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We prove that topological chirality in a K3 3 graph requires a mini-
mum of two non-adjacent colored edges, while topological chirality
in a K5 graph requires a minimum of three colored edges that form
an open path.

INTRODUCTION

In conjunction with a study of protein topology, we recently noted that
topological chirality in a K 3 graph requires a minimum of two non-adjacent
colored edges, while topological chirality in a Ky graph requires a minimum
of three colored edges that form an open path.! In the present paper we sup-
ply the proof for this observation. To provide the necessary background, we
begin by introducing some preliminary concepts.

A graph is a set of vertices together with a set of edges that connect some
or all of the vertices. Of particular interest in the present context are the
two Kuratowski graphs, K33 and K;, shown in Figure 1. K33 is a bipartite
graph consisting of two disjoint sets of three vertices each, with each vertex
of one set adjacent to all three of the other, while K; is a complete graph
comprised of five vertices that are all adjacent to one another.2 Because the
crossings of edges in the abstract or standard projections of Figure 1 are sin-
gle points, instead of transverse double points, the associated topological
chirality or achirality remains undefined. That is, in order to determine
whether or not a graph is topologically chiral, all crossings of edges in the
graph's projection must represent transverse double points, with over- and
under-characteristics clearly marked. We refer to such graphs as »spatial
graphs«. A spatial graph is a three-dimensional topological object that can
be distorted in space without limit by continuous deformations (ambient iso-
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Figure 1. Abstract or standard presentations of (a) K33 and (b) K5 graphs, with ver-
tices symbolized by open circles.

topy) such as bending, stretching, or twisting but not tearing, breaking, or
rejoining of edges. Two spatial graphs are said to be isotopic if they can be
converted into each other by ambient isotopy. A spatial graph is topologically
achiral if and only if it is isotopic with its mirror image; otherwise it is
topologically chiral. Molecular graphs, in which vertices symbolize atoms
and edges symbolize chemical bonds, are examples of spatial graphs. Fig-
ures 2a and 2b represent the simplest spatial realizations of Figures la and
1b, respectively.>* Both graphs are topologically achiral. In what follows,
discussions in connection with topological chirality are limited to spatial
graphs.

A graph is said to be planar if it can be embedded in the plane without
the crossing of any edges; otherwise it is nonplanar. A graph is nonplanar
if and only if it contains a subgraph that is homeomorphic? or contractible*®
to Ky 3 or K;. Nonplanarity is a prerequisite for topological chirality, i.e., a
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Figure 2. (a) K33 and (b) K5 graphs with vertices symbolized by open circles. The
two graphs are Kp and K, of Ref. 4, which correspond to Figure 1 and Figure 2 of
Ref. 3, with subscripts b and a replaced by 3,3 and 5, respectively.
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topologically chiral graph must contain a subgraph that is homeomorphic or
contractible to Kj 3, to Kj, or to a nontrivial knot or link.

Nonplanarity and topological chirality of molecular graphs have proven
to be a source of inspiration for the synthesis of novel chemical structures.
In particular, »molecules with nonplanar graphs represent a novel, not to say
exotic, structure type, and ... this topological perspective has sparked fruitful
investigations in a previously unexplored area«.” Figure 3 depicts eight such
molecules:** the graphs of the four molecules in Figures 3a-d are topologi-
cally chiral,'51¢ whereas the four molecules in Figures 3e-h are topologically
achiral because each of them has an attainable achiral symmetry.

By means of branched coverings, Simon showed!® that Figure 4a (the col-
ored three-rung Mobius ladder graph Mg, an abstracted model of Figure 3b)
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Figure 3. (a) The Simmons-Paquette molecule.®® (b)-(c) The three-rung and four-rung
Mobius ladder molecules.! (d) Molecule [4](1,1)[4](3,3)[3](4,4)-ferrocenophan-16-one. 11
(e)-(f) Centropentaindan and bridgehead-disubstituted derivatives.!? (g) A cage com-
plex [Co(sep)]?”' (sep = sepulchrat/e).13 (h) The ansa icosahedron: (1,7-CoB1gH10-1',3"-
CgHy)3.14 In all molecular graphs shown on this and the following page, unlabeled
vertices represent carbon atoms, and hydrogen atoms are suppressed for clarity.



738 C. LIANG AND K. MISLOW

@® = Co

® (b)

Figure 3. Cont.

and Figure 4b (M3*, the mirror image of Mg) are not isotopic. Thus the
three-rung Mobius ladder molecule shown in Figure 3b is topologically chi-
ral. Similarly, Simon proved!® that the molecular graphs in Figures 3a and
3c are both topologically chiral.

In proving the topological chirality of the molecular graph in Figure 3d,
Wolcott!® showed that (i) a one-to-one mapping can be uniquely defined be-
tween the mirror images of the graph, and (ii) the graph contains a sub-
graph that is homeomorphic to M3 or to Ms*. In the present paper we show
that M3 (or M3*) is not the simplest topologically chiral graph. The applica-
tion of Wolcott proofs is therefore limited. For example, the graph of the hy-
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Figure 4. (a) M3, the colored three-rung Mébius ladder graph abstracted from Figure

3b. The three colored edges (rungs) are symbolized by heavy lines. (b) M3*, the mir-
ror image of Mg.

pothetical molecule in Figure 5 satisfies the above condition (i) but does not
contain any subgraph that is homeomorphic to M3 or to Ms*, yet the mole-
cule is topologically chiral (see below). Obviously, the simplest topologically
chiral graphs can be derived from the simplest nonplanar graphs them-

selves. As shown below, this end can be achieved by selective coloring of Kj
and K5.

HC\ X /(‘H
X X

X X

HC X (IIH

HC X CH

X =—CH,(OCH,CH,),0CH,~

Figure 5. A hypothetical molecule that can be abstracted as a K3 3 graph with two
differently colored non-adjacent edges.
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PROOFS FOR THE TOPOLOGICAL CHIRALITY OF MINIMALLY
COLORED KURATOWSKI GRAPHS

As noted above, K; ; and K; are topologically achiral graphs because they
can assume achiral symmetries in space. The highest attainable achiral
symmetries for K33 and K; are Dy, (Figure 6a) and T, (Figure 6b), respec-
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Figure 6. The highest attainable achiral symmetry of the Kuratowski graphs. (a)
K33 graph (Dgy). (b) Ks graph (Ty).

tively. To achieve topological chirality, the two graphs must therefore be se-
lectively colored. In what follows we prove two theorems regarding the mini-
mal edge-coloring of K33 and K; graphs that is necessary to attain topologi-
cal chirality.

THEOREM 1. A K;3 graph with any two non-adjacent colored edges is
topologically chiral.

Proof:

The Dy, presentation of a Kj; 5 graph shows that coloration of any single
edge or of any two adjacent edges results in achiral symmetry (C; or Cy).
It is easily shown that all colorations of two non-adjacent edges give rise to
four and only four distinct (not properly congruent) patterns: P, P,, P,* and
Py* (Figure 7). P; and P;* are geometrical enantiomorphs, and so are Py and
Pz*.

In pattern P, there are four classes of edges: (i) colored edges with col-
ored end-vertices; (ii) uncolored edges with colored end-vertices; (iii) uncol-
ored edges with one colored and one uncolored end-vertex; and (iv) uncolored
edges with two uncolored end-vertices. Class (iv) contains only a single
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Figure 7. Two pairs of enantiomorphous K3 3 graphs, P; — P1* and Py — Po*, derived
from the D3j, presentation by coloration of two non-adjacent edges. Colored edges are
shown by heavy lines.

member which is unique in P;. P; is therefore isotopic to the colored three-
rung Mébius ladder graph M, in the sense that the two colored edges of P,
are isotoped onto any two colored edges of M3, and the unique edge of P, is
mapped onto the only remaining colored edge of M. Since it has been
proven!® that M; is topologically chiral, it follows that P, is topologically chi-
ral, and P; and P;* are presentations of topological enantiomorphs.
Pattern P, is isotopic to P;, and so is Py* to Py*. That is, Py (Py*) can
be converted into P, (P,*) by continuous deformations in space. Thus there
are only two non-isotopic and enantiomorphous K335 graphs with two non-
adjacent colored edges. It follows that a K; ; graph with any two colored non-
adjacent edges is topologically chirg]. O
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THEOREM 2. A K; graph with any three colored edges that form an open
path is topologically chiral.

Proof:

The T, presentation of a K5 graph shows that the coloration of any two
edges or of any three edges that do not form an open path yields an achiral
symmetry (C;, Cy,, C3,, or Dy,). Coloration of three edges that form an open
path gives rise to three and only three enantiomorphous pairs, Q;-Q;*, Q-
Q.*, and Q3-Qs*, which are depicted in Figure 8.

A A

Q] Q2 Q3
Qf Q oy

Figure 8. Three pairs of enantiomorphous Ks graphs, Q1-Q:1*, Qo—Qg*, and Q3—Qs*,
derived from the Ty presentation by coloration of three edges that form an open
path. Colored edges are shown by heavy lines.

However, Q;, Qy, and Q3 (Q;*, Q,*, and Q3*) are isotopic to one another.
That is, Q; (Q;*) can be transformed into Q, (Qy*) or Q5 (Q3*) by continuous
deformations in space. We can therefore choose Q, as a general presentation
of a K5 graph with three colored edges that form an open path. For purposes
of the following discussion, we show Q; and Q,* with labeled vertices in Fig-
ure 9.

Let us initially assume that there exists an orientation-preserving ho-
meomorphism 4 of three-dimensional space onto itself such that 2(Q,) = Q,*.
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Figure 9. (a) Q1 with labeled vertices. (b) Q;*, the mirror image of Q;, with labeled
vertices.

Because vj is the only uncolored vertex, it immediately follows that A(vs) =
vs*. Vertices v; and v, are the only vertices incident to one colored edge,
hence either h(v,) = v,* and A(v,) = v*, or A(v,) = v,* and h(v,) = v,*. Simi-
larly, either h(vy) = vy* and h(vg) = v3*, or h(vy) = vg* and h(vg) = vo*. If A(v;)
= v,* and h(v,) = v,*, then there is only one vertex, v, (say), that is joined
to vertices vy and vy through uncolored edges, thus A(vy) = vy* and A(vy) =
vg*. Consequently, if 2(v;) = v,* and h(vy) = v,*, then A(vy) = vs* and A(vy)
= vy*. We thus have only two types of vertex-mapping under A: (i) A(v,) =
v1¥, h(vg) = vo*, h(vg) = vs*, h(vy) = v*, h(vs) = vs*; and (ii) A(vy) = v*, h(v,)
= vi¥*, h(vg) = vg*, h(vg) = vo*, h(vs) = vs*. An isotopy, consisting of a rotation
about the line passing through vertex vs and the midpoints of edges vyv; and
v1v4, demonstrates that the above two types of vertex-mapping are equiva-
lent. We can therefore conclude that ~ sends each vertex v; into its own mir-
ror image v;*, i.e., all the vertices of Q; can be considered differently labeled
as shown. But it has been proven'® that no 4 can convert a Ky graph whose
vertices are differently labeled into its mirror image, contrary to our initial
assumption. Hence Q; and Q;* are presentations of topological enantio-
morphs, and it follows that a K5 graph with any three colored edges that
form an open path is topologically chiral. O

The molecular graph in Figure 5 is asymmetric; thus there is a one-to-
one mapping between the graph and its mirror image. In addition, the graph
contains a subgraph that is homeomorphic to Kj 3 with two differently col-
ored non-adjacent edges. The hypothetical molecule in Figure 5 is therefore
topologically chiral.

In conclusion, based on Wolcott's proof and the present work, the general
conditions for topological chirality in graphs are as follows: (i) a one-to-one
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mapping can be uniquely defined between the graph and its mirror image,
and (ii) the graph contains a subgraph that is homeomorphic to a Kj 3 graph
with two non-adjacent colored edges, or to a K5 graph with three colored
edges that form an open path, or to any other derived topologically chiral
graphs (e.g., M3 or Mg*).
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this work.
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SAZETAK
Topoloska kiralnost minimalno obojenih grafova Kuratowskog
Chengzhi Liang i Kurt Mislow
Dokazano je da topoloska kiralnost grafa K3 3 zahtijeva najmanje dvije susjedne

obojene grane, dok topoloska kiralnost grafa Ky zahtijeva najmanje tri obojene grane
povezane u otvorenu stazu.



	scan735
	scan736
	scan737
	scan738
	scan739
	scan740
	scan741
	scan742
	scan743
	scan744

