THE S_{n}-EQUIVALENCE OF COMPACTA

Nikica Uglešić and Branko Červar
University of Zadar and University of Split, Croatia

Dedicated to Professor Sibe Mardešić on the occasion of his 80th birthday

Abstract. By reducing the Mardešić S-equivalence to a finite case, i.e., to each $n \in\{0\} \cup \mathbb{N}$ separately, we have derived the notions of $S_{n^{-}}$ equivalence and S_{n+1}-domination of compacta. The S_{n}-equivalence for all n coincides with the S-equivalence. Further, the S_{n+1}-equivalence implies S_{n+1}-domination, and the S_{n+1}-domination implies S_{n}-equivalence. The S_{0}-equivalence is a trivial equivalence relation, i.e., all non empty compacta are mutually S_{0}-equivalent. It is proved that the S_{1}-equivalence is strictly finer than the S_{0}-equivalence, and that the S_{2}-equivalence is strictly finer than the S_{1}-equivalence. Thus, the S-equivalence is strictly finer than the S_{1}-equivalence. Further, the S_{1}-equivalence classifies compacta which are homotopy (shape) equivalent to ANR's up to the homotopy (shape) types. The S_{2}-equivalence class of an FANR coincides with its S-equivalence class as well as with its shape type class. Finally, it is conjectured that, for every n, there exists $n^{\prime}>n$ such that the $S_{n^{\prime}}$-equivalence is strictly finer than the S_{n}-equivalence.

1. Introduction

In the year 1968 the shape theory of (metrizable) compacta was founded by K. Borsuk. The corresponding classification of compacta is strictly coarser than the homotopy type classification, while on the subclass of locally nice spaces (compact ANR's) it coincides with the homotopy type classification. Since 1976 a few new classifications of compacta have been considered. For instance, K. Borsuk [1] introduced the relations of quasi-affinity and quasiequivalence, while S . Mardešić [6] introduced the S-equivalence relation between compacta. All of them are the shape type invariant relations. These

2000 Mathematics Subject Classification. 55P55.
Key words and phrases. Compactum, ANR, shape, S-equivalence.
classifications are strictly coarser than the shape type classification ([1, 3, 5]). Moreover, the quasi-equivalence and S-equivalence classifications coincide with the homotopy type classification on compact ANR's.

The S-equivalence is an equivalence relation on the class of all compacta, which is defined by means of a certain condition depending on every $n \in \mathbb{N}$. Mardešić and the first named author noticed in [8] that it makes sense to consider "the finite parts" of this condition. By following this idea, we have reduced the mentioned condition to the finite cases, i.e., to every $n \in\{0\} \cup \mathbb{N}$ separately. In that way we have derived the notions of S_{n}-equivalence and S_{n+1}-domination of compacta (Definition 2.3). The S_{n}-equivalence for all $n \in\{0\} \cup \mathbb{N}$ coincides with the S-equivalence. Further, the S_{n+1}-equivalence implies S_{n+1}-domination, and the S_{n+1}-domination implies S_{n}-equivalence (Lemma 2.4). The S_{0}-equivalence is a trivial equivalence relation, i.e., all nonempty compacta are mutually S_{0}-equivalent. The S_{1}-equivalence is not trivial (Theorem 2.6), and it is strictly coarser than the S_{2}-equivalence (Theorem 2.8). Thus, it is strictly coarser than the S-equivalence. The S_{1-} equivalence restricted to compacta having the homotopy types of ANR's coincides with the homotopy type classification (Theorem 2.10). Similarly, the S_{1}-equivalence restricted to the class of all FANR's (compacta having the shapes of ANR's, Lemma 2.13) coincides with the shape type classification (Theorem 2.12). A pair of quasi-equivalent compacta [1] is constructed such that they are not S_{1}-equivalent (Theorem 2.16).

It is noticed that the following properties: connectedness, trivial shape, shape dimension $\leq n, n$-shape connectedness, are invariants of the $S_{1^{-}}$ domination (Theorem 3.3). Further, the movability and n-movability are invariants of the S_{1}-equivalence (Theorem 3.4), while the strong movability (being an FANR) is an invariant of the S_{2}-domination (Theorem 3.5). Moreover, the S_{2}-equivalence class of an FANR coincides with its S-equivalence class as well as with its shape type class (Corollary 3.6).

At the end, we propose the following two hypotheses $\left(S(X)\right.$ and $S_{n}(X)$ denote the S-equivalence class and S_{n}-equivalence class of X respectively!):
(1) For every $n \in\{0\} \cup \mathbb{N}$, there exists a compactum X such that $S(X) \varsubsetneqq$ $S_{n}(X)$;
(2) There exists a compactum X such that, for every $n \in\{0\} \cup \mathbb{N}, S(X) \varsubsetneqq$ $S_{n}(X)$.
Clearly, if (2) is true then so is (1). The "argument" (Theorems 4.3 and 4.5) supporting both hypotheses is the strong presentiment that the S^{*}-equivalence [8] should strictly imply the S-equivalence.

2. From the S - to S_{n}-EQUIVALENCE

Let $c \mathcal{M}$ denote the class of all compact metrizable spaces (compacta), and let $c \underline{\mathcal{M}}$ denote the class of all inverse sequences over $c \mathcal{M}$. By [6, Definition 1],
two inverse sequences $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$ are said to be S-equivalent, denoted by $S(\boldsymbol{Y})=S(\boldsymbol{X})$, provided, for every $n \in \mathbb{N}$, the following condition is fulfilled:

$$
\begin{aligned}
& \left(\forall j_{1}\right)\left(\exists i_{1}\right)\left(\forall i_{1}^{\prime} \geq i_{1}\right)\left(\exists j_{1}^{\prime} \geq j_{1}\right)\left(\forall j_{2} \geq j_{1}^{\prime}\right)\left(\exists i_{2} \geq i_{1}^{\prime}\right) \cdots \\
& \cdots\left(\forall i_{n-1}^{\prime} \geq i_{n-1}\right)\left(\exists j_{n-1}^{\prime} \geq j_{n-1}\right)\left(\forall j_{n} \geq j_{n-1}^{\prime}\right)\left(\exists i_{n} \geq i_{n-1}^{\prime}\right)
\end{aligned}
$$

and there exist mappings $f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}, k=1, \ldots, n$, and $g_{k} \equiv g_{i_{k}^{\prime}}^{n}$: $Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}, k=1, \ldots, n-1$, making the following diagram

$$
\begin{array}{llllllllll}
& X_{i_{1}} & \leftarrow & X_{i_{1}^{\prime}} & \leftarrow & \cdots & \leftarrow & X_{i_{n-1}^{\prime}} & \leftarrow & X_{i_{n}} \\
\downarrow & & & \uparrow g_{1} & & g_{1} & & \cdots & & \uparrow g_{n-1} \\
& & \downarrow f_{n} \\
& Y_{j_{1}} & \leftarrow & Y_{j_{1}^{\prime}} & \leftarrow & \cdots & \leftarrow & Y_{j_{n-1}^{\prime}} & \leftarrow & Y_{j_{n}}
\end{array}
$$

commutative up to homotopy. Two compacta X and Y are said to be S equivalent, denoted by $S(Y)=S(X)$, provided there exists a pair (equivalently, for every pair) of limits $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ and $\boldsymbol{q}: Y \rightarrow \boldsymbol{Y}$ of inverse sequences consisting of compact ANR's such that $S(\boldsymbol{Y})=S(\boldsymbol{X})$ (see [6, Remarks 1 and 2, and Definition 2]). If $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ is the limit, then we also say that \boldsymbol{X} is associated with X.

If compacta X and Y have the same shape (type, [7]), $\operatorname{Sh}(Y)=\operatorname{Sh}(X)$, then $S(Y)=S(X)$. There exist compacta X and Y such that $S(Y)=S(X)$ and $\operatorname{Sh}(Y) \neq \operatorname{Sh}(X)$ (see [5, Corollary 2], and [3]).

If the choice of indices i_{k} and j_{k}^{\prime} does not depend on a given $n \in \mathbb{N}$ (while the mappings still depend on n, i.e., $f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}$ and $g_{k} \equiv$ $g_{i_{k}^{\prime}}^{n}: Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}$), then the S-equivalence becomes the S^{*}-equivalence (see [8, Definitions 6-9] and [11, Lemmas 4 and 5]). There exists a pair X, Y of compacta such that $S^{*}(Y)=S^{*}(X)$ and $\operatorname{Sh}(Y) \neq \operatorname{Sh}(X)$ (see [8]). However, we have no example yet which could show that the S^{*}-equivalence is indeed strictly finer than the S-equivalence.

Given an $n \in \mathbb{N}$, let us denote the above condition, relating \boldsymbol{Y} to \boldsymbol{X} by $\left(D_{2 n-1}\right)$. Further, let us denote by $\left(D_{2 n}\right)$ the following extension of $\left(D_{2 n-1}\right)$:

$$
\begin{aligned}
& \left(\forall j_{1}\right)\left(\exists i_{1}\right)\left(\forall i_{1}^{\prime} \geq i_{1}\right)\left(\exists j_{1}^{\prime} \geq j_{1}\right) \cdots \\
& \cdots\left(\forall j_{n} \geq j_{n-1}^{\prime}\right)\left(\exists i_{n} \geq i_{n-1}^{\prime}\right)\left(\forall i_{n}^{\prime} \geq i_{n}\right)\left(\exists j_{n}^{\prime} \geq j_{n}\right)
\end{aligned}
$$

and there exist mappings

$$
f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}, g_{k} \equiv g_{i_{k}^{\prime}}^{n}: Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}, k=1, \ldots, n
$$

making diagram (D), extended by adding one rectangle, commutative up to homotopy.

It is obvious that (relating \boldsymbol{Y} to \boldsymbol{X}), for every $m \in \mathbb{N}$,

$$
\left(D_{m+1}\right) \Rightarrow\left(D_{m}\right)
$$

Definition 2.1. Given any $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$ and $n \in\{0\} \cup \mathbb{N}$, let $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ denote condition $\left(D_{2 n+1}\right)$ relating \boldsymbol{Y} to \boldsymbol{X}. Further, let $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ denote condition $\left(D_{2 n+2}\right)$ relating \boldsymbol{Y} to \boldsymbol{X}.

By the above definition the next lemma is obviously true.
Lemma 2.2. Let $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$. Then, for every $n \in \mathbb{N} \cup\{0\}$, the implications

$$
\begin{gathered}
S_{n+1}(\boldsymbol{X}, \boldsymbol{Y}) \Rightarrow\left(S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y}) \wedge S_{n}^{+}(\boldsymbol{Y}, \boldsymbol{X})\right) \text { and } \\
S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y}) \Rightarrow\left(S_{n}(\boldsymbol{X}, \boldsymbol{Y}) \wedge S_{n}(\boldsymbol{Y}, \boldsymbol{X})\right)
\end{gathered}
$$

hold. Furthermore, the following assertions are equivalent:
(i) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}(\boldsymbol{X}, \boldsymbol{Y})$;
(ii) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}(\boldsymbol{Y}, \boldsymbol{X})$;
(iii) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$;
(iv) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}^{+}(\boldsymbol{Y}, \boldsymbol{X})$;
(v) $S(\boldsymbol{Y})=S(\boldsymbol{X})$.

According to [8, Remark 1], it makes sense to consider conditions (D_{m}) for a given $m \in \mathbb{N}$ (i.e., conditions $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ for a given $n \in\{0\} \cup \mathbb{N}$) separately. To be more precise, we need the following definition:

Definition 2.3. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences of compacta and let $n \in\{0\} \cup \mathbb{N}$. Then \boldsymbol{Y} is said to be S_{n}-equivalent to \boldsymbol{X}, denoted by $S_{n}(\boldsymbol{Y})=$ $S_{n}(\boldsymbol{X})$, provided the both conditions $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and $S_{n}(\boldsymbol{Y}, \boldsymbol{X})$ are fulfilled. Further, \boldsymbol{Y} is said to be S_{n+1}-dominated by \boldsymbol{X}, denoted by $S_{n+1}(\boldsymbol{Y}) \leq$ $S_{n+1}(\boldsymbol{X})$, provided condition $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ holds. If X and Y are compacta, then we define $S_{n}(Y)=S_{n}(X)\left(S_{n+1}(Y) \leq S_{n+1}(X)\right)$ provided $S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$ $\left(S_{n+1}(\boldsymbol{Y}) \leq S_{n+1}(\boldsymbol{X})\right)$ for some, equivalently: any, compact ANR inverse sequences $\overline{\boldsymbol{X}}, \boldsymbol{Y}$ associated with X, Y respectively.

One can easily verify that the part of Definition 2.3 concerning compacta is correct (compare [6, Remark 2 and Definition 2]). Consequently, conditions $\left(D_{m}\right), m \in \mathbb{N}$, as well as $S_{n}(X, Y)$ and $S_{n}^{+}(X, Y), n \in\{0\} \cup \mathbb{N}$, are well defined for ordered pairs of compacta too.

Lemma 2.4. For each $n \in\{0\} \cup \mathbb{N}$ the following assertions hold:
(i) The S_{n}-equivalence is an equivalence relation on $c \underline{\mathcal{M}}$.
(ii) The S_{n+1}-domination is a reflexive and transitive relation on $c \mathcal{M}$.
(iii) $\left(S_{n+1}(\boldsymbol{Y})=S_{n+1}(\boldsymbol{X})\right) \Rightarrow\left(S_{n+1}(\boldsymbol{Y}) \leq S_{n+1}(\boldsymbol{X}) \wedge S_{n+1}(\boldsymbol{X}) \leq\right.$ $\left.S_{n+1}(\boldsymbol{Y})\right)$.
(iv) $\left(S_{n+1}(\boldsymbol{Y})=S_{n+1}(\boldsymbol{X})\right) \Rightarrow\left(S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})\right)$.
(v) $\left(S_{n+1}(\boldsymbol{Y}) \leq S_{n+1}(\boldsymbol{X})\right) \Rightarrow\left(S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})\right)$.

Further, $S(\boldsymbol{Y})=S(\boldsymbol{X})$ if and only if, for every $n \in\{0\} \cup \mathbb{N}, S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$. Analogous statements hold for compacta.

Proof. The S_{n}-equivalence is reflexive since condition $S_{n}(\boldsymbol{X}, \boldsymbol{X})$ is obviously fulfilled for every \boldsymbol{X}. By fitting together two appropriate diagrams, we infer that $S_{n}(\boldsymbol{Y}, \boldsymbol{Z})$ and $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ imply $S_{n}(\boldsymbol{X}, \boldsymbol{Z})$. Therefore, the $S_{n^{-}}$ equivalence is transitive. Finally, it is symmetric by definition. Further, the
S_{n+1}-domination is obviously reflexive. Since $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ and $S_{n}^{+}(\boldsymbol{Y}, \boldsymbol{Z})$ imply $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Z})$, it follows that the S_{n+1}-domination is a transitive relation. The rest of the proof is straightforward by applying the definitions and Lemma 2.2.

Remark 2.5. For every $n \in\{0\} \cup \mathbb{N}$ and every compactum X, the class $S_{n}(X)$ consists of all compacta X^{\prime} such that $S_{n}\left(X, X^{\prime}\right)$ and $S_{n}\left(X^{\prime}, X\right)$ hold, i.e., $S_{n}\left(X^{\prime}\right)=S_{n}(X)$. Thus, the notation $S_{n+1}(Y) \leq S_{n+1}(X)$ for the domination might sometimes cause ambiguity. However, by transitivity, $S_{n+1}(Y) \leq S_{n+1}(X), S_{n+1}\left(Y^{\prime}\right) \leq S_{n+1}(Y)$ and $S_{n+1}(X) \leq S_{n+1}\left(X^{\prime}\right)$ imply $S_{n+1}\left(Y^{\prime}\right) \leq S_{n+1}\left(X^{\prime}\right)$. Hence, we believe the notation of the S_{n+1}-domination is sufficiently clear.

One should observe that condition $S_{1}(\emptyset, Y)$ holds for every Y. On the other hand, condition $S_{1}(Y, \emptyset)$ holds if and only if $Y=\emptyset$. Thus, $S_{0}(Y) \neq S_{0}(\emptyset)$ for every $Y \neq \emptyset$. However, for the class of all non empty inverse sequences of compacta (non empty compacta), the S_{0}-equivalence is the trivial relation. Namely, it is obvious that, for every pair of non empty $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$ (non empty compacta $X, Y), S_{0}(\boldsymbol{Y})=S_{0}(\boldsymbol{X})\left(S_{0}(Y)=S_{0}(X)\right)$. Therefore, for every non empty compactum X, the class $S_{0}(X)=c \mathcal{M} \backslash\{\emptyset\}$. Nevertheless, the next theorem, i.e., the example, shows that, for every $n>0$, the S_{n}-equivalence is not trivial even for compacta which are closely related homotopically.

Theorem 2.6. There exists a pair X, Y of compacta such that Y is homotopy dominated by $X, Y \leq X$, and X is homotopy dominated by Y, $X \leq Y$ (and thus, $S_{1}(Y) \leq S_{1}(X)$ and $S_{1}(X) \leq S_{1}(Y)$), but $S_{n}(Y) \neq S_{n}(X)$ for every $n \in \mathbb{N}$.

Proof. One can easily prove that $Y \leq X$ implies $S_{0}^{+}(X, Y)$, and thus, $S_{1}(Y) \leq S_{1}(X)$ (see the proof of a stronger assertion of Theorem 2.15 below). Therefore, it suffices to construct a pair X, Y of compacta such that $Y \leq X$, $X \leq Y$ and $S_{1}(Y) \neq S_{1}(X)$. Hence, the next example gives a proof.

Example 2.7. Let $X=L \times \mathbb{S}^{1}$, where $L \subseteq \mathbb{R}$ is the image of an injective convergent sequence together with its limit point, while \mathbb{S}^{1} is the standard 1-sphere. Let $Y=\{*\} \sqcup X$ (disjoint union). Notice that X is a retract of Y, and thus, $X \leq Y$. On the other side, Y is homeomorphic to a retract of X, and thus, $Y \leq X$. However, X and Y are not S_{1}-equivalent.

To prove that $S_{1}(Y) \neq S_{1}(X)$, it suffices to show that $S_{1}(Y, X)$ does not hold. Let $\boldsymbol{X}=\left(X_{i}, p_{i i^{\prime}}, \mathbb{N}\right)$, where

$$
\begin{gathered}
X_{i}=\stackrel{i}{k=1}_{i}^{S_{k}}, S_{k}=\mathbb{S}^{1}, i \in \mathbb{N} \\
p_{i, i+1}: X_{i+1} \rightarrow X_{i}, \\
p_{i, i+1} \left\lvert\, S_{k}= \begin{cases}i d: S_{k} \rightarrow S_{k}, & k \neq i+1 \\
i d: S_{i+1} \rightarrow S_{1}, & k=i+1\end{cases} \right.
\end{gathered}
$$

Let $\boldsymbol{Y}=\left(Y_{j}, q_{j j^{\prime}}, \mathbb{N}\right)$, where $Y_{j}=X_{j} \sqcup\{*\}$ and $q_{j, j+1}$ is the extension of $p_{j, j+1}$ such that $q_{j, j+1}(*)=*, j \in \mathbb{N}$. Clearly, $\lim \boldsymbol{X}=X$ and $\lim \boldsymbol{Y}=Y$. It remains to prove that condition $S_{1}(\boldsymbol{Y}, \boldsymbol{X})$ does not hold. Suppose, on the contrary, that

$$
\left(\forall i_{1}\right)\left(\exists j_{1}\right)\left(\forall j_{1}^{\prime} \geq j_{1}\right)\left(\exists i_{1}^{\prime} \geq i_{1}\right)\left(\forall i_{2} \geq i_{1}^{\prime}\right)\left(\exists j_{2} \geq j_{1}^{\prime}\right)
$$

and there exist mappings $g_{k}^{\prime}: Y_{j_{k}} \rightarrow X_{i_{k}}, k=1,2$, and $f_{1}^{\prime}: X_{i_{1}^{\prime}} \rightarrow Y_{j_{1}^{\prime}}$ making the corresponding diagram commutative up to homotopy. Since, for every pair $j \leq j^{\prime}, q_{j j^{\prime}}(*)=*$ is a (path) component, there exists an $S_{k} \subseteq X_{i_{1}^{\prime}}$ such that $f_{1}^{\prime}\left[S_{k}\right]=\{*\}$. Therefore, the restriction $\left(g_{1}^{\prime} q_{j_{1} j_{1}^{\prime}} f_{1}^{\prime}\right) \mid S_{k}$ of the composition $g_{1}^{\prime} q_{j_{1} j_{1}^{\prime}} f_{1}^{\prime}: X_{i_{1}^{\prime}} \rightarrow X_{i_{1}}$ is null homotopic. However, the restriction $p_{i_{1} i_{1}^{\prime}} \mid S_{k}$ of the bonding mapping $p_{i_{1} i_{1}^{\prime}}: X_{i_{1}^{\prime}} \rightarrow X_{i_{1}}$ is the identity mapping on the 1sphere. This is a contradiction.

The main goal of this work is to prove that the S_{1}-equivalence and $S_{2^{-}}$ equivalence are indeed the two different equivalence relations, i.e., that the S_{2}-equivalence is strictly finer than the S_{1}-equivalence. Consequently, the S_{1}-equivalence differs from the S - and S^{*}-equivalence (see [8, Remark 1]).

Theorem 2.8. There exists a pair X, Y of compacta such that $S_{1}(Y)=$ $S_{1}(X)$ and $S_{2}(Y) \nless S_{2}(X)$.

Proof. The proof follows by Lemma 2.4(v), (iii), and Example 2.9 below (see also [9, Example 4 and Claim 2]).

Example 2.9. Let X be the image of an injective convergent sequence in \mathbb{R} together with its limit point. For instance, $X=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\} \subseteq \mathbb{R}$. Let $Y=X \sqcup X$ (disjoint union). Then $S_{2}(X) \leq S_{2}(Y)$, while $S_{2}(Y) \nless S_{2}(X)$.

To prove this, let us consider the associated compact ANR-sequences $\boldsymbol{X}=\left(X_{i}, p_{i i^{\prime}}\right)$ and $\boldsymbol{Y}=\left(Y_{j}=X_{j} \sqcup X_{j}, q_{j j^{\prime}}\right)$ consisting of finite ANR's, having cardinalities $\left|X_{i}\right|=i$ and $\left|Y_{j}\right|=2 j$, and surjective bonding mappings defined in the obvious way. (The "exploding" point $*$ of X_{i} yields the point * and exactly one new point of X_{i+1}, while all the other fibres of $p_{i, i+1}$ are singletons. The mapping $q_{j, j+1}$ consists of two copies of $p_{j, j+1}$.) In this case, every homotopy commutative diagram relating \boldsymbol{X} and \boldsymbol{Y} is commutative. We have to show that $S_{2}(\boldsymbol{X}) \leq S_{2}(\boldsymbol{Y})$, i.e., that condition $S_{1}^{+}(\boldsymbol{Y}, \boldsymbol{X})$ holds. Given an $i_{1} \in \mathbb{N}$, put $j_{1}=i_{1}$, and denote

$$
\begin{gathered}
X_{i_{1}}=\{*\} \sqcup A_{1}, \\
Y_{j_{1}}=\{*\} \sqcup A_{1} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime} .
\end{gathered}
$$

Hereby, $*^{\prime}$ and A_{1}^{\prime} are the copies of $*$ and A_{1} respectively. The same notations of the corresponding subsets should not cause ambiguity. Given a $j_{1}^{\prime} \geq j_{1}$, put $i_{1}^{\prime}=2 j_{1}^{\prime}$, and denote

$$
Y_{j_{1}^{\prime}}=\{*\} \sqcup A_{1} \sqcup B_{2} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime} \sqcup B_{2}^{\prime},
$$

$$
X_{i_{1}^{\prime}}=\{*\} \sqcup A_{1} \sqcup C_{1},
$$

where $C_{1}=B_{2} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime} \sqcup B_{2}^{\prime}$.
Given an $i_{2} \geq i_{1}^{\prime}$, choose the unique $j_{2} \geq j_{1}^{\prime}$ such that the numbers of the new points "over $*$ " and "over $*^{\prime \prime}$ " equal to the number $\left|X_{i_{2}}\right|-\left|X_{i_{1}^{\prime}}\right|$ of the new points in $X_{i_{2}}$, and denote

$$
\begin{gathered}
X_{i_{2}}=\{*\} \sqcup A_{1} \sqcup C_{1} \sqcup A_{3}, \\
Y_{j_{2}}=\{*\} \sqcup A_{1} \sqcup B_{2} \sqcup A_{3} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime} \sqcup B_{2}^{\prime} \sqcup A_{3}^{\prime} .
\end{gathered}
$$

Given a $j_{2}^{\prime} \geq j_{2}$, choose the unique $i_{2}^{\prime} \geq i_{2}$ such that the number of the new points equals to the half of the number of the new points in $Y_{j_{2}^{\prime}}$, and denote

$$
\begin{gathered}
Y_{j_{2}^{\prime}}=\{*\} \sqcup A_{1} \sqcup B_{2} \sqcup A_{3} \sqcup B_{4} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime} \sqcup B_{2}^{\prime} \sqcup A_{3}^{\prime} \sqcup B_{4}^{\prime}, \\
X_{i_{2}}=\{*\} \sqcup A_{1} \sqcup C_{1} \sqcup A_{3} \sqcup B_{4} .
\end{gathered}
$$

Then there exist surjections $g_{1}^{\prime}: Y_{j_{1}} \rightarrow X_{i_{1}}, f_{1}^{\prime}: X_{i_{1}^{\prime}} \rightarrow Y_{j_{1}^{\prime}}$ (a bijection), $g_{2}^{\prime}: Y_{j_{2}} \rightarrow X_{i_{2}}$ and an injection $f_{2}^{\prime}: X_{i_{2}^{\prime}} \rightarrow Y_{j_{2}^{\prime}}$ making the corresponding diagram commutative (see the picture below).

$$
\begin{aligned}
& \begin{array}{|c}
\hline A_{1} \\
* \\
\hline
\end{array} \leftarrow \begin{array}{|c}
A_{1} \\
C_{1} \\
* \\
\hline
\end{array} \quad \leftarrow \begin{array}{|c}
A_{1} \\
C_{1} \\
A_{3} \\
* \\
\hline
\end{array}
\end{aligned}
$$

More precisely:

$$
\begin{aligned}
& g_{1}^{\prime}\left[A_{1}\right]=A_{1}, g_{1}^{\prime}\left[\{*\} \sqcup\left\{*^{\prime}\right\} \sqcup A_{1}^{\prime}\right]=\left\{*^{\prime}\right\} \\
& f_{1}^{\prime}\left|\left(\{*\} \sqcup A_{1}\right)=g_{1}^{\prime-1}\right|\left(\{*\} \sqcup A_{1}\right), f_{1}^{\prime}\left[B_{2}\right]=B_{2}, \\
& f_{1}^{\prime}\left(*^{\prime}\right)=*^{\prime}, f_{1}^{\prime}\left[A_{1}^{\prime}\right]=A_{1}^{\prime}, f_{1}^{\prime}\left[B_{2}^{\prime}\right]=B_{2}^{\prime}
\end{aligned}
$$

g_{2}^{\prime} is the inverse of f_{1}^{\prime} on the set of all "old" points, while $g_{2}^{\prime}\left[A_{3}\right]=A_{3}$, $g_{2}^{\prime}\left[A_{3}^{\prime}\right]=\left\{*^{\prime}\right\}$;
similarly, f_{2}^{\prime} is the inverse of g_{2}^{\prime} wherever it makes sense, while $f_{2}^{\prime}\left[B_{4}\right]=B_{4}$.

Thus, $S_{1}^{+}(\boldsymbol{Y}, \boldsymbol{X})$ is fulfilled.
It remains to show that $S_{1}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ can not be fulfilled, i.e., that $S_{2}(\boldsymbol{Y}) \nless$ $S_{2}(\boldsymbol{X})$. Let us analyze condition $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$. (Notice that conditions $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$ and $S_{1}(\boldsymbol{Y}, \boldsymbol{X})$ hold by $S_{1}^{+}(\boldsymbol{Y}, \boldsymbol{X})$; see also Lemma 2.4(v).) Given a $j_{1} \in \mathbb{N}$, one has to choose an appropriate $i_{1} \geq 2 j_{1}$, i.e.,

$$
Y_{j_{1}}=\{*\} \sqcup B_{1} \sqcup\left\{*^{\prime}\right\} \sqcup B_{1}^{\prime},
$$

$$
X_{i_{1}}=\{*\} \sqcup C_{1},
$$

where $C_{1}=B_{1} \sqcup\left\{*^{\prime}\right\} \sqcup B_{1}^{\prime} \sqcup A_{1}$ (if $i_{1}>2 j_{1}$ then $A_{1} \neq \emptyset$; the same notations of the corresponding subsets should not cause ambiguity).

Given an $i_{1}^{\prime} \geq i_{1}$, one has to choose an appropriate $j_{1}^{\prime} \geq i_{1}^{\prime}$, i.e.,

$$
\begin{gathered}
X_{i_{1}^{\prime}}=\{*\} \sqcup C_{1} \sqcup A_{2}, \\
Y_{j_{1}^{\prime}}=\{*\} \sqcup B_{1} \sqcup B_{2} \sqcup\left\{*^{\prime}\right\} \sqcup B_{1}^{\prime} \sqcup B_{2}^{\prime},
\end{gathered}
$$

where $\left|B_{2}\right|=\left|B_{2}^{\prime}\right| \geq \frac{1}{2}\left(\left|A_{1}\right|+\left|A_{2}\right|\right)$.
Given a $j_{2} \geq j_{1}^{\prime}$, one has to choose an appropriate $i_{2} \geq j_{2}$, i.e.,

$$
\begin{gathered}
Y_{j_{2}}=\{*\} \sqcup B_{1} \sqcup B_{2} \sqcup B_{3} \sqcup\left\{*^{\prime}\right\} \sqcup B_{1}^{\prime} \sqcup B_{2}^{\prime} \sqcup B_{3}^{\prime}, \\
X_{i_{2}}=\{*\} \sqcup C_{1} \sqcup A_{2} \sqcup C_{3},
\end{gathered}
$$

where $C_{3}=B_{3} \sqcup B_{3}^{\prime} \sqcup A_{3}$.
Then there exist surjections $f_{1}: X_{i_{1}} \rightarrow Y_{j_{1}}, g_{1}: Y_{j_{1}^{\prime}} \rightarrow X_{i_{1}^{\prime}}$ and a function $f_{2}: X_{i_{2}} \rightarrow Y_{j_{2}}$ making the corresponding diagram commutative (see the picture below).

More precisely,

$$
f_{1}(*)=*, f_{1}\left[B_{1}\right]=B_{1}, f_{1}\left(*^{\prime}\right)=*^{\prime}, f_{1}\left[B_{1}^{\prime}\right]=B_{1}^{\prime} \text {, while } f_{1} \mid A_{1} \text { may }
$$

vary;
$g_{1} \mid\left(\{*\} \sqcup B_{1} \sqcup\left\{*^{\prime}\right\} \sqcup B_{1}^{\prime}\right)$ is the "inverse" of f_{1}, while $g_{1} \mid\left(B_{2} \sqcup B_{2}^{\prime}\right)$ may slightly vary up to the required commutativity: $f_{2} \mid\left(\{*\} \sqcup C_{1} \sqcup A_{2}\right)$ is the "inverse" of g_{1}, while $f_{2}\left[C_{3}\right] \subseteq\{*\} \sqcup B_{3}$.
Since all the bonding mappings are surjective, condition $S_{1}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ would imply f_{2} also to be surjective. However, there does not exist any i_{2} which admits a suitable surjection $f_{2}: X_{i_{2}} \rightarrow Y_{j_{2}}$. Namely, if one chooses an i_{2} large enough such that there exists a surjection f_{2} of $X_{i_{2}}$ onto $Y_{j_{2}}$, then $g_{1} q_{j_{1}^{\prime} j_{2}} f_{2} \neq p_{i_{1}^{\prime} i_{2}}$. Indeed, the image by $p_{i_{1}^{\prime} i_{2}}$ of the subset of $C_{3} \subseteq X_{i_{2}}$, corresponding to $B_{3} \sqcup B_{3}^{\prime} \subseteq Y_{j_{2}}$, is the "exploding" point $* \in X_{i_{1}^{\prime}}$, while the image by $g_{1} q_{j_{1}^{\prime} j_{2}}$ of B_{3}^{\prime} is $\left\{*^{\prime}\right\} \subseteq X_{i_{1}^{\prime}}$. The same obstruction remains for every possible choice of the preceding indices i_{1} and j_{1}^{\prime} and every choice of suitable surjections f_{1} and g_{1}. Therefore, since f_{2} can not be surjective, a desired g_{2} does not exist. Thus, $S_{1}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ can not be fulfilled.

We shall now consider the S_{n}-equivalence on the subclass of all compacta having the homotopy types (shape types) of ANR's. The next two theorems show that condition $\left(D_{3}\right)$ characterizes the homotopy (shape) types within the class of all compacta which are homotopy (shape) equivalent to ANR's. Therefore, the S_{1}-equivalence on the considered class coincides with the homotopy (shape) type classification on it.

THEOREM 2.10. Let X and Y be compacta having the homotopy types of $A N R$'s. Then the following statements are equivalent:
(i) $S_{1}(X, Y)$ or $S_{1}(Y, X)$ is fulfilled;
(ii) $S_{1}(Y)=S_{1}(X)$;
(iii) $S_{2}(Y) \leq S_{2}(X)$;
(iv) $S_{2}(X) \leq S_{2}(Y)$;
(v) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}(Y)=S_{n}(X)$;
(vi) $S(Y)=S(X)$;
(vii) $S^{*}(Y)=S^{*}(X)$;
(viii) $\operatorname{Sh}(Y)=\operatorname{Sh}(X)$;
(ix) $Y \simeq X$.

Proof. It suffices to prove that (i) implies (ix). First, consider the case $X \simeq P$ and $Y \simeq Q$, where P and Q are compact ANR's. In this case, we may assume that $X=P$ and $Y=Q$. Let us consider the trivial inverse sequences \boldsymbol{X} (each $X_{i}=X$ and each $p_{i i^{\prime}}$ is the identity mapping) and \boldsymbol{Y} (each $Y_{j}=Y$ and each $q_{j j^{\prime}}$ is the identity mapping) associated with X and Y respectively. By $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$, there exists the following homotopy commutative diagram:

Thus, $f_{1} g_{1} \simeq 1_{Y}, g_{1} f_{2} \simeq 1_{X}$ and $f_{1} \simeq f_{2}$, which means $Y \simeq X$. In the same way $S_{1}(\boldsymbol{Y}, \boldsymbol{X})$ implies $Y \simeq X$. Consider now the general case, i.e., $X \simeq P$ and $Y \simeq Q$, where P and Q are ANR's. Let $\boldsymbol{X}, \boldsymbol{Y}$ be a pair of compact ANR inverse sequences associated with X, Y respectively. Let \boldsymbol{P} and \boldsymbol{Q} be the trivial inverse sequences associated with P and Q respectively. Notice that the limits $\boldsymbol{p}: X \rightarrow \boldsymbol{X}, \boldsymbol{q}: Y \rightarrow \boldsymbol{Y}, \mathbf{1}_{P}: P \rightarrow \boldsymbol{P}$ and $\mathbf{1}_{Q}: Q \rightarrow \boldsymbol{Q}$ are also the ANR-rsolutions (see [7, I.6.1]). Consequently (see [7, Theorem I.6.2]), they induce the corresponding HANR-expansions $H \boldsymbol{p}: X \rightarrow H \boldsymbol{X}, H \boldsymbol{q}: Y \rightarrow H \boldsymbol{Y}$, $H \mathbf{1}_{P}: P \rightarrow H \boldsymbol{P}$ and $H \mathbf{1}_{Q}: Q \rightarrow H \boldsymbol{Q}$ respectively. Since $\operatorname{Sh}(P)=\operatorname{Sh}(X)$ and $S h(Y)=S h(Q)$, the systems $H \boldsymbol{P}$ and $H \boldsymbol{X}$ as well as $H \boldsymbol{Y}$ and $H \boldsymbol{Q}$ are two pairs of isomorphic objects of the (pro)category pro-HANR. Then, by the Morita lemma ([9, Theorem 1.1]) and by $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$, we can obtain the
following homotopy commutative diagram:

It yields the next homotopy commutative diagram:

Thus, $Q \simeq P$, and consequently, $Y \simeq Q \simeq P \simeq X$. If $S_{1}(Y, X)$ holds, the proof is analogous.

Remark 2.11. Of course, the class $S_{1}(X)$ of a compact ANR X may contain a compactum Z which does not have the homotopy type of any ANR. For instance, the compact topological sinus curve $Z=A \cup B \subseteq \mathbb{R}^{2}$, where $A=\left\{(\xi, \eta) \in \mathbb{R}^{2} \left\lvert\, \eta=\sin \frac{1}{\xi}\right., \xi \in\langle 0,1]\right\}, B=\left\{(0, \eta) \in \mathbb{R}^{2} \mid \eta \in[-1,1]\right\}$, is shape equivalent (and thus, S_{1}-equivalent) to a point $X=\{*\}$, while Z is not homotopy equivalent to any ANR.

Similarly to Theorem 2.10, the following holds:
THEOREM 2.12. Let X and Y be FANR's. Then the following statements are equivalent:
(i) $S_{1}(X, Y)$ or $S_{1}(Y, X)$ is fulfilled;
(ii) $S_{1}(Y)=S_{1}(X)$;
(iii) $S_{2}(Y) \leq S_{2}(X)$;
(iv) $S_{2}(X) \leq S_{2}(Y)$;
(v) $(\forall n \in\{0\} \cup \mathbb{N}) S_{n}(Y)=S_{n}(X)$;
(vi) $S(Y)=S(X)$;
(vii) $S^{*}(Y)=S^{*}(X)$;
(viii) $\operatorname{Sh}(Y)=\operatorname{Sh}(X)$.

To prove the theorem, we need the following lemma (compare [2, Theorem 1.1]).

Lemma 2.13. If a compactum is shape dominated by a compact ANR, then it is shape equivalent to an $A N R$.

Proof. Let X be a compactum such that $S h(X) \leq S h(P)$, where P is a compact ANR. This means that X is an FANR (see [7, Theorem II.9.14]). If X is connected then, by $[4,(6.3)$ Theorem $],(X, *)$ is pointed FANR for any choice of the base point $*$. By [7, Theorem II.9.15], $(X, *)$ has the (pointed) shape of an ANR $(Q, *)$. Consequently, $\operatorname{Sh}(X)=\operatorname{Sh}(Q)$. Consider now the simplest nonconnected case, i.e., let X consist of two components, $X=X_{1} \sqcup X_{2}$ (disjoint union). Then an easy analysis shows that $S h(X) \leq S h(P)$ implies $P=P_{1} \sqcup P_{2}, S h\left(X_{1}\right) \leq S h\left(P_{1}\right)$ and $S h\left(X_{2}\right) \leq S h\left(P_{2}\right)$, where P_{1} and P_{2} are the components of P. Clearly, P_{1} and P_{2} are compact ANR's. Therefore, X_{1} and X_{2} are connected FANR's. Since, by [4, (6.3) Theorem], each connected FANR is a pointed FANR, we infer that $\left(X_{1}, *_{1}\right)$ and $\left(X_{2}, *_{2}\right)$ are pointed connected FANR's (for any choice of the base points). By [7, Theorem II.9.15], there exist ANR's $\left(Q_{1}, *_{1}\right)$ and $\left(Q_{2}, *_{2}\right)$ such that $\operatorname{Sh}\left(X_{i}, *_{i}\right)=\operatorname{Sh}\left(Q_{i}, *_{i}\right)$, $i=1,2$. Therefore, $\operatorname{Sh}\left(X_{i}\right)=\operatorname{Sh}\left(Q_{i}\right), i=1,2$. Put $Q=Q_{1} \sqcup Q_{2}$, which is an ANR. Then, obviously, $\operatorname{Sh}\left(X_{1} \sqcup X_{2}\right)=\operatorname{Sh}\left(Q_{1} \sqcup Q_{2}\right)$, and therefore, $\operatorname{Sh}(X)=\operatorname{Sh}\left(X_{1} \sqcup X_{2}\right)=\operatorname{Sh}\left(Q_{1} \sqcup Q_{2}\right)=\operatorname{Sh}(Q)$. In the general case of a nonconnected compactum, the proof proceeds by induction. (It is a well known fact that every FANR is the disjoint union of at most finitely many FANR continua.)

Remark 2.14. (a) According to Lemma 2.13, the central theorem of [2] (Theorem 1.1 in the pointed connected case as well as in the unpointed case) holds in general.
(b) Lemma 2.13 implies that a compactum is stable if and only if it is strongly movable, i.e., it is an FANR. Since the class of all compact ANR's yields a dense (pro-) category for compacta (admitting a representation of the shape theory), it makes sense to define the "new" notion of stability for compacta by asking that a stable compactum has to be shape equivalent to a compact ANR. In this case, stability would strictly imply being an FANR (strong movability). Namely, there exist compacta shape dominated by compact ANR's but not shape equivalent to compact ANR's (see [2]).

Proof of Theorem 2.12. It suffices to prove that (i) implies (viii). Assume that condition $S_{1}(X, Y)$ is fulfilled. First, consider the case $\operatorname{Sh}(X)=$ $S h(P)$ and $S h(Y)=S h(Q)$, where P and Q are compact ANR's. Then, clearly, condition $S_{1}(P, Q)$ is fulfilled. By Theorem 2.10, $\operatorname{Sh}(Q)=\operatorname{Sh}(P)$ (equivalently, $Q \simeq P$), and therefore, $S h(Y)=S h(X)$. Consider now the general case. Then, by Lemma 2.13, $\operatorname{Sh}(X)=S h(P)$ and $S h(Y)=S h(Q)$, where P and Q are ANR's. Let $\boldsymbol{X}, \boldsymbol{Y}$ be a pair of compact ANR inverse sequences associated with X, Y respectively. Let \boldsymbol{P} and \boldsymbol{Q} be the trivial inverse sequences associated with P and Q respectively. Now, by repeating the appropriate part of the proof of Theorem 2.10 from above, we infer that $Q \simeq P$. Therefore, $\operatorname{Sh}(Y)=\operatorname{Sh}(Q)=\operatorname{Sh}(P)=\operatorname{Sh}(X)$.

If $S_{1}(Y, X)$ holds, the proof is analogous.

Theorem 2.15. Let X and Y be compacta such that Y is shape dominated by $X, S h(Y) \leq S h(X)$. Then $S_{1}(Y) \leq S_{1}(X)$.

Proof. Let \boldsymbol{X} and \boldsymbol{Y} be any compact ANR inverse sequences associated with X and Y respectively. Then $\operatorname{Sh}(\boldsymbol{Y}) \leq \operatorname{Sh}(\boldsymbol{X})$, i.e., $\boldsymbol{Y} \leq \boldsymbol{X}$ in the corresponding procategory. This means that there exists a pair of maps of inverse sequences, $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $\boldsymbol{g}: \boldsymbol{Y} \rightarrow \boldsymbol{X}$, such that $\boldsymbol{f} \boldsymbol{g} \simeq \mathbf{1}_{\boldsymbol{Y}}$. Without loss of generality, one may assume that \boldsymbol{f} and \boldsymbol{g} are special and with the strictly increasing index functions. By $\boldsymbol{f g} \simeq \mathbf{1}_{\boldsymbol{Y}}$, for every $j \in \mathbb{N}, f_{i} g_{f(j)} \simeq$ $q_{j g f(j)}$. Given a j_{1}, put $i_{1}=f\left(j_{1}\right)$, and for every $i_{1}^{\prime} \geq i_{1}$ put $j_{1}^{\prime}=g\left(i_{1}^{\prime}\right)$. Then $j_{1}^{\prime} \geq g f\left(j_{1}\right) \geq j_{1}$. Put $f_{1}=f_{j_{1}}: X_{i_{1}} \rightarrow Y_{j_{1}}$ and $g_{1}=g_{i_{1}^{\prime}}: Y_{j_{1}^{\prime}} \rightarrow X_{i_{1}^{\prime}}$. Since $f_{j_{1}} g_{f\left(j_{1}\right)} \simeq q_{j_{1} g f\left(j_{1}\right)}$ and $p_{f\left(j_{1}\right) j_{1}^{\prime}} g_{i_{1}^{\prime}} \simeq g_{f\left(j_{1}\right)} q_{g f\left(j_{1}\right) g\left(i_{1}^{\prime}\right)}$, the diagram

$$
\begin{array}{llll}
X_{i_{1}} & \leftarrow \cdots & \leftarrow & X_{i_{1}^{\prime}} \\
\downarrow f_{1} & \nwarrow g_{f\left(j_{1}\right)} & & \uparrow g_{1} \\
Y_{j_{1}} & \leftarrow Y_{g f\left(j_{1}\right)} & \leftarrow & Y_{j_{1}^{\prime}}
\end{array}
$$

commutes up to homotopy. Therefore, condition $S_{0}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ holds. This means $S_{1}(\boldsymbol{Y}) \leq S_{1}(\boldsymbol{X})$, i.e., $S_{1}(Y) \leq S_{1}(X)$.

The first named author proved ([10, Examples 4 and 5]) that the Borsuk quasi-equivalence [1] and the S-equivalence [6] are mutually independent relations. In addition, the next theorem shows that the Borsuk quasi-equivalence and the S_{n}-equivalence, $n>0$, are mutually independent relations. Furthermore, beside Theorem 2.6, it also shows that the implication of Lemma 2.4(iii) is strict.

ThEOREM 2.16. There exists a pair X, Y of quasi-equivalent compacta, $Y \stackrel{q}{\simeq} X$, such that condition $S_{1}(X, Y)$ is fulfilled (which implies $S_{1}(Y) \leq$ $S_{1}(X)$ and $\left.S_{1}(X) \leq S_{1}(Y)\right)$, while $S_{1}(Y) \neq S_{1}(X)$.

Proof. The assertion is a consequence of the next example.
Example 2.17. Let X be the same as in Example 2.9, i.e., $X=\left\{\left.\frac{1}{n} \right\rvert\, n \in\right.$ $\mathbb{N}\} \cup\{0\} \subseteq \mathbb{R}$. Let Y be the Cantor set. By $[1$, (6.3) Theorem], X and Y are quasi-equivalent. We claim that X and Y are not S_{1}-equivalent, though $S_{1}(Y) \leq S_{1}(X)$ and $S_{1}(X) \leq S_{1}(Y)$ hold.

We first prove that condition $S_{1}(X, Y)$ is fulfilled. Let us consider the associated compact ANR-sequences $\boldsymbol{X}=\left(X_{i}, p_{i i^{\prime}}\right)$ and $\boldsymbol{Y}=\left(Y_{j}, q_{j j^{\prime}}\right)$ consisting of finite ANR's, $\left|X_{i}\right|=i$ and $\left|Y_{j}\right|=2^{j-1}$, and surjective bonding mappings defined in the obvious way. (The "exploding" point $*$ of X_{i} yields the point * and exactly one new point of X_{i+1}, while all the other fibres of $p_{i, i+1}$ are singletons. Every fiber of $q_{j, j+1}$ consists of two points.) In this case, every homotopy commutative diagram relating \boldsymbol{X} and \boldsymbol{Y} is commutative. Given a
$j_{1} \in \mathbb{N}$, put $i_{1}=2^{j_{1}-1}$, and denote

$$
\begin{gathered}
Y_{j_{1}}=B_{1} \\
X_{i_{1}}=B=\{*\} \sqcup(B \backslash\{*\})
\end{gathered}
$$

Given an $i_{1}^{\prime} \geq i_{1}$, put $j_{1}^{\prime}=\left[\log _{2}\left(i_{1}^{\prime}-i_{1}\right)\right]+j_{1}+1$ (i.e., j_{1}^{\prime} is the minimal integer such that $2^{j_{1}^{\prime}-j_{1}} \geq i_{1}^{\prime}-i_{1}$), and denote

$$
\begin{gathered}
X_{i_{1}^{\prime}}=\{*\} \sqcup(B \backslash\{*\}) \sqcup A, \\
Y_{j_{1}^{\prime}}=2^{j_{1}^{\prime}-j_{1}} B
\end{gathered}
$$

(which suggests that $Y_{j_{1}^{\prime}}$ consists of $2^{j_{1}^{\prime}-j_{1}}$ disjoint copies of B and implies that $\left.\left|Y_{j_{1}^{\prime}}\right| \geq\left|X_{i_{1}^{\prime}}\right|\right)$. Given a $j_{2} \geq j_{1}^{\prime}$, choose any $i_{2} \geq i_{1}^{\prime}$, and denote

$$
\begin{gathered}
Y_{j_{2}}=2^{j_{2}-j_{1}^{\prime}}\left(2^{j_{1}^{\prime}-j_{1}} B\right)=Y_{j_{1}^{\prime}}=2^{j_{2}-j_{1}} B, \\
X_{i_{2}}=\{*\} \sqcup(B \backslash\{*\}) \sqcup A \sqcup A^{\prime} .
\end{gathered}
$$

Then there exist a bijection $f_{1}: X_{i_{1}} \rightarrow Y_{j_{1}}$, a surjection $g_{1}: Y_{j_{1}^{\prime}} \rightarrow X_{i_{1}^{\prime}}$ and a function $f_{2}: X_{i_{2}} \rightarrow Y_{j_{2}}$ making the corresponding diagram commutative (see the picture below; the notations are quite similar to those of Example 2.9).

$$
\begin{array}{cc}
\begin{array}{c}
\begin{array}{c}
B \backslash\{*\} \\
*
\end{array} \\
\\
\begin{array}{c}
f_{1} \downarrow \\
\\
B
\end{array} \\
\leftarrow \begin{array}{c}
B \backslash\{*\} \\
A \\
*
\end{array} \\
\leftarrow
\end{array} \leftarrow \begin{array}{|cc|}
\hline B \backslash\{*\} \\
A \\
A^{\prime} \\
*
\end{array} \\
\downarrow f_{2} \\
2^{j_{1}^{\prime}-j_{1}} B & \leftarrow \begin{array}{|c}
2^{j_{2}-j_{1}} B
\end{array}
\end{array}
$$

More precisely, starting with a bijection f_{1}, a desired surjection g_{1} can be defined by means of the inverse of f_{1} on every copy of $B \backslash\left\{f_{1}(*)\right\}$, while the subset of all other points g_{1} has to send onto the subset $A \sqcup\{*\}$. Finally, a desired function f_{2} can be easily defined according to commutativity of the right rectangle. Therefore, condition $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$, i.e., $S_{1}(X, Y)$ is fulfilled. By Lemma 2.2, it implies $S_{0}^{+}(X, Y)$ and $S_{0}^{+}(Y, X)$, and thus, $S_{1}(Y) \leq S_{1}(X)$ and $S_{1}(X) \leq S_{1}(Y)$. (Notice that $S_{1}(X) \leq S_{1}(Y)$ also holds by Theorem 2.8, since X is a retract of Y, and thus, $S h(X) \leq S h(Y)$)

Let us now prove that $S_{1}(Y) \neq S_{1}(X)$. It suffices to show that condition $S_{1}(\boldsymbol{Y}, \boldsymbol{X})$ can not be fulfilled. Consider a diagram (see the picture below) realizing condition $S_{0}^{+}(\boldsymbol{Y}, \boldsymbol{X})$,

where $X_{i_{1}}=\{*\} \sqcup A, Y_{j_{1}}=\{*\} \sqcup A \sqcup B, Y_{j_{1}^{\prime}}=2^{j_{1}^{\prime}-j_{1}}(\{*\} \sqcup A \sqcup B), X_{i_{1}^{\prime}}=$ $\{*\} \sqcup A \sqcup A^{\prime}$.

Notice that g_{1}^{\prime} must be a surjection. Furthermore, any commutative extension of the above diagram to the right (including a new mapping g_{2}^{\prime}) asks for f_{1}^{\prime} also to be a surjection. Namely, all the bonding mappings are surjective. Now, one should observe that, in general, f_{1}^{\prime} can not be surjective. Indeed, an easy analysis shows that if one chooses an i_{1}^{\prime} large enough such that it admits a surjection f_{1}^{\prime} of $X_{i_{1}^{\prime}}$ onto $Y_{j_{1}^{\prime}}\left(A^{\prime}\right.$ via i_{1}^{\prime} can supply as many new points as one needs), then $g_{1}^{\prime} q_{j_{1} j_{1}^{\prime}} f_{1}^{\prime} \neq p_{i_{1} i_{1}^{\prime}}$. Consequently, a desired g_{2}^{\prime} does not exist, i.e., condition $S_{1}(\boldsymbol{Y}, \boldsymbol{X})$ can not be fulfilled.

3. The applications

By [12] and [2, Theorem 1.1], there are FANR's (compacta shape equivalent to ANR's, see Lemma 2.13) which are not shape equivalent to compact ANR's. According to Theorem 2.12, the next corollary arises.

Corollary 3.1. If an $F A N R$ is not shape equivalent to any compact $A N R$, then it is not S_{1}-equivalent to any compact ANR.

Proof. Let Y be an FANR, i.e., $S h(Y) \neq S h(P)$ for every compact ANR P. Then $S_{1}(Y) \neq S_{1}(P)$ for every compact ANR P. Indeed, if there would exist a compact P such that $S_{1}(Y)=S_{1}(P)$, then by Theorem 2.12, one would have $S h(Y)=S h(P)$, which is a contradiction.

An immediate consequence of Corollary 3.1 is the next corollary:
Corollary 3.2. Let X and Y be $F A N R$'s. If X is S_{1}-equivalent (shape equivalent) to a compact $A N R$, and Y is not shape equivalent (S_{1}-equivalent) to any compact $A N R$, then $S_{1}(Y) \neq S_{1}(X)$.

According to [8, Remark 1] and our definitions and notations, our Theorems 3.3, 3.4 and 3.5 below improve [6 , Theorems $4,5,6,7$ and $\left.7^{\prime}\right]$ as well as [8, Theorems 3, 4] (see also the proofs of the mentioned theorems).

Theorem 3.3. Let X and Y be compacta such that $S_{1}(Y) \leq S_{1}(X)$, i.e., let condition $S_{0}^{+}(X, Y)$ be fulfilled. Then the following assertions hold:
(i) If X is connected, then so is Y;
(ii) If $\operatorname{Sh}(X)=0$, then also $\operatorname{Sh}(Y)=0$;
(iii) If the fundamental dimension $F d(X) \leq n$, then also $F d(Y) \leq n$;
(iv) If X is n-shape connected, then so is Y.

Proof. In the proof of [6, Theorem 4] only condition $S_{0}^{+}(X, Y)$ of $S(Y)=$ $S(X)$ is used.

Theorem 3.4. Let X and Y be compacta such that condition $S_{1}(X, Y)$ is fulfilled. If X is movable (n-movable), then so is Y.

Proof. In the proof of [6, Theorem 5] only condition $S_{1}(X, Y)$ of $S(Y)=$ $S(X)$ is used.

The next theorem improves [6, Theorems 5, 7 and 7^{\prime}].
Theorem 3.5. Let X and Y be compacta such that $S_{2}(Y) \leq S_{2}(X)$, i.e., let condition $S_{1}^{+}(X, Y)$ be fulfilled. If X is an $F A N R$, then so is Y and $\operatorname{Sh}(Y)=\operatorname{Sh}(X)$.

Proof. First of all, by Lemma 2.13, one should notice that in [6, Theorem $\left.7^{\prime}\right]$, the assumption "if X is a pointed FANR" may be weakened to "if X is an FANR". Namely, in its proof only the fact that X has the shape of an ANR is used. Further, in the proof of $[6$, Theorem 6$]$ (and, consequently, [6, Theorems 7 and $\left.7^{\prime}\right]$), only condition $S_{1}^{+}(X, Y)$ of $S(Y)=S(X)$ is applied. The conclusion follows.

Corollary 3.6. The shape class of an FANR is determined by its $S_{2^{-}}$ domination. Therefore, if X is an $F A N R$, then $S_{2}(X)=S(X)=S^{*}(X)=$ Sh (X).

Proof. It suffices to prove that $S_{2}(X) \subseteq S h(X)$. Let $Y \in S_{2}(X)$, i.e., $S_{2}(Y)=S_{2}(X)$. Then, by Lemma 2.4 (iii) and Theorem 3.5, $S h(Y)=S h(X)$, i.e., $Y \in \operatorname{Sh}(X)$.

Problem 3.1. Does there exist a compact ANR (an FANR) X such that $S_{1}(X) \backslash S_{2}(X) \neq \emptyset$ (equivalently, $\left.S_{1}(X) \backslash \operatorname{Sh}(X) \neq \emptyset\right)$?

Remark 3.7. Concerning the problem, consider an FANR X which is shape equivalent to a compact ANR P. Then $S_{1}(X) \backslash S_{2}(X)=S_{1}(P) \backslash S_{2}(P)$. Therefore, in this case, the problem reduces to compact ANR's. Let $Y \in$ $S_{1}(P)$. By Theorem 3.4, Y is movable, which one can clearly see from the diagram below.

Namely, $S_{1}(P, Y)$ yields a desired $r=f_{2} g_{1}: Y_{j_{1}^{\prime}} \rightarrow Y_{j_{2}}$. Further, Y is semistable (see [10, Definition 3 and Lemma 4]), which is the complementary part of the strong movability. This one can see from the diagram below.

Namely, $S_{1}(Y, P)$ yields a desired $r^{\prime}=f_{1}^{\prime} g_{1}^{\prime}: Y_{j_{1}} \rightarrow Y_{j_{1}^{\prime}}$. However, we can not closely enough relate r and r^{\prime} (by a homotopy), and thus, we may not
conclude that Y is strongly movable (i.e., an FANR). In other words, although movability and semi-stability are the S_{1}-invariants, we do not know whether the strong movability (movability and semi-stability with the same mappings) is an S_{1}-invariant. (By Theorem 3.5, it is an invariant of the S_{2}-domination.)

4. Two conjectures

Let us denote the compactum X of Example 2.9 by L, and the Cantor set by C. Then, by $[1,(6.3)$ Theorem $]$ and our Examples 2.9 and 2.17 as well as by [10, Remark 11], the above examples imply the following results:

Conclusion 4.1. $L \sqcup L \stackrel{q}{\simeq} L \stackrel{q}{\simeq} C, S(L \sqcup L) \neq S(L) \neq S(C)$ and $S(L \sqcup$ $L) \neq S(C)$.

The same holds for the S^{*}-equivalence. Further, we have shown that $S_{1}(L \sqcup L)=S_{1}(L) \neq S_{1}(C)$ and $S_{2}(L \sqcup L) \neq S_{2}(L)$.

More precisely,
$S_{1}(L, C)$ holds (which implies $S_{1}(C) \leq S_{1}(L)$ and $S_{1}(L) \leq S_{1}(C)$);
$S_{1}(C, L)$ does not hold (which implies $S_{1}(C) \neq S_{1}(L)$);
$S_{1}^{+}(L \sqcup L, L)$ holds (which means $S_{2}(L) \leq S_{2}(L \sqcup L)$ and implies $\left.S_{1}(L \sqcup L)=S_{1}(L)\right) ;$
$S_{1}^{+}(L, L \sqcup L)$ does not hold (which means $S_{2}(L \sqcup L) \nless S_{2}(L)$ and implies $S_{2}(L \sqcup L) \neq S_{2}(L)$).

According to these facts, one is tempted to state the following hypothesis:
Conjecture 4.2. For every $n \in\{0\} \cup \mathbb{N}$ there exists a compactum X such that $S(X) \varsubsetneqq S_{n}(X)$.

THEOREM 4.3. If Conjecture 4.2 is false, then the S-equivalence reduces to a unique S_{n}-equivalence, $n \geq 2$. Consequently, the S-equivalence and S^{*} equivalence would coincide.

Proof. Clearly, for every $n \in\{0\} \cup \mathbb{N}$ and every compactum $X, S(X) \subseteq$ $S_{n+1}(X) \subseteq S_{n}(X)$ holds by definitions. Thus, if Conjecture 4.2 is false, there exists an $n \in\{0\} \cup \mathbb{N}$ such that, for every compactum X and every $n^{\prime} \geq n$, $S(X)=S_{n^{\prime}}(X)=S_{n}(X)$. Theorem 2.8 implies that $n \geq 2$. Consequently, the second claim follows by [11, Lemma 4].

On the other hand, if Conjecture 4.2 is true then the following stronger hypothesis makes sense:

Conjecture 4.4. There exists a compactum X such that, for every $n \in$ $\{0\} \cup \mathbb{N}, S(X) \varsubsetneqq S_{n}(X)$. Equivalently, there exist a compactum X and a strictly increasing sequence $\left(n_{k}\right)$ in $\{0\} \cup \mathbb{N}$, $n_{1}=0$, such that, for every $k \in \mathbb{N}, S(X) \varsubsetneqq S_{n_{k+1}}(X)=\cdots=S_{n_{k}+1}(X) \varsubsetneqq S_{n_{k}}(X)$.

Clearly, if Conjecture 4.4 is true then so is Conjecture 4.2.

Theorem 4.5. If Conjecture 4.4 is false, then each S-equivalence class is an S_{n}-equivalence class. Consequently, the S-equivalence and S^{*}-equivalence would coincide.

Proof. If Conjecture 4.4 is false then, for every compactum X, there exists an $n_{X} \in\{0\} \cup \mathbb{N}$ such that $\left(\forall n \geq n_{X}\right) S(X)=S_{n}(X)=S_{n_{X}}(X)$. Thus, the second assertion follows by [11, Lemma 4].

References

[1] K. Borsuk, Some quantitative properties of shapes, Fund. Math. 93 (1976), 197-212.
[2] D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521-535, Correction. Ibid. 104 (1976), 389.
[3] K. R. Goodearl and T. B. Rushing, Direct limit groups and the Keesling-Mardešić shape fibration, Pacific J. Math. 86 (1980), 471-476.
[4] H. M. Hastings and A. Heller, Splitting homotopy idempotents, in: Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math. 870, Springer, BerlinNew York, 1981, 23-36.
[5] J. Keesling and S. Mardešić, A shape fibration with fibres of different shape, Pacific J. Math. 84 (1979), 319-331.
[6] S. Mardešić, Comparing fibres in a shape fibration, Glasnik Mat. Ser. III 13(33) (1978), 317-333.
[7] S. Mardešić and J. Segal, Shape Theory, North-Holland Publishing Co., AmsterdamNew York-Oxford 1982.
[8] S. Mardešić and N. Uglešić, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005), 448-463.
[9] K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258.
[10] N. Uglešić, A note on the Borsuk quasi-equivalence, submitted.
[11] N. Uglešić and B. Červar, A subshape spectrum for compacta, Glasnik Mat. Ser. III 40(60) (2005), 351-388.
[12] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 55-69.
N. Uglešić

University of Zadar
Studentski dom, F. Tuđmana 24 D
23000 Zadar
Croatia
E-mail: nuglesic@unizd.hr
B. Červar

Department of Mathematics
University of Split
Teslina ulica 12/III
21000 Split
Croatia
E-mail: brankoch@pmfst.hr
Received: 19.4.2006.
Revised: 7.2.2007.

