IVAN LONČAR Varaždin

W-SETS AND APPROXIMATE LIMIT

W - SKUPOVI I APROKSIMATIVNI LIMES

ABSTRACT. The main purpose of the present paper is to prove the following:

THEOREM 3.7. Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an approximate inverse sequence of the dendrites. Then $X = lim\underline{X}$ is hereditarily unicoherent. Moreover, if X is a Peano continuum, then X is a dendrite.

THEOREM 4.4. Let $\underline{\mathbf{X}} = \{\mathbf{X}_n, \boldsymbol{\epsilon}_n, p_{mn}, N\}$ be an inverse sequence of metric compact spaces with onto bonding mappings. If each X_n is in Class W, then $lim\underline{\mathbf{X}}$ is in clas W.

THEOREM 5.2. Let $\underline{X} = {X_n, \in_n, p_{mn}, N}$ be an approximate inverse sequence of metric continua X_n with $P(X_n) \le n_0$. Then $P(X) \le n_0$, $X = lim \underline{X}$.

1 Introduction

All spaces considered in this paper are metric compact spaces. The boundary of a set A by Bd(A) is denoted. By ClA or Cl_XA the closure of a set $A \subseteq X$ is denoted.

The approximate inverse systems were introduced by S. Mardešić and L.R. Rubin [7] for compacta and by S. Mardešić and Watanabe [11] for general topological spaces.

DEFINITION 1.1 An *approximate inverse system* $\underline{X} = \{X_a, \in_a, p_{ab}, A\}$ consists of the following data: A preordered set (A, \leq) which is directed and has no maximal element; for each $a \in A$, a compact metric space X_a with metric d and a real number ε_a of X_a (called the mesh of X_a) and for each pair $a \leq b$ from A, a mapping $p_{ab}: X_b \to X_a$. Moreover the following three conditions must be satisfied:

(A1) The mappings $p_{ab}p_{bc}$ and p_{ac} are \in_a -near, $a \le b \le c$, i.e.

 $\mathbf{d}(\mathbf{p}_{ab},\mathbf{p}_{bc},\mathbf{p}_{ac}) \leq \varepsilon_{a}.$

(A2) For each $a \in A$ and each real number $\eta \ge 0$ there is $b \ge a$ such that $d(p_{ac}p_{cd},p_{ad}) \le \eta$, whenever $a \le b \le c \le d$.

(A3) For each $a \in A$ and each real number $\eta > 0$ there is $b \ge a$ such that for each $x, y \in \mathbf{X}_c$ $d(x, y) \le \varepsilon_c \Rightarrow d(p_{ac}(x), p_{ac}(y)) \le \eta$ for each $c \ge b$.

DEFINITION 1.2 [7] Let $\underline{X} = \{X_a, \in_a p_{ab}, A\}$ be an approximate system. A point $x = (x_a) \in \Pi\{X_a : a \in A\}$ is called a *thread* of \underline{X} provided it satisfies the following condition: (L) $(\forall a \in A)(\forall \eta > 0) (\exists b \ge a)(\forall c \ge b) d(p_{ac}(x_c), x_a) \le \eta$. Condition (L) is equivalent to the following condition:

(L) $(\forall a \in a) \lim \{p_{ac}(x_c): c \ge a\} = x_a.$

DEFINITION 1.3 [7] Let $\underline{X} = \{X_a, \in_a p_{ab}, A\}$ be an approximate system. A point $x = (x_a) \in \Pi\{X_a : a \in A\}$ belongs to $X = \lim \underline{X}$ iff x is a thread of \underline{X} .

DEFINITION 1.4 [7]

Let $\underline{\mathbf{X}} = \{X_a, \in_a p_{ab}, A\}$ be an approximate system. A point $\mathbf{x} = \{x_a\} \in \Pi\{X_a : a \in a\}$ is called a *prethread* of $\underline{\mathbf{X}}$ provided for every pair $a \leq b$ one has $d(\mathbf{x}_a, p_{ab}\mathbf{x}_{(b)}) \leq \varepsilon_a$.

LEMMA 1.5 [7, Lemma 2.]. If $x=(x_a)$ is a prethread, then $y_a=\lim\{p_{ab}(x_a):b\geq a\}$

exists and $y=(y_a)$ is thread, i.e $y \in \lim \underline{X}$.

In what follows we need the following properties.

THEOREM 1.6 If in an approximate system $\underline{\mathbf{X}} = \{\mathbf{X}_a, \boldsymbol{\epsilon}_a, \boldsymbol{p}_{ab}, A\}$ all $\mathbf{X}_a \neq \emptyset$, then also $\mathbf{X} = \lim \underline{\mathbf{X}} \neq \emptyset$.

Proof.See [7, Theorem 1.]

THEOREM 1.7 The limit X of an approximate system of compact spaces is a compact Hausdorf space. [7. Theorem 2.].

LEMMA 1.8 Let $\underline{X} = \{X_a, \in_{ab} p_{ab}, A\}$ be an approximate system of compacta. The collection of all sets of the form $p_{-a}^{-i}(V_A)$, where $V_a \subseteq X_a$ is open, is a basis for the topology of $X = \lim \underline{X}$.

Proof.See [7, Lemma 3.]

THEOREM 1.9 Let $\underline{X} = \{X_{av} \in_{av} p_{abv}A\}$ be approximate system of metric compact spaces with limit X. Then the following statements hold [9, Proposition 6.]

- **(B1)** Let $a \in A$ and let $U \subseteq X_a$ be an open set which contains $p_a(X)$. Then there exists a $b \in A$ such that $p_{ac}(X_c) \subseteq U$ for each $c \ge b$.
- (B2) For every open covering U of X there exists an $a \in A$ such that for any $b \ge a$ there exists an open covering v of X_b for which $p^{-1}{}_b(v)$ refines U.

THEOREM 1.10 The following statements hold for each approximate system $\underline{X} = \{X_{a}, \epsilon_{a}, p_{ab}, A\}$ with limit X [9, Proposition 7.]:

(**R1**) For every compact $A \ N \ R \ P$, $\eta > 0$ and mapping $h: X \to P$, there is an $a \in A$ such that for any $b \ge a$ there is a mapping $f: X_b \to P$ for which $d(fp_b, h) \le 2\eta$.

(**R2**) Let P be a compact A N R and $\eta > 0$. Whenever $a \in A$ and $f, g: X_a \to P$ are mapping with the property $d(fp_a, gp_a) < \eta$, then there exists a $b \in A$ such that for any $c \ge b$ $d(fp_{ac}, gp_{ac}) < \eta$.

LEMMA 1.11 Let $\underline{X} = \{X_{ab} \in_{ab} p_{ab}A\}$ be an approximate inverse system and let $x_a \in X_a$ be any point such that $p^{-1}_{ab}(x_a)$ is non-empty for each $b \ge a$. Then $p^{-1}_{a}(x_a)$ is non-empty.

Proof. Suppose that $p_a^{-1}(x_a)$ is empty. Then $x_a \notin p_a(X)$, where $X = \lim \underline{X}$. Thus, $U = X_a \setminus \{x_a\}$ is open set which contains $p_a(X)$. By the property (B1) [7, pp. 899.] we infer that there is $b \ge a$ such that for each $c \ge b$ one has $p_{ac}(X_c) \subseteq U$. It follows that $x_a \notin p_{ac}(X_c)$, i.e., $p_{ac}^{-1}(x_a)$ is empty. This contradicts the assumption of Lemma.

2 Connectedness of approximate limit

We start with the following theorem.

THEOREM 2.1 Let $X = \{X_{ab} \in_{ab} P_{ab}A\}$ be an approximate inverse system of compacta X_a . If all X_a are connected, then $X = \lim X$ is connected.

Proof.Suppose that X is not connected. Then there exist a pair U,V of disjoint open sets such that $X=U \cup V$. By virtue of the property (B1) there exists an $a \in A$ and an open cover $U_a = \{U_b\}$: $b \in B\}$ of X_a such that $p_a'(U_a)$ refines $\{U,V\}$. Let $B_0 = \{b:b \in B, p_a'(U_b) \subseteq U\}$ and $B_1 = \{b:b \in B, p_a'(U_b) \subseteq V\}$. Clearly,B₀ and B₁ are disjoint and non-empty. Now we consider the sets $U_0 = \cup \{U_b:b \in b_0\}$ and $U_1 = \cup \{U_b:b \in b_1\}$. Clearly,U₀ and U₁ are disjoint. It is obvious that U_0 and U_1 are open and non-empty. Moreover, $p_a'(U_0) = U$ and $p_1''(U_1) = V$. This means that U_0 and U_1 are closed since p_a is closed. Thus, U_0 and U_1 are disjoint non-empty open-closed subset of X_a . This is impossible since X_a is connected.

Alternate Proof.Now we use the property (R1).Suppose that X is not connected.Then there is a maping $f: X \to D = \{0,1\}$. We identify D with a subspace $\{0,1\}$ of the segment I=[0,1].Consider a cover U of I containing the sets:U=[0,1/2),V=(1/4,3/4),W=(1/2,1].By the property (R1) it follows that there exists an $a \in A$ and a mapping $f_a: X_a \to I$ such that f and $f_a p_a$ are U -near.This means that $f_a(X_a) \subseteq I - \{1/2\}$. We infer that $X_a = f_a^1(U) \cup f_a^1(W)$ and $f_a^1(U) \cap f_a^1(W) = \emptyset$. This contradicts the connectedness of X_a .

THEOREM 2.2 Let $\underline{X} = \{X_a, \epsilon_a, p_{ab}, A\}$ be an approximate inverse system of chainable compacta X_a . Then $X = \lim \underline{X}$ is chainable.

Proof.Suppose that U is an open finite cover of X.By (B1) there is an $a \in A$ and an open cover v A such that $p^{-1}{}_{a}(V_{a})$ refines U. There is a chainable refinement U_{a} of V_{a} since X_{a} is chainable. Clearly, $p^{-1}{}_{a}(U_{a})$ is a chainable refinement of U.

We say that a metric continuum X is **circle-like** if for each $\varepsilon > 0$ there is an ε -mapping f: $X \rightarrow K$, where K is the circle (=simple closed curve). A metric continuum is circle-like iff it is inverse limit of usual inverse system of the simple closed curves [10]. This means that X is circle-like iff for each open cover there is a finite refinement {U₁,...,U_n} such that $U_i \cap U_j \neq \emptyset$ if abs (i-j) \le 1 \text{ or } i, j \in \{1,n\}.

THEOREM 2.3 Let $\underline{X} = \{X_{a\nu} \in_{a\nu} p_{ab\nu}A\}$ be an approximate inverse system of circle-like compacta. Then $X = \lim \underline{X}$ is circle-like.

Proof. The proof is similar to the proof of Theorem 2.2.

3 Exactly (n,1) mappings

We say that a mapping $f: X \to Y$ is *exactly* (n, 1) if $f^1(y)$ contains exactly n points, for each $y \in Y$ [13].

A dendrite is locally connected metrizable continuum which contains no simple closed curve.

A Peano continuum is a metric locally connected continuum [4, pp. 257].

In the sequel we us the following result from [13].

THEOREM 3.1

[13, Corollary 2.1.]. A Peano continuum Y is a dendrite if and only if for each n $(2 \le n < \infty)$ there is no exactly (n,1) mapping from any continuum onto Y.

A mapping $f: X \to Y$ is said to be *exactly n-component-to-one* if $f^{1}(y)$ has exactly n components for each $y \in Y$.

THEOREM 3.2 [13, Corollary 2.2.].A Peano continuum Y is a dendrite if and only if for each n $(2 \le n < \infty)$ there is no exactly n-components-to-one mapping from any continuum onto Y.

Now we prove the following lemma.

LEMMA 3.3 Let $f: X \to Y$ be a mapping onto a dendrite Y such that the fibers $f^{1}(y)$ are finite. If X is a Peano continuum, then X is a dendrite.

Proof.Suppose that X is not a dendrite.By virtue of Theorem above there exists a continuum Z and an exactly (n,1) mapping $\mathbf{F}: \mathbf{Z} \in \mathbf{X}$.Let E be be an equivalence relation induced by the mapping fF.A space \mathbf{Z}/\mathbf{E} is compact and thus homeomorphic to Y under the homeomorphism H.Clearly,the members of E are $(\mathbf{fF})^{-1}(\mathbf{y}), \mathbf{y} \in \mathbf{Y}$.Now,we define an equivalence relation G as follows.For each $(\mathbf{fF})^{-1}(\mathbf{y})$ we have $(\mathbf{fF})^{-1}(\mathbf{y})=\mathbf{F}^{-1}[\mathbf{f}^{-1}(\mathbf{y})]$.Moreover,for each $x \in \mathbf{f}^{-1}(\mathbf{y})$ there exist n points $z(\mathbf{y},\mathbf{x},1),...,z(\mathbf{y},\mathbf{x},\mathbf{n})$ such that $\mathbf{F}^{-1}(\mathbf{x})=\{z(\mathbf{y},\mathbf{x},1),...,z(\mathbf{y},\mathbf{x},\mathbf{n})\}$.Let Z_i , i=1,...,n,be a subset of Z defined by Z_i (\mathbf{y})= $\{z(\mathbf{y},\mathbf{x},i):\mathbf{x}\in\mathbf{f}^{\Lambda^{-1}}(\mathbf{y})\}$. It follows that the sets $Z_i(\mathbf{y}),i=1,...,n,\mathbf{y}\in\mathbf{Y}$,form an equivalence relation G on Z which is refinement of E.This means that there are the quotient mappings g and h such that g is induced by G and E is induced by hg (see the following diagram).A space X/G is a continuum and h is an exactly (n,1) mapping.This impossible since X/E is homeomorphic to Y and Y is a dendrite.

From the proof of Lemma 3.3. it follows

LEMMA 3.3.1. Let $f: X \to Y$ be a mapping onto a dendrite Y such that, for each $y \in Y$, a fiber $f^{-1}(y)$ is finite. Then there is no exactly (n, 1) mapping, $2 \le n < \varepsilon \infty$, $g: Z \to X$ of a continuum Z onto X.

LEMMA 3.4 Let $f: X \to Y$ be an exactly n-component-to-one mapping onto a dendrite Y.If X is a Peano continuum, then X is a dendrite.

Proof.By virtue of the Factorization theorem [20, pp. 141.] there exists a factorization $f=f_2 f_1$ such that f_2 is light and f_1 is monotone. If f is n-component-to-one mapping, then f_2 is exactly (n,1). Apply Lemma 3.3.

LEMMA 3.4.1. Let $f:X \to Y$ be a mapping onto a dendrite Y such that, for each $y \in Y$, a fiber $f^{-1}(y)$ is finite. Then there is no exactly n-component-to-one mapping, $2 \le n < \epsilon = \infty$, $g:Z \to X$ of a continuum Z onto X.

THEOREM 3.5 The following is known:

1. [13, Lemma.].Let Y be a continuum with an endpoint e and let $n \in N, n \ge 2$. If there exists (n, 1) mapping f from a continuum X onto Y, then there is a proper subcontinuum Y_1 of Y such that $f^{-1}(Y_1)$ is connected.

2. [13, Theorem 1.].Let Y be a continuum such that every nondegenerate subcontinuum of Y has an endpoint. If $n \in N, n \ge 2$, then there is no exactly (n, 1)-mapping from any continuum onto Y.

3. [13, Corollary 1.1]. If $n \ge 2$, then there is no exactly (n, 1) mapping onto a dendrite.

4. [13, Theorem 2.]. If Y is a continuum which contains a non-unicoherent subcontinuum and if $n \in 2$, then there is an exactly (n, 1) mapping from some continuum X onto Y.

LEMMA 3.6 Let $f: X \to Y$ be a mapping onto a dendrite Y. Then X is hereditarily unicoherente.

Proof.Suppose that X is not hereditarily unicoherent. This means that there is a nonunicoherent subcontinuum of X.By 3.5.4. there is a continuum Z and an exactly (n,1) maping F:Z \rightarrow X.In order to complete the proof it suffices to apply the proof of Lemma 3.3.

THEOREM 3.7 Let $\underline{X} = \{X_m \in_m p_{mnv}N\}$ be an approximate inverse sequence of the dendrites. Then $X = \lim \underline{X}$ is hereditarily unicoherent. Moreover, if X is a Peano continuum, then X is a dendrite.

Proof.Consider a mapping $p_n: X \to X_n$ and apply the above Lemma.It follows that X is locally connected and contains no a simple closed curve.

THEOREM 3.8 Let $\underline{X} = \{X_n, \in_n p_{mn}, N\}$ be an approximate inverse sequence of the simple closed curves. Then each proper subcontinuum of $X = \lim \underline{X}$ is hereditarily unicoherent.

Proof.Let C be a proper subcontinuum of X.This means that there is a point $x \in X$ -C.By the definition of a base of X there exists an $a \in A$ and an open set $U_{a \subseteq} X_{a}$ such that $p_{a}^{-1}(UA) \subseteq X$ -C.It

follows that pA(x) hot $\in pA(C)$, i.e., is a proper subcontinuum of X_a . Thus $p_a(C)$ is an arc. By Lemma 3.6. C is hereditarily unicoherent.

4 Approximate inverse limit of continua in Class W

In this Section we use the hyperspace technique. We start with the following **THEOREM 4.1** [6, Theorem 1.12.].Let $\underline{\mathbf{X}} = \{\mathbf{X}_a, \boldsymbol{\varepsilon}_a, \mathbf{p}_{ab}, A\}$ be an approximate inverse system of metric compacta $\mathbf{X}_a, \mathbf{\varepsilon} \in \mathbf{A}$. The spaces $2^{\lim X}$ and $\lim 2^X$ are homeomorphic.

By the same method of proof as in the proof of Theorem 2.1. we have **THEOREM 4.2** Let (F_a) be a thread of 2^{χ} such that each F_a is connected. Then $F = \bigcap \{p^{-1}_a(FA): a \in A\}$ is connected.

Let C be a functor which assigns to a continuum X the hyperspace C(X) of all subcontinua of X.For each mapping $f: X \to Y$ there is a map $C(f): C(X) \to C(Y)$ defined by

$$C(f)(K) = f(K), K \in C(X)$$
⁽¹⁾

For each mappings $f: X \to Y, g: Y \to Z$ we have

$$C(\mathbf{g}\mathbf{f}) = C(\mathbf{g})C(\mathbf{f}) \tag{2}$$

For each inverse approximate system $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ we have new system $C(\underline{X}) = \{C(X_n\}), \in_n\}, C(p_{nm}), A\}$ [6] with the projections P_n : lim $C(\underline{X}) \to C(X_n)$. Moreover, we have the family of the mappings $C(p_n)$ which induces a homeomorphism $H:C(\lim \underline{X}) \to \lim C(\underline{X})$ such that

$$C(p_n) = P_n H \quad \forall \mathbf{n} \in \mathbf{N} \tag{3}$$

This means that for each $K \in C(\lim X)$, i.e., K is a subcontinuum of $\lim X$, we have

$$H(K) = \{p_n(K): n \in N\} \in \mathbf{limC}(\underline{X})$$
(4)

From 4.2. it follows that for each thread $\{K_n : n \in N\}$ there is a subcontinuum of $\lim \underline{X}$ such that $p_n(K)=K_i$, i.e., H is onto. Similarly it follows that H is 1-1. Thus, H is a homeomorphism.

Applying the functor C once more, we obtain the approximate inverse system $C^2(\underline{X}) = \{C^2(X_n), \in_n, C^2(p_{nm}), A\}$ with the projections Q_n and the bonding mappings $C^2(p_{nm})$. Moreover, we have two families $\{C(P_n) : n \in N\}$ and $\{C^2(p_n) : n \in N\}$ which induce the homeomorphisms

$$H_1:C(limC(\underline{X})) \to limC^2(\underline{X})$$
(5)

and

$$H_2: C^2(lim\underline{X}) \to limC^2(\underline{X}) \tag{6}$$

We have also a homeomorphism

$$C(H): C^{2}(lim\underline{X}) \to C(limC(\underline{X}))$$

$$\tag{7}$$

Moreover, we have the following relations of the commutative diagrams.

$$C(P_n) = Q_n H_1 \tag{8}$$

$$C^{2}(\mathbf{p}_{n}) = Q_{n}H_{2}$$
 (9)
 $C^{2}(\mathbf{p}_{n}) = C(\mathbf{P}_{n})C(\mathbf{H})$ (10)

$$U_{n} = U(\mathbf{r}_{n})U(\mathbf{r})$$
(10)

$$\mathbf{H}_{1} = \mathbf{H}^{-}\mathbf{C}(\mathbf{H}) \tag{11}$$

A mapping $f: X \to Y$ is said to be *weakly confluent* iff f([18]:293) is onto and if any subcontinuum K of Y is the image of some component of $f^{-1}(K)$.

A mapping $f: X \to Y$ is said to be *confluent* iff f([18]:293) is onto and if any subcontinuum K of Y is the image of each component of $f^{-1}(K)$.

If f is a map from a continuum X onto a continuum Y, then a subcontinuum K of Y is a w_f -set if there is a continuum K' in X such that f(K')=K [17].

A mapping $f: X \to Y$ is *n*-partially confluent if every subcontinuum of Y is the union of n or fewer w_f-sets [17].

A metric continum M is in *Class W* if and only if all mappings from metric contiua onto M are weakly confluent ([5] or [18]:293).

If f is a map from a continuum X onto a continuum Y, then a subcontinuum K of Y is a w_f -set if there is a continuum K' in X such that f(K')=K [17].

Define a function $C^*:C(X) \to C(C(X))$ by $C^*(A)=C(A)$ for each A in C(X), where C(X) is the hyperspace of all subcontinua of X (see [12]). It was proved that C^* is upper semicontinuous [(15.2)]. A continuum X is said to be C^* -smooth at $A, A \in C(X)$, provided that C^* is continuous at A. The continuum X is said to be C^* -smooth [12, (15.5)] provided that it is C^* -smooth at each $A \in C(X)$. It is known that X is in Class W iff X is C^* -smooth [2, 3.2. Theorem.].

We start with the following lemma.

LEMMA 4.3 Let $f: X \to Y$ be a continuous mapping between C*-smooth continua. The the diagram

$$C(X) \xrightarrow{c(f)} C(Y)$$

$$\downarrow^{c_{\overline{x}}} \qquad \qquad \downarrow^{c_{\overline{y}}}$$

$$C^{2}(X) \xrightarrow{c(g)} C^{2}(Y)$$

commutes.

Proof. a) For each $A \in C(X) C^2(f)(C^*(A))$ is a collection of all f(K), where K is a subcontinuum of A.

b). For each $A \in C(X) C^* (C(f)(A))$ is a collection of all subcontinua in f(A).

c) The continuum f(A) is in Class W since it is C*-smooth ([12,(15.6)] and [3.2. Theorem.]). This means that f/A is weakly confluent, i.e., for each subcontinuum $L \subseteq f(A)$ there is a continuum K $\subseteq A$ such that f/A(K)=L.

d) From a),b) and c) it follows that C^2 , (f)($C^*(A)$)= $C^*(C(f)(A)$). The proof is completed. The main theorem of this section

THEOREM 4.4 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an inverse sequence of metric compact spaces with onto bonding mappings. If each X_n is in Class W, then $\lim \underline{X}$ is in clas W.

Proof.a) We have the following diagram

For each thread $k=(K_n)$ in $C(\underline{X})$, i.e., for each $k \in \lim C(\underline{X})$, we have a collection $C_n^*(K_n):n \in N$ }. Let us prove that $(C_n^*(K_n):n \in N)$ is a thread in C^2 , (\underline{X}) . It suffices to prove that the condition (L) is satisfied (see Section 1.). Let a $n \in N$ be fixed. Let U be an open set about $C_n^*(K_n)$. Then $(C_n^*)^{-1}(U)=V$ is an open set about K_n . From the condition (L) for $k=(K_n)$ it follows that there is a $m \ge n$ such that for each $c \ge m$ $C(p_{nc})(K_c) \in V$. Clearly, $C_n^* 2^{Pnc}(K_c) \in U$. By the commutativity of the diagram

$C(X_n)$	(P.c)	$C(X_{\iota})$
0		c;
$C^2(X_n)$	C'(Pac)	$C^2(X_{\iota})$

we infer that $C^2(p_{nc}) C_c^*(K_c) \in V$ for each $c \ge m$. This, means that the condition (L) is satisfied for the collection ($C_n^*(K_n):n \in N$). The continuity of C^*_{limX} holds from the definition of a base in approximate limit (see Lemma 1.8.) and the comutativity of each diagram

where P_n are the projections. In order to complete the proof we prove that the diagram

commutes since then C^*_{limx} is continuous. This follows from the next figure of the commutative diagrams.

The proof is completed. **THEOREM 4.5** A locally connected continuum is C^* -smooth if and only if it is a dendrite. **Proof.**See [12,(15.11) Theorem.] **THEOREM 4.6** Let $\underline{X} = \{X_n, \epsilon_n, p_{mn}, N\}$ be an approximate sequence of the dendrites. If $X = \lim X$ is locally connected, then X is a dendrite.

Proof.X is C* -smoth and locally connected. Thus, X is a dendrite. ■

5 Approximate inverse limit of continua with $P(X_n) \leq n_{\theta}$

For the continuum M let P(M) be the largest integer such that there is a map f from a continuum onto M that is not (P(M)-1)-partially confluent. This means that P(M) is the smallest integer such that for every map of a continuum onto M, every subcontinuum of M is the union of P(M) or fewer w_f-sets [17]. For example, Class W is the clas of continua M for which P(M)=1. If M is a simple closed curve or a simple triod, P(M)=2.

Van C. Nall and Eldon J. Vought [17, Theorem 3.] proved the following theorem. **THEOREM 5.1** Suppose n_0 is a positive integer, and the continuum $X = \lim \{X_n, \epsilon_n, p_{mn}, N\}$ where each X_n is a continuum such that $P(X_n) \le n_0$, $n \in N$. Then $P(X) \le n_0$.

Now we prove the approximate version of Theorem above.

THEOREM 5.2 Let $\underline{X} = \{X_n, \epsilon_n, p_{mn}, N\}$ be an approximate inverse sequence of metric continua X_n with $P(X_n) \leq n_0$. Then $P(X) \leq n_0$, $X = \lim \underline{X}$.

Proof.Let f:M \rightarrow X be a mapping onto X and let L be a subcontinuum of X.Since each p_n f is n_0 -partially confluent, for each positive integer n we have a collection $\{K_1^n, ..., K_{n0}^n\}$ of subcontinua of M such that

$$\cup \{p_n f(K_j^n): j = 1,...,n_0\} = p_n(L)$$
 (1)

For each n and for $j=1,...,n_0$, consider continua

$$L^{n}_{j} = f(K^{n}_{j}) \tag{2}$$

Choosing subsequences if necessary, assume that for each $j, 1 \le j \le n_0$, the sequence $\{L_j^n : n \in N\}$ converges to a continuum L_j in X.Likewise, the sequence $\{K_j^n : n \in N\}$ converges to a continuum K_j in M.From (2) it follows that

$$f(K_j) = L_j \quad \forall \ j \in [1, n_0] \tag{3}$$

In order to complete the proof we prove that

$$L = \bigcup \{ L_j : j \in [1, n_0] \}$$
(4)

i.e.,we prove that L is the union of n w_f -sets since since each L_j is a w_f -set.Let x be any point in L.Then $\{p_n(x):n \in N\}$ is a thread and $p_n(x) \in p_n(L)$.From (1) it follows that there is a point $k_{j(n)}^n \in K_{j(n)}^n$ such that

$$p_n f(k_{j(n)}^n) = p_n(x)$$
⁽⁵⁾

Since $1 \le j(n) \le n_0$ for each $n \in N$, there is a cofinal subset N' of N such that j(n) is constant function on N'. Thus, one can assume that j(n) is constant on N, say $j(n)=1, n \in N$. One can also assume that sequence $\{k_1^n : n \in N\}$ is convergent. Let $k=\{k_1^n : n \in N\}$. Clearly, $k \in K_1$. Let $y=f(k) \in L_1$. Hence, $y=\lim \{f(k_1^n) : n \in N\}$.

From (5) it follows that $f(k_1^n) \in p_n^{-1}(p_n(x))$. It follows that $\lim \{f(k^{n_1}): n \in N\} = x$. Thus, x = y. The relation

$$L \subseteq \cup \{L_j: j \in [1, n_0]\}$$

$$(6)$$

is proved. Conversely, if $x \in \bigcup \{L_j : j \in [1, n_0]\}$, then x is in some L_j , say L_1 . There is a point $k \in K_1$ such that x=f(k). We infer that $x=\lim\{f(k_1^n):n \in N\}$ since $k=\lim\{k_1^n:n \in N\}$. Each $p_n(k_1^n)$ is in $p_n(L)$. This means that each $f(k_1^n)$ is in $p_n^{-1}(p_n(L))$. It follows that $\lim\{f(k_1^n):n \in N\}$ is in L. Thus x is in $\bigcup \{L_j:j \in [1, n_0]\}$. The relation

$$L \supseteq \{L_j: j \in [1, n_0]\}$$

$$\tag{7}$$

is proved. This means that (4) is proved. The proof of is completed.

COROLLARY 5.3 Let $\underline{X} = \{X_n, \in_m, p_{mn}, N\}$ be an inverse sequence of metric compact spaces with onto bonding mappings. If each X_n is in Class W, then $\lim \underline{X}$ is in class W.

See also Theorem 4.4.

COROLLARY 5.4 Let $\underline{X} = \{X_m \in_m p_{mn}, N\}$ be an approximate inverse system with onto bonding mappings. If each X_n contains n_0 -od but no $(n_0 + 1)$ -od for some $n_0 \ge 2$, then $P(\lim \underline{X}) \le n_0(n_0 - 1)$.

Proof. For each X_n we have $P(X_n) \leq n_0(n_0 - 1)$ [15, Theorem II.2]. Apply Theorem 5.2.

COROLLARY 5.5 Let $\underline{X} = \{X_m, \epsilon_m, p_{mm}, N\}$ be an approximate inverse system with onto bonding mappings. If each X_n is a simple closed curve (or a triod), then $P(\lim \underline{X}) \leq 2$.

Proof. Apply Theorem 5.2. and the fact that if X is a simple closed curve or a triod, then P(X)=2.

6 Approximate limit of graphs

DEFINITION 6.1. A continuum M is an *n*-od, where n is an integer greate than 1, if M contains a subcontinuum K, called the **core** of the *n*-od, such that $M \setminus K$ has n components.

THEOREM 6.2 [17, Theorem 4.]. If a continuum X contains an n-od, then there is a positive number \in such that if f is an \in -mapping from X onto Y, then Y contains an n-od.

By 6.2. and (B2) it follows

THEOREM 6.3 Let $\underline{X} = \{X_n, \epsilon_m p_{nn}, N\}$ be an inverse sequence of metric compact spaces with onto bonding mappings. If $\lim \underline{X}$ contains an n_0 -od, then there is $n \in N$ such that each $X_m, m \ge n$, contains an n_0 -od.

COROLLARY 6.4 Let $\underline{X} = \{X_m \in_m p_{mn}, N\}$ be an inverse sequence of metric continua with onto bonding mappings. If each X_n contains no an n_0 -od, then $\lim \underline{X}$ contains no an n_0 -od.

A space X is *semi-aposyndetic* if for each pair of points in X there is a continuum in X that contains one of the points in its interior and does not contain the other point.

A subcontinuum A of a continuum X is a *free arc* in X if A is an arc such that the boundary of A is contained in the set of endpoints of A.A continuum is a *graph* if it is the union of a finite number of free arcs [17].

THEOREM 6.5 [17, Theorem 5.]. A continuum is a graph iff it is semi-aposyndetic and does not contain an infinite-od.

THEOREM 6.6 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an inverse sequence of metric continua with onto bonding mappings such that each X_n contains no an n_0 -od. If $\lim \underline{X}$ is semi-aposyndetic, then $\lim \underline{X}$ is a graph.

Proof. If we suppose that a space $X = \lim X$ contains an infinite-od, then we infer that X contains n_0 -od. This contradicts Theorem 6.4. Thus, X does not contain an infinite-od. By Theorem 6.5. we complete the proof.

REMARK 6.7 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an inverse sequence of graphs X_n with onto bonding mappings such that each X_n contains no an n_0 -od.If $X = \lim \underline{X}$ is semi-aposyndetic, then X is a graph.Moreover, X is the approximate inverse limit of a single graph. This follows from the fact that there are only finitely many graphs $X(1), ..., X(k(n_0))$ that do not contain n_0 -od.Let N_j be a set of all $n \in N$ such that $X_n = X(j), 1 \le j \le k(n_0)$. Clearly, N is the union of all N_k . This means that some N_j is infinite, i.e., cofinal in N.Consider a system $\underline{X}(j) = \{X(j), \in_n, p_{mn}, N_j\}$. By virtue of Proposition 2. [8] we have $X = \lim \underline{X}(j)$. **THEOREM 6.8** Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an inverse sequence of a single graph G with onto bonding mappings. If $X = \lim \underline{X}$ is semi-aposyndetic, then X is a graph.

THEOREM 6.9 Let $\underline{X} = \{X_n, \epsilon_n, p_{mn}, N\}$ be an inverse sequence of the arcs X_n with onto bonding mappings. If $X = \lim \underline{X}$ is semi-aposyndetic, then X is an arc.

Proof.By Theorems 2.2. and 6.8. X is chainable graph. Thus, X is an arc.■

THEOREM 6.10 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an inverse sequence of the simple closed curves X_n with onto bonding mappings. If $X = \lim \underline{X}$ is semi-aposyndetic, then X is a simple closed curve.

Proof.By Theorems 2.3. and 6.8. X is circle-like graph.Thus,X is a simple closed curve.■

COROLLARY 6.11 The arc is the only non-degenerate metric semi-aposyndetic chainable continuum.

Proof.Let X be a non-degenerate metric semi-aposyndetic chainable continuum.By Theorem 1. of [10] it follows that there exists an usual inverse system $\underline{I} = \{I_n, p_{mn}, N\}$ of the arcs I_n such that X is homeomorphic to \underline{I} . From Remark 2. of [7] it follows that one can define numbers \in_n such that $\underline{X} = \{I_n, \in_n, p_{mn}, N\}$ is an approximate inverse system whose approximate limit coincide with usual inverse limit of \underline{I} . Thus, X is approximate limit of \underline{X} .By Theorem 6.9. we infer that X is an arc.Conversely, each arc is non-degenerate metric semi-aposyndetic chainable continua.

By the same method of proof we have

COROLLARY 6.12 The simple closed curve is the only non-degenerate metric semi-aposyndetic circle-like continuum.

We close this section with theorem whose usual version was proved in [14, IV.1. Theorem.].

THEOREM 6.13 Let $\underline{X} = \{X_n, \epsilon_n, p_{mn}, N\}$ be an approximate inverse system such that each X_n is an acyclic graph G with exactly s edges. Then each subcontinuum of $X = \lim \underline{X}$ is the union of n or fewer W-sets.

Proof. Suppose that K is any subcontinuum of X.Each projection $p_n: X \to X_n$, $n \in N$, is weakly confluent with respect to $p_n(K) \cap E_i$ for each edge $E_1, ..., E_s$ of G [16,Lemma 3.]. We define K_{ni} as a suncontinuum of K which projects onto $p_n(K) \cap E_i$. We consider, for each $i \in \{1, 2, ..., s\}$ a sequence $\{K_{ni}: n \in N\}$. We may assume that this sequence converges to a subcontinuum K_i of K.Let us prove that $K = \bigcup \{K_i: i=1,...,s\}$ It is clear that $K \subseteq \bigcup \{K_i: i=1,...,s\}$. Conversely, if $x \in K$, then $x_n = p_n(x)$ is contained in $p_n(K) \cup E_i$ for some i=1,2,...,s. There is a point $x_{ni} \in K_{ni}$ such that $p_n(x_{ni}) = x_n$. Clearly, a sequence $\{x_{ni} : n \in \mathbb{N}\}$ converges to x.It follows that $x \in \{K_i : i=1,...,s\}$. Thus $K = \{K_i : i=1,...,s\}$. In order to complete the proof it suffices to prove that each K_i , i=1,...,s is a W-set. To see this, let f:Y \rightarrow X be any mapping of some continuum Y onto X.For each integer n and i=1,...,s,p_n f is weakly confluent with respect to $p_n(K) \cap E_i$ [16,Lemma 3.].Let C_{ni} be a subcontinuum of Y such that $p_n(C_{ni} = p_n(K) \cap E_i$. We may asume that a sequence $\{K_{ni} : n \in N\}$ converges to a subcontinuum C_i .Let x be any point of K_i , and let $\{x_{ni}\}$ be a sequence of points converging to x such that $x_{n} \in K_{n}$. For each n there is a point c_{n} in C_{n} such that $p_{n}(f(c_{n}) = p_{n}(x_{n})$. The sequence $\{f(c_{n})\}$ converges to x. We have $K \subseteq f(C_i)$. On the other hand, if f(c) is in $f(C_i)$, then there is a sequence $\{c_{ni}\}\$ converging to c such that $c_{ni} \in C_{ni}$. There exists a sequence $\{x_{ni}\}\$ such that $x_{ni} \in K_{ni}$ and $p_n(x_{ni})=p_n(f(c_{ni}))$. We may assume that $\{x_{ni}\}$ converge to $x \in K_i$ and $\{f(c_{ni})\}$ converge to x. Since

f(c)=x, f(c) is in K_i . Thus, $f(C_i) \subseteq K_i$. We infer that each $f: Y \to X$ is weakly confluent with respect to K_i . Thus K is the union of n or fewer W-sets. The proof is completed.

QUESTION. Is every map from a continuum onto a limit of an approximate inverse sequence of a graph G partially confluent? For usual inverse sequence see [16,VI. Question]

7. Confluent mappings

We start with following theorem.

THEOREM 7.1. Let $\underline{X} = \{X_{\omega}, \varepsilon_{\omega}, p_{ab}, A\}$ be an approximate inverse system of compacta with onto bonding mappings. The projections $p_a: \lim \underline{X} \to X_{\omega} a \in A$, are weakly confluent if the mappings p_{ab} are weakly confluent.

Proof.Let $C(\underline{X})=\{C(X_a), \in_a, C(p_{ab}), A\}$ be an approximate inverse system corresponding to approximate system $\underline{X}=\{X_a, \in_a, p_{ab}, A\}$ (see 4.4.). The mapping $C(p_{ab})$ are onto since p_{ab} are onto and weakly confluent. Moreover, $C(p_{ab})$ are onto if and only if p_{ab} are onto and weakly confluent. By Lemma 1.11 we infer that the projections P_a : lim $C(\underline{X}) \rightarrow C(X_a)$ are onto if $C(p_{ab})$ are onto. Since $C(\lim \underline{X})$ and lim $C(\underline{X})$ are homeomorphic, for each continuum $K_a \subseteq X_a$, i.e., $K_a \in C(X_a)$, there is a point K in $C(\lim \underline{X})$ such that $C(p_a)(K)=K_a$. The proof is completed since K is contained in some component of $p^{-1}{}_a(K_a)$.

A mapping $f: X \to Y$ is said to be weakly confluent at a point $y \in Y$, if for each subcontinuum K of Y such that $y \in K$ there exist a component of $f^1(K)$ which is mapped onto the whole K under f [1] The usual version of the following theorem was proved in [1].

THEOREM 7.2 Let $\underline{X} = \{X_{ab} \in_{ab} p_{ab}, A\}$ be an approximate inverse system. If there is a point $x_a \in X_a$ such that for each $b \ge a$ a mapping p_{ab} is weakly confluent at a point x_a , then a projection p_a is weakly confluent at a point x_a .

Proof. The proof is similar to the proof of Theorem 1.11.

A mapping $f: X \to Y$ is said to be *confluent relative to a point* $x \in X$ [1] if for each subcontinuum $K \subseteq Y$ such that $f(x) \in K$ the component of $f^{\perp}(K)$ containing the point x is mapped onto the whole K under f.

REMARK 7.3 The author is not able to answer to the following questions:

1. QUESTION.Let $\underline{X} = \{X_{a}, \epsilon_{a}, p_{ab}, A\}$ be an approximate inverse system with confluent bonding mappings. Does it follow that the projections are confluent?

2. QUESTION.Let $\underline{X} = \{X_a, \epsilon_a, p_{ab}, A\}$ be an approximate inverse system with n-partially confluent bonding mappings. Does it follow that the projections are n-partially confluent?

3. QUESTION.Let $\underline{X} = \{X_{ab} \in_{ab} p_{ab}, A\}$ be an approximate inverse system and let $x = (x_a)$ be any point of $X = \lim \underline{X}$ such that p_{ab} are confluent relative to a points x_a . Does it follows that the projections pA are confluent relative to the point x?

Let us note that for the usual inverse system the answer to first question is yes [1].

8 Approximate limits of continua without n-ods and w-sets

Let us recall that a proper nondegenerate subcontinuum $K \subseteq Y$ is a W-set if, for every continuum X and map f of X onto Y, some subcontinuum of X is mapped by f onto K.

THEOREM 8.1 Let A be a proper subcontinuum of a continuum X.Then A is not a W-set if and only if there exists some $\varepsilon > 0$ and a neighborhood G of A such that

1. for each $x \in G$ there exists a continuum B from x to Bd(G) such that $A \not\subset S(B, \varepsilon)$, and 2. for each decomposition of $Bd(G)=R \cup S$ into disjoint closed sets R and S, there exists a continuum K from R to S with $A \not\subset S(K, \epsilon)$.

Proof.See [3,2.1. Theorem.].

THEOREM 8.2 A continuum X is in Class (W) if and only if for every subcontinuum A of X, for each $\varepsilon > 0$ and each neighborhood U of A we have either

1. there exists $x \in U$ such that for every continuum B from x to Bd(U) in Cl(U) we have that $A \subset S(B, \in), or$

2. there is a decomposition of $Bd(U) = R \cup S$ into disjoint non- empty closed sets R and S such that for each subcontinuum K of X from R to S we have $A \subset S(K, \varepsilon)$.

Proof.See [3, 2.2. Corollary.].■

THEOREM 8.3 [19, Theorem 1.]. The continuum Y contains no W-sets and, for some integer $n \ge 3$, has no n-ods if and only if Y is a graph in which each point is contained in a simple closed curve.

THEOREM 8.4 [19, Corollary 1.]. If Y is an atriodic continuum that contains no W-sets, then Y is a simple closed curve and conversely.

A proper nendegenerate subcontinuum K of Y is said to be W'-set if for every map f of Y onto Y, some subcontinuum of Y is mapped onto K.

THEOREM 8.5 [19, Theorem 3.]. The continuum Y contains no W'-sets and for some integer ≥ 3 , has no n-ods if and only if Y is a graf in which each point is contained in a simple closed curve.

THEOREM 8.6 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an approximate inverse sequence of the simple closed curves. A space $X = \lim \underline{X}$ has no W-sets if and only if X is a simple closed curve.

Proof. The space X is atriodic (see Theorem 6.2.). If X has no W-sets, then X is a simple closed curve (see 7.4.). Conversely, if X is a simple closed curve, then (by 8.4.) X has no W-sets. ■

REMARK 8.7 Let us note that from Corollary 5.5. it follows that if $\underline{X} = \{X_m, \in_m, p_{mn}, N\}$ is an approximate inverse sequence of the simple closed curves X_n with limit X, then each subcontinuum of X is the union of 2 or fewer W-sets.

Similarly, from 6.2. and 8.3. it follows

THEOREM 8.8 Let $\underline{X} = \{X_n, \in_n, p_{mn}, N\}$ be an approximate inverse sequence of the graphs which for some integer $n \ge 3$ have no n-ods and each point of X_n is contained in a simple closed curve. A space $X = \lim \underline{X}$ has no W-sets if and only if X is graph in which each point is contained in a simple closed curve.

QUESTION. Let $\underline{X} = \{X_{uv} \in_{uv} p_{ulv}A\}$ be an approximate inverse system of continua containing no *W*-sets. Does it follow that $\lim \underline{X}$ contains no *W*-sets?

W - SKUPOVI I APROKSIMATIVNI LIMES

SADRŽAJ

Preslikavanje f:X \rightarrow Y kontinuuma X na kontinuum Y je *slabo konfluentno* ako za svaki potkontinuum K \subseteq Y postoji komponenta Q skupa f¹(K) sa svojstvom f(Q)=K. Potkontinuum K kontinuuma X je *W*-skup ako za svako preslikavanje f:Y \rightarrow X na X postoji kontinuum L \subseteq Y sa svojstvom f(L) = K. Prostor X je iz klase W ($X \in Class W$) ako je svako preslikavanje f:Y \rightarrow X kontinuuma Y na kontinuum X konfluentno.

U drugom odjeljku dokazujemo da je aproksimativni limes kontinuuma kontinuum te da je limes lančast ako su svi prostori sistema lančasti.

Treći odjeljak posvećen je točno (n,1)-preslikavanjima. U četvrtom odjeljku dokazujemo da je aproksimativni limes u klasi W ako su takvi prostori aproksimativnog sistema. Taj je rezultat nov i za obične inverzne sisteme.

U petom odjeljku je taj rezultat dokazan u općenitijoj situaciji.

Aproksimativni limesi konačnih grafova proučavani su u šestom odjeljku.

REFERENCES

- 1. Charatonik J.J. and Charatonik W. J., On projections and limit mappings of inverse systems of compact spaces, Topology and its Applications, 16(1983), 1–9.
- Grispolakis J. and Tymchatyn E. D., Weakly confluent mappings and the covering property of hyperspaces, Proc. Amer. Math. Soc. 74(1979), 177–182.
- Grispolakis J. and Tymchatyn E. D., A characterization of continua that contain no n-ods and no w-sets, Proc. Amer. Math. Soc. 109(1990), 545–551.
- 4. Kuratowski K., Topologija II, Mir, Moskva, 1969.
- Lelek A., A classification of mappings pertinent to curve theory, Proc. Oklahoma Topology Conf., Univ. of Oklahoma, Norman, Okla, 1972, 97–102.
- 6. Lončar I., Hyperspace of the approximate inverse limit space, Matematički Vesnik 4281):105–110, 1990.
- Mardesić S. and Rubin L. R., Approximate inverse system of compacta and covering dimension, Pacific J. Math. 138(2):129–144, 1989.
- Mardesić S. and Segal J., Stability of almost commutative inverse systems of compacta, Topology and its Application, 31:285–299, 1989.
- 9. Mardesić S. and Segal J., Mappings approximate inverse systems of compacta, Fund. Math., 134:74–91, 1990.
- 10. Mardesić S. and Segal J., E-mappings onto polyhedra, Trans. Amer. Math. Soc., 109:146-164, 1963.
- Mardesić S. and Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat., 24(3):587– 637, 1989.
- 12. Nadler S. B., Hyperspace of sets, Marcel Dekker, Inc. 1978.
- 13. Nadler S. B. and Ward L. E. Concerning exactly (n, 1) images of continua, Proc. Amer. Soc. 87(1983), 351–354.

- 14. Nall V. C., Maps which preserve graphs, Proc. Amer. Math. Soc. 101(1987), 563-570.
- 15. Nall V. C., Partially confluent maps and n-ods, Houston J. Math. 15(1989), 409-415.
- 16. Nall V. C., Weak confluence and W-sets, Topology Proc. 8(1983), 161-193.
- Nall V. C. and Vought E. J., Partial confluence of maps onto graphs and inverse limits of single graphs, Fund. Math. 139(1991), 1–7.
- Proctor C. W., A characterization of absolutely C-smooth continua, Proc. Amer. Marh. Soc. 92(1984), 293–296.
- Vought E. J., A characterization of continua that contain no n-ods and no w-sets, Proc. Amer. Math. Soc. 109(1990), 545–551.
- 20. Whyburn G. T., Analytic Topology, Amer. Math. Soc. 28(1971).

Primljeno: 1995-2-6