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An extended viewpoint of biochemical structure has been applied
in the structural comparison beyond anticipating visualization and
alignment. The self-organization features of biopolymers, prespeci-
fied by the underlying molecular components, were reflected in set-
theoretical representations (called set spectra) to enrich the struc-
ture recognition. Then, the combinations of factors of similarity
and dissimilarity involved in special metrics were effectively used
in practical algorithms for a resultant, quantitative comparison of
the varieties of properties. The nonstatistical, alternative algo-
rithms used allow one to assess precisely the relationship between
the distinguished properties of sequences and physical phenomena.
In the work, the 5S rRNA families of sequences were tested with
respect to their nonvisualized (in general), mathematically deter-
mined properties, and then correlations with biological systems
were elicited. The method used has many advantages as an alter-
native approach to the research on the mechanisms of life, dis-
eases, mutations, genetic code problems, etc.

INTRODUCTION

In biochemistry, there is a common approach to the structures of biopo-
lymers: simple visualization, e.g. by effective computer graphics techniques.
This simplest method has been characterized in Ref. 1 as »just look at it«.
In this way, the essential information encoded in the self-organization struc-
ture can be lost since it is well known in mathematics that only a small por-
tion of structures can be geometrically visualized. For example, the spatial
double helix model is regarded in Ref. 2 as the result of »self-organization
through inherent properties«. Such a model is shaped by mutual distances
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and angles of the component species. On the other hand, the features
grasped from some representations of the labeled sequences?® cannot be ex-
hibited or concluded in this way. But, in spite of their abstract character
which is far beyond the observational biochemistry, they can be hypothe-
sized to influence biological phenomena. A glance at the existing methods
of biopolymer comparison was helpful in the choice of tools to elucidate this
intriguing relationship in a fully quantitative way. One can simply consider
whole sequences with their ordering of component units. Also, single or re-
peating fragments such as those included in the Gnomic Dictionary* are of
importance for the study of biopolymers. In Ref. 5, the dinucleotide, trinu-
cleotide and codon usages are employed for sequence analysis. Comparing
sequences means to compare their properties »derived« from basic struc-
tures. The above-mentioned ones pertain to the primary structures of biopo-
lymers which prespecify (to some extent) the so called secondary and terti-
ary structures. Listing the desired properties allows first step estimations
of similarity relationships between two or more sequences. A more sophis-
ticated way consists in calculating the so called evolutionary distance,57
which is determined at the minimal cost of altering one sequence into an-
other by making insertions, deletions or replacements. The cost of altera-
tions depends on associated alignments and on weighting single or block in-
dels.)? In these cases, the idea of evolutionary distance generally underlies
all the more sophisticated concepts of sequence comparison. Also, prob-
abilistic and statistical tools are usually involved in such considerations.®-1°
In Ref. 11, the sequences are compared »by totalling the number of matching
paired characters under every possible alignment«. Statistical methods to
complete the research are additionally used in this work. The »distance« be-
tween two sequences is estimated by the use of a complex formula.l? Sta-
tistical trends are observed in Refs. 13 and 14 to perform linguistic analysis
of nucleotide sequences. Except for the theoretically sophisticated methods,
a simple estimation by the so called percentage of homology is usually used
by biochemists. The fraction of the same nucleotides (or other units) for
identical positions in the sequences compared is calculated in this case.
There is an interesting problem addressed in Ref. 5 as to whether the nu-
cleotide order of two sequences contributes essentially to their similarity or
whether it can be explained by dinucleotide or codon usages. Moreover,
Beyer's call' for assessments via metrics with clearly defined relationships
(from the viewpoint of interpretations) between metric values and behaviour
of their arguments can be noted. The latter two ideas have consistently been
involved in the theoretical alternative solution of structure comparison in
biochemistry. To illustrate some applications, the diversification of plants!®
was taken into account as one of the most astonishing facts of life. This is,
in principle, regarded as a non-random phenomenon as well as natural
biopolymer structural features.!” But, the non-random means »subordinate
to the laws«. Hence, using mathematical methods to search for structural
and taxonomic relevances can be of great scientific interest.
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THEORETICAL ASPECTS

There is an underlying set 2 of biopolymers which is partitioned in two
ways by F and P (i.e., a partitioning P is a set of disjoint subsets of 2 such
that the union of the elements in P is 2); ry and rp are the corresponding
equivalence relations viewed as subsets of the Cartesian product 2°x 2 (i.e.,
rp is the set of all (x,y) € 2”x 2 such that there is a member of P which con-
tains {x,y} as a subset).

In order to compare two finite partitions of natural biopolymers F and P it
is enough to know the relevant factors of similarity and dissimilarity,>!® i.e.,

FS(rg, rp) = [rpnrp| (1)
FD(rF, rp) = |rFArP| = |rF| + |rP| b ZFS(rF, rp).

The fraction of dissimilarities is then
FD(rg, rp)
FS(rg,rp) + FD(rg, rp)’
One of the partitions (say P) is assumed to be a given pattern (e.g. a
standard taxonomical classification) and the second (F) originates from
structural data. Since pattern P is well known, partition F remains to be
constructed. To this aim, the necessary set spectra (defined in Ref. 3) of la-

beled sequences have been listed here in a way suitable for programming.
They are the following:

1. Length. The simplest set spectrum closely corresponds to the number
of component units in a sequence. For example, a biopolymer comprising n
component units has a set to compare, i.e. its set spectrum called length con-
sists of numbers 0, ..., n—1.

2. Component species. In this case, species of component units in the se-
quence are considered. Different kinds of aminoacids or nucleotides can be
taken into account. For example, the sequence AATCCA has its set spectrum
of this kind consisting exactly of A,T,C elements.

3. Common pairs. This is a special case of 1-subsequences described in
section 4.

(2

p(rp, rp) =

4. m-Subsequences. In this item, all the subsequences of m consecutive
component units along with their positions (marked by natural numbers)
are considered. In particular, the set spectrum for 1-subsequences with re-
spect to sequence ACTTAG consists of pairs (1,A), (2,C), (3,T),..., for 2-sub-
sequences of ((1,A),(2,0)), ((2,C),(3,T)), ((3,T),4,T)), ... .

5. Cumulative m-subsequences. This set spectrum includes all the pos-
sible m-subsequences that can be distinguished for a given sequence. Thus,

the parameter m varies from m = 1 to m = L where L is the length of the
sequence.
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6. Frequencies of m-subsequences. If subsequences are distinguished for
a fixed m, then their frequencies in a given sequence are of interest. For ex-
ample, in the oligonucleotide TTACATTAC the 3-subsequences TTA and
TAC occur twice, others only once. The set to compare consists of pairs
(TTA,0), (TTA,1), (TAC,0), (TAC,1), (ACA,0), ... . It can be observed that this
set spectrum, though relevant, is not yet useful to grasp the more sophisti-
cated problems of synonymic codons and »codon dialects«.®

7. Frequency cumulations of m-subsequences. The set to compare in-
cludes all the frequencies of m-subsequences for m varying between 1 and L.

8. Disjoint m-subsequences. The m-subsequences mentioned above are
not of interest now. For example, the sequence ATCGGTGACC has the set
of disjoint 3-subsequences consisting of ATC, GGT, GAC triples which are
under consideration in this item. Such set spectra have been taken into ac-
count for m up to the length of the given sequence.

9. Frequencies of disjoint m-subsequences. Like in the case of m-sub-
sequences in question, the number of appearences of disjoint m-sub-
sequences distinguished can be considered. Such a set spectrum involves
data on the frequencies of subsequences selected in the manner shown in
section 6.

10. Set-spectra cumulations. This option cumulates the set spectra cho-
sen in a standard way.

The objects compared (e.g. biopolymers) are taken as arguments of the
described functions. The function values are special sets (called set spectra
for short) which are the same if arguments are isomorphic. However, this
property does not exhaust the sense of the notion of set spectrum mapping
since the intention was not only to reflect set-theoretical properties of the
objects considered but also to construct sets to compare. For example, a real
number relevant to an object is not a set to compare in general. But the par-
titions mentioned or a finite Von-Neumann ordinal expressing the quantity
of elements in a finite set can be used for comparison. The similarity set of
two finite, nonempty sets to compare is taken to be the common part of these
sets. Their so-called symmetric difference constitutes a dissimilarity set.
Thus, properties of sequences expressed by set spectra are not at once in-
volved in a function estimating a similarity relationship. In general, if a and
b are finite and nonempty sets, then the cardinality of similarity set is de-
noted F'S(a,b) and is called the factor of similarity. The cardinality of the dis-
similarity set is denoted FD(a,b) and is called the factor of dissimilarity. The
concept of mathematical similarity and dissimilarity can be enriched by the
use of factors with tolerances quoted at the end of this paper. Owing to the
use of factors, properties of sequences reflected in set spectra are not im-
mediately involved in a function, which could result in a loss of clarity in
the similarity-dissimilarity estimations. It could be noted that neither of the
factors considered separately gives sufficient characterization of the object
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proximity. In human perception, a resultant estimation (called resemblance
here) does occur. It is contributed both by the properties constituting simi-
larities and properties responsible for differences. To obtain such estima-
tions, any real function with two kinds of factors as arguments can be used.
However, the estimating resemblance function has been constructed, for
some reasons, to fulfil mathematically suitable metric axioms. For example,
the ratio expressed by the fraction of dissimilarities for two finite, nonempty
sets a,b (i.e., FD(a,b)/(FD(a,b) + FS(a,b)) has the metric properties required.?
Assessments of resemblance by the use of metrics (or pseudometrics) are
called distances here. It is always of interest (cf. Ref. 18) to relate similari-
ties and dissimilarities to the distances calculated. If the above-mentioned
fraction is applied, then the behaviour of distances calculated depending on
the arguments and vice versa is clear. By analogy, cumulating various set
spectra in a standard way®!8 has been used. Since the factors have the prop-
erty of additivity under disjoint set spectra, this is done through summation
of the component factors corresponding to the respective set spectra. The
combinations of factors considered are determined on sequences and only via
set spectra are they substituted into the respective metrics. Therefore, one
deals with pseudometrics (i.e., the equality p(fx,fy) = 0 does not imply x =
y, where x and y are biopolymers to be compared and fx, fy are their set spec-
tra).

An essential step is finding an organizing principle to arrange the un-
derlying objects, e.g., biopolymers. For example, the so called property of
nondecreasing distances has been applied in Ref. 18 to array chemical mole-
cules into sequences. An organizing principle for the underlying biopolymers
and the given set-spectrum mapping can be determined by means of any re-
lation or function with the factors of similarity and dissimilarity involved.
However, firstly, metrics have been employed because of their potential
power to constitute interesting arrangements. In Ref. 5, the problem of or-
derings and random influences is approached. This goal is broadened here
by making efforts to show quantitatively a hierarchy of significance of the
set spectra considered with respect to the phenomena supposed to be con-
stituted by the underlying objects and processing, e.g., biopolymers. To ap-
proach this problem, a suitable organizing principle is to be looked for,
namely to result in the partition F' characterized above. It is easily seen that
for any relation r determined in a family of biopolymers, there exists the
smallest equivalence relation s which includes r. This equivalence relation
divides the family of investigated objects into disjoint classes. For example,
r can be determined as used in the computational application section: x is
r-related to y if there is no element of 2°\{x} nearer to x than y. As a result,
a partition (under s) of the family 27is obtained in which equivalence classes
are blocks of sequences connected by pathways determined by s. So, each
family of sequences can be classified according to the set-spectrum mapping
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fixed and some relation r chosen. It is obvious that alterations in set-spec-
trum mappings will yield alterations in the partitions associated. Thus,
some structures or in other words arrangements of the underlying biopolym-
ers have emerged to depend on their structural properties. They are called
arrangements given via set spectra and an organizing principle. Thus, the
required partition F has been constructed.

Besides such arrangements based on theoretical premises, one can con-
sider arrangements given via phenomena. They can be constituted, for ex-
ample, by the classifications considered below. Their characteristic property
is an involvement of experimental or experience data to arrange the under-
lying objects. For example, carboxylic acids have monotonicly been arrayed
in Ref. 18 according to the experimentally established dissociation con-
stants. In this work, the taxonomical classifications, mainly based on some
abilities of our mind to distinguish species of perceived living organisms, are
used. In pattern P, the biopolymers can be classified according to the group
of the organism from which they originate. Thus, two different kinds of ar-
rangements: via phenomena, and via set spectra accompanied by an organ-
izing principle can be taken into account. Hence, a natural task to compare
two kinds of classifications is to be imposed. This goal is achieved consider-
ing equivalence relations which correspond to the respective partitions of a
family of biopolymers being classified. If rp is an equivalence relation gen-
erated by a partition given via phenomena and ry is an equivalence relation
corresponding to the partition given via set spectrum, then the distance be-
tween them can be estimated by the use of factors of similarity and dissimi-
larity (1) between ry and rp and by calculating the resultant estimation, e.g.,
by the use of the fraction of dissimilarities Eq. (2). Thus, substituting vari-
ous set spectra, a family of corresponding partitions is generated and sorted
according to the distances from the partition given via phenomena. It is sup-
posed that the significance of the properties reflected in set spectra is very
precisely measured in this way. A practical application of the algorithms de-
scribed and some biochemical tests are given in the next section.

COMPUTATIONAL APPLICATION

The family of 5§ rRNA's to be tested in this work has been reported in
Ref. 20. Evolutionary aspects of 5S rRNA sequences discussed in Ref. 20
suggest some bearings on the structural features of sequences and the hi-
erarchy of organisms. Hence, sharp quantitative relationships between se-
quence stucture and taxonomy can be looked for. The research performed
here is illustrative with respect to the method abilities. Firstly, the se-
quences chosen have been classified (cf. Ref. 20) according to the morphology
of organisms of their origin. In this way, a taxonomical classification given
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via phenomena has been applied to the groups of the sequences considered.
The classification is as follows:

TABLE I

Taxonomical classification (I)

PATTERN 1 Group 21

Division Class Species (Abbreviation)

Bryophyta Anthocerotae Anthoceros punctatus (Antpun)
Hepaticae Marchantia polymorpha (Marpol)

Lophocolea heterophylla (Lophet)

Musci Plagiomnium trichomanes (Platri)

Pteridophyta Psilotum nudum (Psinud)
Lycopsida Lycopodium clavatum (Lyccla)
Sphenopsida Equisetum arvense (Equarv)
Filicinae Dryopteris acuminata (Dryacu)

Spermatophyta Cycadinae Cycas revoluta (Cycrev)

(Gymnospermae) Ginkgoinae Gingko biloba (Ginbil)
Coniferae Pinus silvestris (Pinsil)

Metasequoia glyptostroboides (Metgly)

Distinguishing groups of sequences within particular taxons, we obtain
partitions suitable to be compared with »artificial« classifications generated
by set spectra. For example, the sequences of group 271 (Table I) classified
on the level of division, as shown above, have been divided, consistently with
the set spectra listed:

1. Length (0.5588)

Antpun, Lophet, Pinsil, Marpol.

Dryacu, Lyccla, Psinud.

Cycrev, Platri, Ginbil, Equarv, Metgly.

2. Component species (0.6667). The entire group

3. Common pairs (0.2500)
Antpun, Metgly, Pinsil, Cycrev, Ginbil.
Lyccla, Dryacu, Equarv, Psinud.
Lophet, Marpol, Platri.

4. 3-subsequences (0.1667)
Antpun, Lophet, Marpol, Plajri.
Cycrev, Ginbil.
Metgly, Pinsil.
Dryacu, Equarv, Lyccla, Psinud.

5. Cumulative m-subsequences (0.6667)
The entire group.
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Frequencies of 3-subsequences (0.2500)
Lyccla, Antpun, Marpol, Lophet, Platri.
Cycrev, Pinsil, Ginbil, Metgly.

Dryacu, Equarv, Psinud.

. Frequency cumulations of m-subsequences (0.2500).

Antpun, Psinud, Marpol, Lophet, Platri.
Ginbil, Cycrev, Pinsil, Metgly.
Dryacu, Equarv, Lyccla.

. Disjoint 3-subsequences (0.6667).

The entire group.

. Frequencies of disjoint 3-subsequences (0).

Antpun, Lophet, Platri, Marpol.
Cycrev, Pinsil, Ginbil, Metgly.
Dryacu, Equarv Lyccla, Psinud.
Cumulations (0).

The same as in point 9.

Distances between the pattern partition into divisions (Table I) via phe-

nomena of the group considered and partitions given via set spectra are
shown in the parentheses. Hence, the classifications corresponding to the re-
spective set spectra can be arrayed monotonicly according to increasing dis-
tances.

Pattern I — set sp. 9, 10 (0) — set sp. 4 (0.1667) — set sp. 3,6,7 (0.2500) — set

sp.

1 (0.5588) — set sp. 2,5,8 (0.6667)
Another group of sequences has been taken into account with respect to

the lower rank taxon: the family (Table II; group £1I). The pattern classifi-
cation based on the morphological properties is given in Table II.

Set-spectra classifications are of the following form in this case:

. Length. (0.6611)

Seccer, Spiole, Betvul, Branap, Helann, Triaes.
Zeamay, Alfalf, Lupang, Nictab, Lemmin, Lycesc, Phavul, Vicfab, Luplut.

. Component species (0.8000) The entire group.
. Common pairs (0.2857)

Seccer, Triaes, Zeamay.

Luplut, Lupang, Vicfab, Alfalf, Phavul.
Betvul, Branap, Lemmin, Spiole, Helann.
Nictab, Lycesc.

. 3-subsequences (0.4762).

Seccer, Triaes, Zeamay.

Lemmin, Spiole, Betvul, Branap, Helann.
Luplut, Lupang.

Vicfab, Alfalf, Phavul.

Nictab, Lycesc.
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TABLE II

Taxonomical classification (II)

Pattern II Group 211

Division Class Family Species (Abbreviation)
Spermatophyta Monocotyle-  Graminae Secale cereale (Seccer)
(Angiospermae) dones Triticum aestivum (Triaes)

Zea mays (Zeamay)
Lemnaceae = Lemna minor (Lemmin)

Dicotyledones Papilionaceae Lupinus Luteus (Luplut)
Lupinus angustifolius (Lupang)
Vicia faba (Vicfab)
Phaseolus vulgaris (Phavul)
Medicago sativa (Alfalf)

Chenopo- Spinacia oleracea (Spiole)
diaceae Beta vulgaris (Betvul)

Compositae  Helianthus annus (Helann)

Solanaceae  Nicotiana tabacum (Nictab)
Lycopersicon esculentum (Lycesc)

Cruciferae Brassica napus (Branap)

5. Cumulative 3-subsequences (0.4407).
Seccer, Triaes, Zeamay.
Lemmin, Spiole, Betvul, Branap.
Nictab, Lycesc.
Luplut, Lupang, Helann.
Vicfab, Alfalf, Phavul.

6. Frequencies of 3-subsequences (0.4762).
Seccer, Triaes, Zeamay. Lemmin, Spiole, Helann, Betvul, Branap.
Nictab, Lycesc.
Luplut, Lupang.
Vicfab, Phavul, Alfalf.
7. Frequency cumulations of 3-subsequences (0.4407).
The same as in point 5.

8. Disjoint 3-subsequences (0.4407).
The same as in points 5 and 7.

9. Frequencies of disjoint 3-subsequences ®.5352).
Seccer, Triaes, Zeamay.
Lemmin, Betvul, Spiole, Branap.
Lycesc, Helann, Nictab, Luplut, Lupang.
Vicfab, Alfalf, Phavul.
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10. Cumulations (0.4407). Tha same as in points 5, 7, 8.
The monotonic array of the partitions obtained is the following:

Pattern II — set sp. 3 (0.2857) — set sp. 5, 7, 8, 10 (0.4407) — set sp. 4, 6
(0.4762) — set sp. 9 (0.5352) — set sp. 1 (0.6611) — set sp. 2 (0.8000).

The common pairs »3«, 3-subsequences »4«, cumulative m-subsequences
»b«, disjoint 3-subsequences »8« are considered as positional (p) set spectra.
On the other hand, the frequencies of 3-subsequences »6«, frequency cumu-
lations of m-subsequences »7«, frequencies of disjoint 3-subsequences »9« are
classified as frequency (f) set spectra. The average distances from two sets
of organisms (271, 271I) classified on the level of division and family, respec-
tively, are the following:

TABLE III

Average distances

Taxon (frequency) (positional)
f p
Division, 21 0.1667 0.4375
Family, 211 0.4840 0.4108

As it has already been indicated, it is possible to compute distances for
a family of set spectra chosen in a cumulative manner, i.e., simply by sum-
mation of the component factors of similarity and dissimilarity and substi-
tuting the resultant factors to the formula on the fraction of dissimilarities.
Such a cumulation is entirely nonstatistical but the result closely corre-
sponds to that obtained by averages. The cumulative distances with respect
to pattern groups are as follows:

TABLE IV

Cumulative distances

Taxon (frequency) (positional)
f p
Division, 21 0.1750 0.5459
Family, 211 0.4870 0.4098

One can easily observe a property of opposite monotonicity which clearly
shows the different role of positional and frequency set spectra for the tax-
ons and groups of organisms considered. In symbols:
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%If<2?1p7%1f<%11[f
21, > 21, 21, > 211,

In general, the results indicate that frequency set spectra have a better
relevance regarding diversification of simpler organisms classified on the
level of division as opposed to the positional ones which have the smallest
average and cumulative distances for higher organisms diversified on the
level of family.

DISCUSSION

Another view on the alternative ways can shed additional light on the
approval of the set-spectrum method used. For example, the calculation of
distances based on the costs of sequence alterations with the possible use .
of weighting and similarity functions is at one disposal.” However, such es-
timations involve arbitrary creations such as weights and alignments on
which the valuation of similarity depends. Besides, the evolutionary dis-
tance is not sensitive to the same insertions made in the matched fragments
of the two sequences compared. In the case of the frequencies considered,
e.g. dinucleotide or codon usages, the mean permutation distance does in-
volve further statistical disguisings of the concrete, individual relationships.
An issue of the situation is to construct indices which can reflect the se-
quence ordering used, e.g., in Ref. 12. However, the use of auxiliary parame-
ters, the immediate substitution of sequence data into estimating function
and further statistical treatment induce again uncertainty into assessments
of finer properties, make unclear the correspondence between distances and
alterating sequence data, introduce limitations in the comparison of possible
structural features. An immediate use of sequence parameters as arguments
of indices can give rise to constructing many estimating functions and the
determination of ambiguous distances between the biopolymers fixed. Sta-
tistical characteristics, however, constitute an autonomic and inevitable tool,
e.g., when the general distributions like linguistic texts or specific regions
of biosequences are investigated.2!

Insisting on a nonprobabilistic approach in this work does not imply re-
jecting statistical methods in the analysis. It is supposed, however, that de-
tailed, fine features of biopolymers can be effectively grasped by means of
the mathematical tools sensitive to any alterations. The problem of sensi-
tivity and constructing proper sets to compare leads to some generalizations
of factors. In this concept, pairs of similar elements are arbitrarily selected
by the use of the relation of the tolerance t defined, as usual, to be reflexive
and symmetric. Such a relation can be involved in the factors in the follow-
ing way.
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FS(a,b) if (@ xb)u (b xa)nt|

FD(a,b) d=f la \ dom((a x b) N ¢t| +|b \ im((a x b) N t)| 3

where dom and im denote the domain and image of the respective relations
and ¢ selects pairs of similar elements from the cartesian product of a and
b. As a consequence, the similarity set grows larger and the dissimilarity
one gets more »narrow« as a rule. When the tolerance comprises only pairs
of identical elements, the factors generalized have the previous form of the
common part and the symmetric difference of two sets. For the factors gen-
eralized, the additivity after standard cumulations is the case as well, i.e.
the resultant factors can be derived to be summations of the components
with tolerances. The scope of possible discoveries of organizing principles
and varying set spectra within them is very wide and the above illustrative
investigation is intended to show some alternative or parallel paths to the
sophisticated problems of the structure comparison presented, e.g., in Refs.
22 and 23, or important problems of mutations.?* There is a growing interest
in comparing chemical structures on the molecular level,25-2” which essen-
tially enriches the field of similarity and dissimilarity analyses (cf. the re-
lated concept of »chemical distance« in Ref. 28).

APPENDIX

For illustration of the algorithms used, a simulation to calculate dis-
tances, partitions and distances between partitions has been performed. For
example, let us take into account a collection of sequences:

S; = ACAACU, S, = ACAGACA, S; = AACCC, S, = UGGAUG, S5 = CCAG,
Sg= UCUGUCGUC, S; = UCGG.

The distances determined for the selected set spectra have been gath-

ered in the Tables V-VIL

The desire to get partitions can be started by selecting the nearest »com-
panion« for the sequence S; within the data relevant to the set spectrum
chosen, then one can repeat the procedure for S, and so on. Thus, there are
some partitions found which correspond to the respective set spectra. They
are given below.

»lengthc F = {{S;, Sy, S3 84, S¢ },{Ss, S7 }}
»component species« F = {{8S;, Sg, S3, S4, S5, Se, S7 }}
»Common pairs« F = {{S}, So; S3, S4 S5, Se, S7 }}
»2-subsequences« F = {{S;, Sg, S3, Sy S5,Se, S7 }}

Unfortunately, the collection of example sequences considered did not
turn out sufficiently sensitive to the last three cases of set spectra to result
in proper partitions. Note the results after standard cumulations. For ex-
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TABLE V

Upper diagonal: »length«
Lower diagonal: »component species«

859

Sy Sg S3 Sy S5 Sg Sy
S 0 0.14286 0.16667 0 0.33333 0.33333 0.33333
Sy 0.50000 0 0.28571 0.14286 0.42857 0.30000 0.42857
S3 0.33333 0.33333 0 0.16667 0.20000 0.44444 0.20000
Sy 0.50000 0.50000 0.75000 0 0.33333 0.33333 0.33333
S5 0.50000 0 0.33333  0.50000 0 0.55556 0
Sg 0.50000 0.50000 0.75000 0.50000 0.50000 0 0.55556
Sy 0.50000 0.50000 0.75000 0.50000 0.50000 0 0

TABLE VI
Upper diagonal: »common pairs«
Lower diagonal: »2-subsequences«

S, Sy S3 Sy S5 Sg Sq
S, 0 0.70000 0.77778 0.90910 0.75000 0.92857 0.88889
Sy 0.77778 0 0.90910 1 0.62500 0.76923 0.77778
S3 1 1 0 1 1 1 1
Sy 1 1 1 0 1 0.84615 0.75000
S5 0.85714 0.71429 1 1 0 0.81818 0.66667
Sg 1 1 1 1 1 0 0.70000
S 1 -1 1 1 1 0. 90000 0

TABLE VII
Upper diagonal: »common pairs« + »2-subsequences«
Lower diagonal: »length« + »common pairs«

S, Sy S3 Sy S5 Sg Sy
S, 0 0.73684 0.88889 0.95238 0.80000 0.96296 0.94118
Sg 0.47059 0 0.95238 1 0.66667 0.88889 0.88889
S3 0.53333 0.66667 0 1 1 1 1
Sy 0.58824 0.70000 0.70588 0 1 0.92308 0.87500
Ss 0.57143 0.53333 0.71429 0.75000 0 0.90909 0.83333
Se 0.69566 0.56522 0.78261 0.63636 0.70000 0 0.80000
S 0.66667 0.62500 0.71429 0.57143 0.40000 0.63158 0
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ample, the factors of similarity and dissimilarity between S, and S, are 3;7
and 2;7 for »common pairs« and »2-subsequences«, respectively. The cumu-
lated set spectrum has added the corresponding factors and the distances
are determined in the usual way (cf. Table VII). Let us now divide the family
{8, 83, S3, Sy, S5, Se, S7} using the cumulation just considered. One gets an
astonishing result F' = {{S;, Sy, S5 S5 },{ S4, Se, S7 }}. An opposite effect of
cumulation is possible. For example (cf. Table VII), if »length« and »common
pairs« are cumulated, then no proper partition is obtained although the se-
quences given were divided by »length« into two classes. In general, cumu-
lations can serve to find resultant distances even for incommensurable but
influencing quantities.
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SAZETAK
Sekvencijska analiza s pomoéu algoritma spektra skupova
Lech Schulz

U usporedivanju struktura primijenjen je Siri pogled na biokemijsku strukturu
koji ide dalje od vizualizacije i usporedivanja. Samoorganizacijska svojstva biopoli-
mera, predodredena gradevnim molekulskim komponentama, prikazana su s
pomocu reprezentacija teorije skupova (poznate kao spektri skupova) kako bi se obo-
gatilo prepoznavanje strukture. Zatim su kombinacije faktora sliénosti i razliditosti
ukljucenih u posebnu metriku, efikasno upotrebljene u praktiénim algoritmima za
rezultantnu, kvantitativnu usporedbu razli¢itih svojstava. Upotrijebljeni alternativ-
ni nestatisti¢ki algoritmi omoguéuju precizno otkrivanje odnosa izmedu svojstava
sekvencija i fizi¢kih fenomena. U ovom radu, porodice sekvencija 55 rRNA testirane
su s obzirom na njihova opéenito nepredoéiva, matemati¢ki odredena svojstva, te su
zatim postavljene korelacije s bioloskim sustavima. Primijenjena metoda ima brojne
prednosti kao alternativni pristup istraZivanju mehanizama Zivota, bolesti, mutaci-
Jja, problema vezanih za geneti¢ki kod, itd.
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