
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Let Y = (Yj , qjj′ ,N), where Yj = Xj t {∗} and qj,j+1 is the extension of
pj,j+1 such that qj,j+1(∗) = ∗, j ∈ N. Clearly, lim X = X and lim Y = Y .
It remains to prove that condition S1(Y ,X) does not hold. Suppose, on the
contrary, that

(∀i1)(∃j1)(∀j′1 ≥ j1)(∃i′1 ≥ i1)(∀i2 ≥ i′1)(∃j2 ≥ j′1)
and there exist mappings g′k : Yjk

→ Xik
, k = 1, 2, and f ′1 : Xi′1

→ Yj′1
making

the corresponding diagram commutative up to homotopy. Since, for every
pair j ≤ j′, qjj′ (∗) = ∗ is a (path) component, there exists an Sk ⊆ Xi′1

such

that f ′1[Sk] = {∗}. Therefore, the restriction (g′1qj1j′1
f ′1)|Sk of the composition

g′1qj1j′1
f ′1 : Xi′1

→ Xi1 is null homotopic. However, the restriction pi1i′1
|Sk of

the bonding mapping pi1i′1
: Xi′1

→ Xi1 is the identity mapping on the 1-
sphere. This is a contradiction.

The main goal of this work is to prove that the S1-equivalence and S2-
equivalence are indeed the two different equivalence relations, i.e., that the
S2-equivalence is strictly finer than the S1-equivalence. Consequently, the
S1-equivalence differs from the S- and S∗-equivalence (see [8, Remark 1]).

Theorem 2.8. There exists a pair X, Y of compacta such that S1(Y ) =
S1(X) and S2(Y ) 
 S2(X).

Proof. The proof follows by Lemma 2.4(v), (iii), and Example 2.9 below
(see also [9, Example 4 and Claim 2]).

Example 2.9. Let X be the image of an injective convergent sequence in
R together with its limit point. For instance, X = { 1

n | n ∈ N}∪{0} ⊆ R. Let
Y = X tX (disjoint union). Then S2(X) ≤ S2(Y ), while S2(Y ) 
 S2(X).

To prove this, let us consider the associated compact ANR-sequences
X = (Xi, pii′) and Y = (Yj = Xj t Xj , qjj′ ) consisting of finite ANR’s,
having cardinalities |Xi| = i and |Yj | = 2j, and surjective bonding mappings
defined in the obvious way. (The “exploding” point ∗ of Xi yields the point
∗ and exactly one new point of Xi+1, while all the other fibres of pi,i+1 are
singletons. The mapping qj,j+1 consists of two copies of pj,j+1.) In this case,
every homotopy commutative diagram relating X and Y is commutative.
We have to show that S2(X) ≤ S2(Y ), i.e., that condition S+

1 (Y ,X) holds.
Given an i1 ∈ N, put j1 = i1, and denote

Xi1 = {∗} t A1,

Yj1 = {∗} tA1 t {∗′} t A′1.
Hereby, ∗′ and A′1 are the copies of ∗ and A1 respectively. The same notations
of the corresponding subsets should not cause ambiguity. Given a j ′1 ≥ j1,
put i′1 = 2j′1, and denote

Yj′1
= {∗} t A1 t B2 t {∗′} t A′1 t B′2,
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Xi′1
= {∗} t A1 t C1,

where C1 = B2 t {∗′} t A′1 t B′2.
Given an i2 ≥ i′1, choose the unique j2 ≥ j′1 such that the numbers of the

new points “over ∗” and “over ∗′” equal to the number |Xi2 | − |Xi′1
| of the

new points in Xi2 , and denote

Xi2 = {∗} t A1 t C1 t A3,

Yj2 = {∗} t A1 t B2 tA3 t {∗′} t A′1 t B′2 tA′3.
Given a j′2 ≥ j2, choose the unique i′2 ≥ i2 such that the number of the new
points equals to the half of the number of the new points in Yj′2

, and denote

Yj′2
= {∗} t A1 tB2 t A3 t B4 t {∗′} t A′1 t B′2 tA′3 t B′4,

Xi2 = {∗} t A1 t C1 t A3 tB4.

Then there exist surjections g′1 : Yj1 → Xi1 , f
′
1 : Xi′1

→ Yj′1
(a bijection),

g′2 : Yj2 → Xi2 and an injection f ′2 : Xi′2
→ Yj′2

making the corresponding
diagram commutative (see the picture below).

A1 A′1
∗ ∗′ ←

A1 A′1
B2 B′2
∗ ∗′

←
A1 A′1
B2 B′2
A3 A′3
∗ ∗′

←

A1 A′1
B2 B′2
A3 A′3
B4 B′4
∗ ∗′

g′1 ↓ f ′1 ↑ ↓ g′2 ↑ f ′2

A1

∗ ←
A1

C1

∗
←

A1

C1

A3

∗
←

A1

C1

A3

B4

∗
More precisely:

g′1[A1] = A1, g
′
1[{∗} t {∗′} t A′1] = {∗′};

f ′1|({∗} t A1) = g′−1
1 |({∗} t A1), f

′
1[B2] = B2,

f ′1(∗′) = ∗′, f ′1[A′1] = A′1, f
′
1[B
′
2] = B′2;

g′2 is the inverse of f ′1 on the set of all “old” points, while g′2[A3] = A3,
g′2[A

′
3] = {∗′};

similarly, f ′2 is the inverse of g′2 wherever it makes sense, while
f ′2[B4] = B4.

Thus, S+
1 (Y ,X) is fulfilled.

It remains to show that S+
1 (X ,Y ) can not be fulfilled, i.e., that S2(Y ) 


S2(X). Let us analyze condition S1(X ,Y ). (Notice that conditions S1(X,Y )
and S1(Y ,X) hold by S+

1 (Y ,X); see also Lemma 2.4(v).) Given a j1 ∈ N,
one has to choose an appropriate i1 ≥ 2j1, i.e.,

Yj1 = {∗} t B1 t {∗′} t B′1,
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Xi1 = {∗} t C1,

where C1 = B1 t {∗′} tB′1 tA1 (if i1 > 2j1 then A1 6= ∅; the same notations
of the corresponding subsets should not cause ambiguity).

Given an i′1 ≥ i1, one has to choose an appropriate j ′1 ≥ i′1, i.e.,

Xi′1
= {∗} t C1 t A2,

Yj′1
= {∗} t B1 t B2 t {∗′} t B′1 t B′2,

where |B2| = |B′2| ≥ 1
2 (|A1|+ |A2|).

Given a j2 ≥ j′1, one has to choose an appropriate i2 ≥ j2, i.e.,

Yj2 = {∗} t B1 t B2 t B3 t {∗′} t B′1 t B′2 t B′3,
Xi2 = {∗} t C1 t A2 t C3,

where C3 = B3 t B′3 t A3.
Then there exist surjections f1 : Xi1 → Yj1 , g1 : Yj′1

→ Xi′1
and a

function f2 : Xi2 → Yj2 making the corresponding diagram commutative (see
the picture below).

C1

∗ ←
C1

A2

∗
←

C1

A2

C3

∗
f1 ↓ g1 ↑ ↓ f2

B1 B′1
∗ ∗′ ←

B1 B′1
B2 B′2
∗ ∗′

1

←
B1 B′1
B2 B′2
B3 B′3
∗ ∗′

1

More precisely,
f1(∗) = ∗, f1[B1] = B1, f1(∗′) = ∗′, f1[B′1] = B′1, while f1|A1 may

vary;
g1|({∗} tB1 t {∗′} t B′1) is the “inverse” of f1, while
g1|(B2 t B′2) may slightly vary up to the required commutativity:
f2|({∗} t C1 tA2) is the “inverse” of g1, while f2[C3] ⊆ {∗} tB3.

Since all the bonding mappings are surjective, condition S+
1 (X,Y ) would

imply f2 also to be surjective. However, there does not exist any i2 which
admits a suitable surjection f2 : Xi2 → Yj2 . Namely, if one chooses an i2
large enough such that there exists a surjection f2 of Xi2 onto Yj2 , then
g1qj′1j2f2 6= pi′1i2 . Indeed, the image by pi′1i2 of the subset of C3 ⊆ Xi2 ,
corresponding to B3 t B′3 ⊆ Yj2 , is the “exploding” point ∗ ∈ Xi′1

, while the
image by g1qj′1j2 of B′3 is {∗′} ⊆ Xi′1

. The same obstruction remains for every

possible choice of the preceding indices i1 and j′1 and every choice of suitable
surjections f1 and g1. Therefore, since f2 can not be surjective, a desired g2
does not exist. Thus, S+

1 (X,Y ) can not be fulfilled.
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We shall now consider the Sn-equivalence on the subclass of all compacta
having the homotopy types (shape types) of ANR′s. The next two theorems
show that condition (D3) characterizes the homotopy (shape) types within
the class of all compacta which are homotopy (shape) equivalent to ANR’s.
Therefore, the S1-equivalence on the considered class coincides with the ho-
motopy (shape) type classification on it.

Theorem 2.10. Let X and Y be compacta having the homotopy types of
ANR’s. Then the following statements are equivalent:

(i) S1(X,Y ) or S1(Y,X) is fulfilled;
(ii) S1(Y ) = S1(X);
(iii) S2(Y ) ≤ S2(X);
(iv) S2(X) ≤ S2(Y );
(v) (∀n ∈ {0} ∪ N) Sn(Y ) = Sn(X);
(vi) S(Y ) = S(X);
(vii) S∗(Y ) = S∗(X);
(viii) Sh(Y ) = Sh(X);
(ix) Y ' X.

Proof. It suffices to prove that (i) implies (ix). First, consider the case
X ' P and Y ' Q, where P and Q are compact ANR’s. In this case, we may
assume that X = P and Y = Q. Let us consider the trivial inverse sequences
X (each Xi = X and each pii′ is the identity mapping) and Y (each Yj = Y
and each qjj′ is the identity mapping) associated with X and Y respectively.
By S1(X ,Y ), there exists the following homotopy commutative diagram:

X
1← X

1← X

↓ f1 ↑ g1 ↓ f2

Y ←−
1

Y ←−
1

Y

Thus, f1g1 ' 1Y , g1f2 ' 1X and f1 ' f2, which means Y ' X . In the same
way S1(Y ,X) implies Y ' X . Consider now the general case, i.e., X ' P
and Y ' Q, where P and Q are ANR’s. Let X, Y be a pair of compact ANR
inverse sequences associated with X , Y respectively. Let P and Q be the
trivial inverse sequences associated with P and Q respectively. Notice that
the limits p : X →X, q : Y → Y , 1P : P → P and 1Q : Q→ Q are also the
ANR-rsolutions (see [7, I.6.1]). Consequently (see [7, Theorem I.6.2]), they
induce the corresponding HANR-expansions Hp : X → HX, Hq : Y → HY ,
H1P : P → HP and H1Q : Q → HQ respectively. Since Sh(P ) = Sh(X)
and Sh(Y ) = Sh(Q), the systems HP and HX as well as HY and HQ are
two pairs of isomorphic objects of the (pro)category pro-HANR. Then, by
the Morita lemma ([9, Theorem 1.1]) and by S1(X ,Y ), we can obtain the
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following homotopy commutative diagram:

P
1←− P

1←− P

↓ ↖ ↓ ↖ ↓
Xi1 ←− Xi′1

←− Xi2

↓ ↑ ↓
Yj1 ←− Yj′1

←− Yj2

↓ ↖ ↓ ↖ ↓
Q ←−

1
Q ←−

1
Q

It yields the next homotopy commutative diagram:

P
1←− P

↓ ↖ ↓
Q ←−

1
Q

Thus, Q ' P , and consequently, Y ' Q ' P ' X . If S1(Y,X) holds, the
proof is analogous.

Remark 2.11. Of course, the class S1(X) of a compact ANR X may
contain a compactum Z which does not have the homotopy type of any ANR.
For instance, the compact topological sinus curve Z = A ∪ B ⊆ R2, where
A = {(ξ, η) ∈ R2 | η = sin 1

ξ , ξ ∈ 〈0, 1]}, B = {(0, η) ∈ R2 | η ∈ [−1, 1]}, is

shape equivalent (and thus, S1-equivalent) to a point X = {∗}, while Z is not
homotopy equivalent to any ANR.

Similarly to Theorem 2.10, the following holds:

Theorem 2.12. Let X and Y be FANR’s. Then the following statements
are equivalent:

(i) S1(X,Y ) or S1(Y,X) is fulfilled;
(ii) S1(Y ) = S1(X);
(iii) S2(Y ) ≤ S2(X);
(iv) S2(X) ≤ S2(Y );
(v) (∀n ∈ {0} ∪ N) Sn(Y ) = Sn(X);
(vi) S(Y ) = S(X);
(vii) S∗(Y ) = S∗(X);
(viii) Sh(Y ) = Sh(X).

To prove the theorem, we need the following lemma (compare [2, Theorem
1.1]).

Lemma 2.13. If a compactum is shape dominated by a compact ANR,
then it is shape equivalent to an ANR.



THE Sn-EQUIVALENCE OF COMPACTA 205

Proof. Let X be a compactum such that Sh(X) ≤ Sh(P ), where P is a
compact ANR. This means thatX is an FANR (see [7, Theorem II.9.14]). IfX
is connected then, by [4, (6.3) Theorem], (X, ∗) is pointed FANR for any choice
of the base point ∗. By [7, Theorem II.9.15], (X, ∗) has the (pointed) shape of
an ANR (Q, ∗). Consequently, Sh(X) = Sh(Q). Consider now the simplest
nonconnected case, i.e., let X consist of two components, X = X1 t X2

(disjoint union). Then an easy analysis shows that Sh(X) ≤ Sh(P ) implies
P = P1 t P2, Sh(X1) ≤ Sh(P1) and Sh(X2) ≤ Sh(P2), where P1 and P2 are
the components of P . Clearly, P1 and P2 are compact ANR’s. Therefore, X1

and X2 are connected FANR’s. Since, by [4, (6.3) Theorem], each connected
FANR is a pointed FANR, we infer that (X1, ∗1) and (X2, ∗2) are pointed
connected FANR’s (for any choice of the base points). By [7, Theorem II.9.15],
there exist ANR’s (Q1, ∗1) and (Q2, ∗2) such that Sh(Xi, ∗i) = Sh(Qi, ∗i),
i = 1, 2. Therefore, Sh(Xi) = Sh(Qi), i = 1, 2. Put Q = Q1 t Q2, which
is an ANR. Then, obviously, Sh(X1 t X2) = Sh(Q1 t Q2), and therefore,
Sh(X) = Sh(X1 t X2) = Sh(Q1 t Q2) = Sh(Q). In the general case of
a nonconnected compactum, the proof proceeds by induction. (It is a well
known fact that every FANR is the disjoint union of at most finitely many
FANR continua.)

Remark 2.14. (a) According to Lemma 2.13, the central theorem of [2]
(Theorem 1.1 in the pointed connected case as well as in the unpointed case)
holds in general.

(b) Lemma 2.13 implies that a compactum is stable if and only if it is
strongly movable, i.e., it is an FANR. Since the class of all compact ANR’s
yields a dense (pro-)category for compacta (admitting a representation of the
shape theory), it makes sense to define the “new” notion of stability for com-
pacta by asking that a stable compactum has to be shape equivalent to a
compact ANR. In this case, stability would strictly imply being an FANR
(strong movability). Namely, there exist compacta shape dominated by com-
pact ANR’s but not shape equivalent to compact ANR’s (see [2]).

Proof of Theorem 2.12. It suffices to prove that (i) implies (viii). As-
sume that condition S1(X,Y ) is fulfilled. First, consider the case Sh(X) =
Sh(P ) and Sh(Y ) = Sh(Q), where P and Q are compact ANR’s. Then,
clearly, condition S1(P,Q) is fulfilled. By Theorem 2.10, Sh(Q) = Sh(P )
(equivalently, Q ' P ), and therefore, Sh(Y ) = Sh(X). Consider now the
general case. Then, by Lemma 2.13, Sh(X) = Sh(P ) and Sh(Y ) = Sh(Q),
where P and Q are ANR’s. Let X, Y be a pair of compact ANR inverse
sequences associated with X , Y respectively. Let P and Q be the trivial
inverse sequences associated with P and Q respectively. Now, by repeating
the appropriate part of the proof of Theorem 2.10 from above, we infer that
Q ' P . Therefore, Sh(Y ) = Sh(Q) = Sh(P ) = Sh(X).

If S1(Y,X) holds, the proof is analogous.
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Theorem 2.15. Let X and Y be compacta such that Y is shape dominated
by X, Sh(Y ) ≤ Sh(X). Then S1(Y ) ≤ S1(X).

Proof. Let X and Y be any compact ANR inverse sequences associated
with X and Y respectively. Then Sh(Y ) ≤ Sh(X), i.e., Y ≤ X in the
corresponding procategory. This means that there exists a pair of maps of
inverse sequences, f : X → Y and g : Y →X, such that fg ' 1Y . Without
loss of generality, one may assume that f and g are special and with the
strictly increasing index functions. By fg ' 1Y , for every j ∈ N, figf(j) '
qjgf(j). Given a j1, put i1 = f(j1), and for every i′1 ≥ i1 put j′1 = g(i′1). Then
j′1 ≥ gf(j1) ≥ j1. Put f1 = fj1 : Xi1 → Yj1 and g1 = gi′1

: Yj′1
→ Xi′1

. Since
fj1gf(j1) ' qj1gf(j1) and pf(j1)j′1

gi′1
' gf(j1)qgf(j1)g(i′1), the diagram

Xi1 ← · · · ← Xi′1

↓ f1 ↖ gf(j1) ↑ g1

Yj1 ← Ygf(j1) ← Yj′1

commutes up to homotopy. Therefore, condition S+
0 (X,Y ) holds. This means

S1(Y ) ≤ S1(X), i.e., S1(Y ) ≤ S1(X).

The first named author proved ([10, Examples 4 and 5]) that the Borsuk
quasi-equivalence [1] and the S-equivalence [6] are mutually independent rela-
tions. In addition, the next theorem shows that the Borsuk quasi-equivalence
and the Sn-equivalence, n > 0, are mutually independent relations. Further-
more, beside Theorem 2.6, it also shows that the implication of Lemma 2.4(iii)
is strict.

Theorem 2.16. There exists a pair X, Y of quasi-equivalent compacta,

Y
q' X, such that condition S1(X,Y ) is fulfilled (which implies S1(Y ) ≤

S1(X) and S1(X) ≤ S1(Y )), while S1(Y ) 6= S1(X).

Proof. The assertion is a consequence of the next example.

Example 2.17. Let X be the same as in Example 2.9, i.e., X = { 1
n | n ∈

N} ∪ {0} ⊆ R. Let Y be the Cantor set. By [1, (6.3) Theorem], X and Y
are quasi-equivalent. We claim that X and Y are not S1-equivalent, though
S1(Y ) ≤ S1(X) and S1(X) ≤ S1(Y ) hold.

We first prove that condition S1(X,Y ) is fulfilled. Let us consider the as-
sociated compact ANR-sequences X = (Xi, pii′) and Y = (Yj , qjj′ ) consisting
of finite ANR’s, |Xi| = i and |Yj | = 2j−1, and surjective bonding mappings
defined in the obvious way. (The “exploding” point ∗ of Xi yields the point
∗ and exactly one new point of Xi+1, while all the other fibres of pi,i+1 are
singletons. Every fiber of qj,j+1 consists of two points.) In this case, every
homotopy commutative diagram relating X and Y is commutative. Given a
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j1 ∈ N, put i1 = 2j1−1, and denote

Yj1 = B1,

Xi1 = B = {∗} t (B \ {∗}).
Given an i′1 ≥ i1, put j′1 = [log2(i

′
1−i1)]+j1+1 (i.e., j′1 is the minimal integer

such that 2j′1−j1 ≥ i′1 − i1), and denote

Xi′1
= {∗} t (B \ {∗}) t A,

Yj′1
= 2j′1−j1B

(which suggests that Yj′1
consists of 2j′1−j1 disjoint copies of B and implies

that
∣∣Yj′1

∣∣ ≥
∣∣Xi′1

∣∣). Given a j2 ≥ j′1, choose any i2 ≥ i′1, and denote

Yj2 = 2j2−j′1(2j′1−j1B) = Yj′1
= 2j2−j1B,

Xi2 = {∗} t (B \ {∗}) t A t A′.
Then there exist a bijection f1 : Xi1 → Yj1 , a surjection g1 : Yj′1

→ Xi′1
and a

function f2 : Xi2 → Yj2 making the corresponding diagram commutative (see
the picture below; the notations are quite similar to those of Example 2.9).

B \ {∗}
∗ ←

B \ {∗}
A
∗

←
B \ {∗}
A
A′

∗
f1 ↓ g1 ↑ ↓ f2

B ← 2j′1−j1B ← 2j2−j1B

More precisely, starting with a bijection f1, a desired surjection g1 can be
defined by means of the inverse of f1 on every copy of B \ {f1(∗)}, while the
subset of all other points g1 has to send onto the subset A t {∗}. Finally, a
desired function f2 can be easily defined according to commutativity of the
right rectangle. Therefore, condition S1(X,Y ), i.e., S1(X,Y ) is fulfilled. By
Lemma 2.2, it implies S+

0 (X,Y ) and S+
0 (Y,X), and thus, S1(Y ) ≤ S1(X)

and S1(X) ≤ S1(Y ). (Notice that S1(X) ≤ S1(Y ) also holds by Theorem 2.8,
since X is a retract of Y , and thus, Sh(X) ≤ Sh(Y ) )

Let us now prove that S1(Y ) 6= S1(X). It suffices to show that condition
S1(Y ,X) can not be fulfilled. Consider a diagram (see the picture below)
realizing condition S+

0 (Y ,X),

{∗} t A t B ← 2j′1−j1({∗} t A t B)

g′1 ↓ f ′1 ↑

A
∗ ←

A
A′

∗
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where Xi1 = {∗} t A, Yj1 = {∗} t A t B, Yj′1
= 2j′1−j1({∗} t A t B), Xi′1

=
{∗} t A t A′.

Notice that g′1 must be a surjection. Furthermore, any commutative ex-
tension of the above diagram to the right (including a new mapping g′2) asks
for f ′1 also to be a surjection. Namely, all the bonding mappings are surjective.
Now, one should observe that, in general, f ′1 can not be surjective. Indeed, an
easy analysis shows that if one chooses an i′1 large enough such that it admits
a surjection f ′1 of Xi′1

onto Yj′1
(A′ via i′1 can supply as many new points as

one needs), then g′1qj1j′1
f ′1 6= pi1i′1

. Consequently, a desired g′2 does not exist,
i.e., condition S1(Y ,X) can not be fulfilled.

3. The applications

By [12] and [2, Theorem 1.1], there are FANR’s (compacta shape equiv-
alent to ANR’s, see Lemma 2.13) which are not shape equivalent to compact
ANR’s. According to Theorem 2.12, the next corollary arises.

Corollary 3.1. If an FANR is not shape equivalent to any compact
ANR, then it is not S1-equivalent to any compact ANR.

Proof. Let Y be an FANR, i.e., Sh(Y ) 6= Sh(P ) for every compact
ANR P . Then S1(Y ) 6= S1(P ) for every compact ANR P . Indeed, if there
would exist a compact P such that S1(Y ) = S1(P ), then by Theorem 2.12,
one would have Sh(Y ) = Sh(P ), which is a contradiction.

An immediate consequence of Corollary 3.1 is the next corollary:

Corollary 3.2. Let X and Y be FANR’s. If X is S1-equivalent (shape
equivalent) to a compact ANR, and Y is not shape equivalent (S1-equivalent)
to any compact ANR, then S1(Y ) 6= S1(X).

According to [8, Remark 1] and our definitions and notations, our Theo-
rems 3.3, 3.4 and 3.5 below improve [6, Theorems 4, 5, 6, 7 and 7′] as well as
[8, Theorems 3, 4] (see also the proofs of the mentioned theorems).

Theorem 3.3. Let X and Y be compacta such that S1(Y ) ≤ S1(X), i.e.,
let condition S+

0 (X,Y ) be fulfilled. Then the following assertions hold:

(i) If X is connected, then so is Y ;
(ii) If Sh(X) = 0, then also Sh(Y ) = 0;
(iii) If the fundamental dimension Fd(X) ≤ n, then also Fd(Y ) ≤ n;
(iv) If X is n-shape connected, then so is Y .

Proof. In the proof of [6, Theorem 4] only condition S+
0 (X,Y ) of S(Y ) =

S(X) is used.

Theorem 3.4. Let X and Y be compacta such that condition S1(X,Y )
is fulfilled. If X is movable (n-movable), then so is Y .
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Proof. In the proof of [6, Theorem 5] only condition S1(X,Y ) of S(Y ) =
S(X) is used.

The next theorem improves [6, Theorems 5, 7 and 7′].

Theorem 3.5. Let X and Y be compacta such that S2(Y ) ≤ S2(X),
i.e., let condition S+

1 (X,Y ) be fulfilled. If X is an FANR, then so is Y and
Sh(Y ) = Sh(X).

Proof. First of all, by Lemma 2.13, one should notice that in [6, The-
orem 7′], the assumption “if X is a pointed FANR” may be weakened to “if
X is an FANR”. Namely, in its proof only the fact that X has the shape of
an ANR is used. Further, in the proof of [6,Theorem 6] (and, consequently,
[6, Theorems 7 and 7′]), only condition S+

1 (X,Y ) of S(Y ) = S(X) is applied.
The conclusion follows.

Corollary 3.6. The shape class of an FANR is determined by its S2-
domination. Therefore, if X is an FANR, then S2(X) = S(X) = S∗(X) =
Sh(X).

Proof. It suffices to prove that S2(X) ⊆ Sh(X). Let Y ∈ S2(X), i.e.,
S2(Y ) = S2(X). Then, by Lemma 2.4 (iii) and Theorem 3.5, Sh(Y ) = Sh(X),
i.e., Y ∈ Sh(X).

Problem 3.1. Does there exist a compact ANR (an FANR) X such that
S1(X) \ S2(X) 6= ∅ (equivalently, S1(X) \ Sh(X) 6= ∅)?

Remark 3.7. Concerning the problem, consider an FANR X which is
shape equivalent to a compact ANR P . Then S1(X)\S2(X) = S1(P )\S2(P ).
Therefore, in this case, the problem reduces to compact ANR’s. Let Y ∈
S1(P ). By Theorem 3.4, Y is movable, which one can clearly see from the
diagram below.

P
1←− P

1←− P

↓ f1 ↑ g1 ↓ f2

Yj1 ←− Yj′1

r

� Yj2

Namely, S1(P, Y ) yields a desired r = f2g1 : Yj′1
→ Yj2 . Further, Y is semi-

stable (see [10, Definition 3 and Lemma 4]), which is the complementary part
of the strong movability. This one can see from the diagram below.

Yj1

r′

� Yj′1
←− Yj2

↓ g′1 ↑ f ′1 ↓ g′2

P
1←− P

1←− P

Namely, S1(Y, P ) yields a desired r′ = f ′1g
′
1 : Yj1 → Yj′1

. However, we can
not closely enough relate r and r′ (by a homotopy), and thus, we may not
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conclude that Y is strongly movable (i.e., an FANR). In other words, although
movability and semi-stability are the S1-invariants, we do not know whether
the strong movability (movability and semi-stability with the same mappings)
is an S1-invariant. (By Theorem 3.5, it is an invariant of the S2-domination.)

4. Two conjectures

Let us denote the compactum X of Example 2.9 by L, and the Cantor
set by C. Then, by [1, (6.3) Theorem] and our Examples 2.9 and 2.17 as well
as by [10, Remark 11], the above examples imply the following results:

Conclusion 4.1. L t L q' L
q' C, S(L t L) 6= S(L) 6= S(C) and S(L t

L) 6= S(C).
The same holds for the S∗-equivalence. Further, we have shown that

S1(L t L) = S1(L) 6= S1(C) and S2(L t L) 6= S2(L).
More precisely,

S1(L,C) holds (which implies S1(C) ≤ S1(L) and S1(L) ≤ S1(C));
S1(C,L) does not hold (which implies S1(C) 6= S1(L));
S+

1 (L t L,L) holds (which means S2(L) ≤ S2(L t L) and implies
S1(L t L) = S1(L));
S+

1 (L,L t L) does not hold (which means S2(L t L) 
 S2(L) and
implies S2(L t L) 6= S2(L)).

According to these facts, one is tempted to state the following hypothesis:

Conjecture 4.2. For every n ∈ {0} ∪ N there exists a compactum X
such that S(X) $ Sn(X).

Theorem 4.3. If Conjecture 4.2 is false, then the S-equivalence reduces
to a unique Sn-equivalence, n ≥ 2. Consequently, the S-equivalence and S∗-
equivalence would coincide.

Proof. Clearly, for every n ∈ {0}∪N and every compactum X , S(X) ⊆
Sn+1(X) ⊆ Sn(X) holds by definitions. Thus, if Conjecture 4.2 is false, there
exists an n ∈ {0} ∪ N such that, for every compactum X and every n′ ≥ n,
S(X) = Sn′(X) = Sn(X). Theorem 2.8 implies that n ≥ 2. Consequently,
the second claim follows by [11, Lemma 4].

On the other hand, if Conjecture 4.2 is true then the following stronger
hypothesis makes sense:

Conjecture 4.4. There exists a compactum X such that, for every n ∈
{0} ∪ N, S(X) $ Sn(X). Equivalently, there exist a compactum X and a
strictly increasing sequence (nk) in {0} ∪ N, n1 = 0, such that, for every
k ∈ N, S(X) & Snk+1

(X) = · · · = Snk+1(X) & Snk
(X).

Clearly, if Conjecture 4.4 is true then so is Conjecture 4.2.
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Theorem 4.5. If Conjecture 4.4 is false, then each S-equivalence class is
an Sn-equivalence class. Consequently, the S-equivalence and S∗-equivalence
would coincide.

Proof. If Conjecture 4.4 is false then, for every compactum X , there
exists an nX ∈ {0} ∪ N such that (∀n ≥ nX) S(X) = Sn(X) = SnX

(X).
Thus, the second assertion follows by [11, Lemma 4].
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