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The Szeged index is a new topological index based on distances be-
tween the vertices of a graph. The conjecture of Klavzar, Rajapakse
and Gutman concerning graphs with the maximal value of the
Szeged index is proved. More precisely, a complete bipartite graph
Kipry,ip+1)2) has the maximum Szeged index among all the con-
nected graphs on p vertices.

INTRODUCTION

Almost fifty years ago, H. Wiener introduced a topological index based
on the distances between carbon atoms in alkanes.! Nowadays, this index
is referred to as the Wiener number (or Wiener index).2 The best-known
generalization of the Wiener index (W) for arbitrary graphs was proposed
by Hosoya.? According to his considerations, W is the sum of distances be-
tween all pairs of vertices of a connected graph. Another generalization of
the Wiener index for cyclic graphs has been recently put forward by Gut-
man:*

Sz(G) = ). n,n,, (1)
(u,0)

where the summation goes over all edges (u,v) in an arbitrary connected
graph G, n, = l{w|dw,u) < dw,v)}|, n, = {wldw,v) < d(w,u)}| and the dis-
tance d(u,v) is the number of edges in the shortest path connecting vertices
u,v in G. It has been demonstrated that in the case of trees the quantities
Sz and W coincide.* In the case of arbitrary graphs, there are vertices equi-
distant to both ends of an edge. By definition of Sz, such vertices are not
taken into account. An example illustrating the calculation of Sz is shown
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in Figure 1. The Szeged index of G is equal to the sum of the following edge
contributions: nn,, = 1x1 =1, nyngg =1x3 = 3, non,g = 1x3 = 3
nyshyy = 3x2 =6, and nyn,s = 4 x 1 = 4. This gives Sz(G) = 17.
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Figure 1. Edge contributions to the Szeged index.

Mathematical properties and chemical applications of Sz have been de-
scribed in recent works.*1® It has been established that Sz(G) > W(G) for
all connected graphs and Sz(G) = W(G) if and only if all blocks of G are com-
plete (note that every block of a tree is a two-vertex complete graph).%6 This
implies that a complete graph K, has the minimum Szeged index among all

the graphs on p vertices. Indeed, suppose that G is not isomorphic to K-
Then

S2(G) = W(G) > W(K,) = Sz(K,).

Therefore, the minimal value of the Szeged index is equal to Sz(K,) =
2l 1= q(K,) = p(p-1)2.

Denote the complete bipartite graph Kipoyip+1y2) by K, where [n] is the
greatest integer not larger than n. It has been shown that Sz(K) > Sz(G)
for any bipartite graph G with p vertices* and the following conjecture has
been recently proposed:1?

CONJECTURE. The bipartite graph K has the maximum Szeged index
among all (connected) graphs on p vertices.

Within this paper we prove the above conjecture.

STATEMENT OF THE RESULT

By definition of Sz, every edge of a graph makes a positive contribution
to Sz. Graph K has only [p%4] edges. In spite of this, the following result
shows that K has the maximum Szeged index.
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THEOREM. If graphs G and K have the same number of vertices and G
is not isomorphic to K, then Sz(G) < Sz(K).

Thus the Szeged index of a graph G lies between Sz(K,) and Sz(K). This
defines an interval of possible values of Sz and allows examination of the
isomer degeneracy and the related questions for the Szeged index.

SOME AUXILIARY RESULTS

Let G be an arbitrary graph with p vertices and g edges. For an edge
(u,v) of G, we define n,, = |[{w|d(w,v) = d(w,u)}|. It is easy to see that 0 <
n,, <p — 2 and for any edge (x,v) of G, n,, + n, = p — n,, and 4n,n, = (n,+n,)?
— (n,~n,)%. Substituting these expressions into (1), the following useful for-
mula for Sz can be derived.

PROPOSITION 1. For an arbitrary graph G,

§2G) = + (p2q SIWCIEINED) (nu—nv)Z} @
(u,v) (u,v)

Let (x,v) be an edge of K. Then n,, = 0, n, = n, = p/2 if p is even and
n, = (p-1)/2, n, = (p+1)/2 if p is odd. Therefore, the Szeged index for K is
immediately obtained.

PROPOSITION 2. For the complete bipartite graph K, Sz(K) = p?>q/4 =
p?/16 if p is even; Sz(K) = (p°~1)q/4 = (p>~1)?/16 if p is odd.

Denote by #(G) the number of triangles (cycles on three vertices) of a
graph G. The proof of the conjecture is based on the estimation of ¢#(G) for
graphs with a large number of edges. Further, the following results will be
used.

PROPOSITION 3. For the number of triangles of G,

q(4g—-p2ip < 3HG) < Y. n,,. (3)
(u,0)
The first inequality is due to Bollobas.!” Since n,, counts cycles of odd
length containing an edge (u,v), the second inequality is obvious.

PROPOSITION 4. If G has the number of edges q(G) > [p%/4] + m and
1 <m <[(p-1)/2], then

tG) 2 m{p/2]. 4)

This inequality was given by Nikiforov, Khadzhiivanov!® and Lovasz, Si-
monovits.!®
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PROOF OF THE THEOREM

Two cases are distinguished:
(a). Let q(G) < g(K).

Note that K has the maximal number of edges among all the bipartite
graphs with p vertices. Since 1 <n,, n, <p-1, the maximal value of the prod-
uct n,n, is equal to [p/2] - [(p+1)/2]. This extreme value is realized by every
edge (u,v) of K. If an edge (x,y) belongs to a cycle of odd length in G, then
n, > 0 and, consequently, n,n, < n,n,. It is easy to verify that these prop-
erties imply Sz(G) < Sz(K).

(b). Let ¢(G) > ¢(K).

Suppose that p is even, i.e., ¢(G) = ¢(K) + m = p%4 + m, where m > 0.
In this case the equality (2) is applied. Then, one obtains

4[S2(G) - Sz(K)] = p%q(Q) — Y. ny,(2p-ny,) - 2. (n,-n,) - p2q(K)
(u,v) ()

. p2m - Z nuv(zp_nuv) - Z (nu_nv)2
(1) (u,v)

= p2m - Z nuv(2p_nuu)

(u,0)

< pPm = Y n,(2p - (p-2))

(u,0)

= p’m - (p+2) 2,
(ulv)

< p’m — (p+2) 3t(G).

Then, by Proposition 3

4[Sz(G) - Sz(K)] < p’m — (p+2)q(4q—p?)lp
= p?m — (p+2)(%4+m)dm [p
= p’m — 4m(p%/4+m)

=—-4m? < 0.



GRAPHS HAVING MAXIMUM SZEGED INDEX 823
Suppose now that p is odd, i.e., ¢(G) = ¢(K) + m = (p>~1)/4+m and m >

0. If p = 3, then G is a triangle and Sz(K) = Sz(K, 5) = Sz(G)+1. Further, p
> 5 is assumed. For odd p, two cases can be considered.

Let m > (p-1)/2. Then

4[S2(G) - S2(K)] = p*q(G) - 2., @p-ny) - 2 (2,1, — (>~Dg(K)

(,v) (u,v)

< p2m + q(K) — z n,,(2p—n,,)

(@,v)

= p?m + q(K) — (p+2)2 n,
@)

< p?m + g(K) — (p+2) 34(Q).

Applying Eq. (3) again, one obtains
4[Sz(G) - Sz(K)] < p?m + (p>-1)/4 - (p+2)q(4q—p?)/p
< p’m + (*-1)/4 - [(p?~1)/4+m] (4m~1)
= (p>-1)/2 - 2m(2m-1)
< @*-D/2 - (p-1)(p-2)

= —(p-1)(p-5)/2 < 0.
Let 1 < m < (p-1)/2. Then, as in the previous case
4[Sz(G) — Sz(K)] < p?m + q(K) — (p+2) 3¢(G).
Applying Eq. (4) for the number of triangles, one obtains

4[Sz(G) — Sz(K)] < p?m + (p%-1)/4 — (p+2) 3m(p-1)/2
< p%4 — p®>m/2

= p%(1-2m)/4 < 0.
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CONCLUSION

In this paper, the exact upper bound for the Szeged index has been es-
tablished. The extreme values of the Szeged index are still unknown for
some special classes of graphs, for instance, for bicyclic and planar graphs.*
Note that the extreme values of Sz for unbranched hexagonal chains have
been found.® In conclusion we point out the difference between Sz and W.
It is a well-known fact that the simple path has the maximum Wiener index
among all the graphs having the same number of vertices.
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SAZETAK
Grafovi s maksimalnom vrijedno$éu Szegedova indeksa
Andrey A. Dobrynin

Szegedov indeks novi je topoloski indeks utemeljen na udaljenosti &vorova u gra-
fu. Dokazana je Klavzar-Rajapakse-Gutmanova pretpostavka o grafovima s maksi-
malnom vrijednoéu Szegedova indeksa: od svih povezanih grafova s p évorova potpun
bipartitni graf Kpyg) (p+1)2) ima maksimalni Szegedov indeks.
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