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For acyclic molecules, Randié* introduced a family of topological in-
dices, the path numbers Z, m = 1, 2,..., which are deduced from
the Hosoya matrix. The path-number concept was recently extended
to molecules containing cycles. Relations between 1Z, 2Z and the
Hosoya index Z were established.® In this work we point out sev-
eral further relations for the path numbers, valid for both acyclic
and cyclic systems. Using them, ™Z can be calculated recursively,
especially in the case m = 1 and m = 2. One of the conclusions of
this study is that, from an algorithmic point of view, it is expedient
to evaluate all the indices 1Z, 2Z,... simultaneously, and together
with the Hosoya index Z.

INTRODUCTION

In a seminal paper! Randié created a new approach to topological indices
by introducing the Wiener matrix W = W(G) = W1, the (i,j)-entry of which
is the number of paths in G, containing the path P;;. Here G is the molecular



942 I. GUTMAN ET AL.

graph and P; denotes a path between the vertices i and j (for details see
below). The Wiener-matrix-concept was eventually elaborated in due detail .23

Randi¢ put forward* also the analogous Hosoya matrix Z = Z(G) = 1Z1,
the (ij)-entry of which is the Hosoya index® of G — P;. Both W and Z are
well-defined only in the case of acyclic systems, in which there is a unique

path between each pair of vertices.

The m-th path number, m = 1, 2,..., is then defined as the sum of those
entries of the Hosoya matrix which correspond to pairs of vertices at dis-
tance m.

In the case of molecular graphs containing cycles, the above definitions
are not applicable. Recently, a modified approach to path numbers was pro-
posed,®” which in the case of acyclic molecular graphs reduces to Randic's,
but which is straightforwardly usable also for cyclic systems. The m-th path
number, pertaining to the molecular graph G, is now conceived as®

mZ = "Z(G) = Y, Z(G - ™P) (1)
"P(G)

where P is a path of length m and the summation goes over the set "P(G)
of all such paths in graph G. It is assumed that the terminal vertices of P
are distinct, i.e., that ”P is not a closed path (i.e., not a cycle). Further, G
— "P is a subgraph of G, obtained by deleting from it all edges of the path
P, but keeping all its vertices. Hence, G and G — ™P have an equal number
of vertices. (Recall that ™P possesses m + 1 vertices — two of which are ter-
minal — and m edges).

The main features of the topological indices ™Z, including their chemical
applications were discussed elsewhere.*%7 In this paper, we focus our atten-
tion on some mathematical properties of path numbers, especially those
which may be useful for designing algorithms for their calculation.

Path numbers are intimately related to the Hosoya Z index® and various
properties of the Hosoya index will be extensively used throughout this pa-

per. Therefore, we will first briefly repeat a few basic facts from the theory
of the Hosoya index.58?

THE HOSOYA Z INDEX

We use the same notation as in our previous paper.® Thus, by a(G,k) we
denote the number of k-matchings of the molecular graph G. Then,
Hosoya's® topological index Z and his Z-counting polynomial are defined as:

Z =Z(G) = Y. aG, k)
k>0
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and

QG) = Q(G; x) = Y. a(G, k) x*.

k20
Clearly, Q(G; 1) = Z(G).

Let e = (z,v) be an edge of graph G, connecting vertices uz and v. Let
6(u) be the degree (valency) of vertex u, namely the number of the first
neighbours of u.

Denote by G — e the subgraph obtained by deleting from G the edge e
(but keeping its terminal vertices u and v). Denote by G — [e] the subgraph
obtained by deleting from G the vertices u and v and, of course, the edge e
as well as the edges incident to u and v. Hence, if G has N vertices, then
G — e and G - [e] have N and N-2 vertices, respectively. If G has M edges,
then G —e and G —[e] have M — 1 and M —5(u) — 6(v) + 1 edges, respectively.

The following recursion relations are well known:®
If e is an arbitrary edge of graph G, then

QG = QG - o) + x QG —[e]. (2)

If graph G is composed of two disconnected components G; and G,, then

R(G) = Q(Gy) - Q(Gy). (3)

Relations (2) and (3), together with the initial conditions (4):

Q(G;x) =1 if G has no edges 4)

enable the recursive calculation of the Z-counting polynomial of any graph.
We now define another, closely related, polynomial:

R(G) = R(G;x) = 2, a(G, k) xN -2
k>0

where N is the number of vertices of G. Recall that also R(G; 1) = Z(G). From
Egs. (2)(4) it directly follows

R(G) = R(G - e) + R(G —[e]) 5)
R(G) = R(G,) - R(Gy) (6)
R(G;x) = ¥ if G has N vertices, but no edges. (7)
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The following analytical properties of the polynomials @ and R are
known1?

) ¥ @G- ek ®
dRig; x) _ 3 R(G - v; x). 9)

The summation in (8) goes over all edges of G whereas the summation in
(9) runs over all vertices.

By setting x = 1 in either Egs. (2)~(4) or (5)~(7), we arrive at the (long
known)® recurrence relations for the calculation of the Hosoya index:

Z(G) = Z(G - e) + Z(G - [e]) (10)
Z(G) = Z(G1) - Z(G2) (11)
Z(G) =1 if G has no edges. (12)

An immediate consequence of relations (10)—(12) is the following:
If v is a vertex of graph G, incident to the edges €1, €g,..., €5, then

. S
Z(@)=Z(G-v) + f Z(G - [e)). (13)

i=1
An example of the application of Egs. (10)«(12) is given in the last section.

A GENERAL RECURSION RELATION FOR ™Z

In this section, we deduce a recursion relation for ™Z that has a form
analogous to Eq. (10).

Consider an edge e = (,v) of a graph G. Then, the set of paths of length
m of graph G, "P (G), can be partitioned into four disjoint subsets:
"P'(G) — consisting of paths that contain the edge e,
"P"(G) — consisting of paths that touch the edge e, i.e., contain a terminal

vertex of the edge e (either vertex u or vertex v), but not the edge
e itself,

"P"'(G) — consisting of paths that contain the terminal vertices of the edge
e (both vertex u and vertex v), but not the edge e itself, and

"P""(G) —consisting of all other paths of length m of graph G; note that
these paths do not contain any of the vertices u or v.

Accordingly, ™Z(G) can be written as:
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mZ(G) = D ZG ~"P) + 2, Z(G - "P") + 2, Z(G ~ P + 2 Z(G — "P""). (14)
mp' mp" mpr mp

Let us now apply the recursion relation (10) to the edge e of the sub-
graphs occurring in the four summations on the right-hand side of Eq. (14).
This recursion cannot be applied to the first term, since G — ™P’ does not
contain e. Thus, the first term is left unchanged. On the other hand, the sub-
graphs G —"P", G- "P"" and G — ™P"" do contain the edge e, and by means
of Eq. (10) the second, third and fourth summations on the right-hand side
of Eq. (14) become

2 Z(G - TPy =€) + 2 Z(G - "P") ~ [e]) + 2, Z((G —"P") — ¢) +

P mp P

+ 2 Z(G - Py — [e]) + 2. Z(G = "P"") —e) + 2. Z((G = ™P""") — [e]). (15)
mPH' uml mPHN
By noticing that
(G-="P")—e = (G -¢e)—"P"
(G _ mPIH) —e = (G _ e) _ mPnr
(G _ mPun)-_ e = (G _ e) _ mPln/
and
(G _ mP'lII) _ [e] - (G - [e]) _ mPI!Il

but that the analogous interchange cannot be done for (G — "P”) — [e] and
(G = ™P"") — [e], the expression (15) is rewritten as

X 2(G-e) - ") + L Z(G - )~ P + 2 Z(G - e) - "P") +

mPu mPlu ,,,Pm/

+ 2, Z(G ~ [e) = "P"") + 2 Z(G - "P") - [e]) + 2, Z(G - "P") - [e]). (16)

mPrul um mp'

In view of the fact that G — e does not contain ™P’, in the first three
terms in (16) we recognise ™Z(G — e). Similarly, as G — [e] contains neither
”P' nor "P" nor ™P"", the fourth term in (16) is just "Z(G — [e]). Hence, Eq.
(14) results in

"Z(G) = "Z(G - e) + "Z(G - [e]) +

+ 2 ZG - "P) + 2 Z(G - "P) - [e]) + 2. Z(G - ™P) - [e]) 17

"P'(G) "P"(G) "P"(G)
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which holds for all values of m, m > 1.

In the above recursion, the edges and vertices are subsequently deleted.
If deletion ends in a graph G with no vertices, then "Z(G) = 1, and if one
formally deletes further, then ™Z(G) = 0. In order to apply the recursion re-
lation (17), we have to find all the paths of G that either contain the edge
e or touch it or contain both of its terminal vertices, but not the edge e itself.
In the general case this turns out to be quite a tedious task. Nevertheless,
as shown in the subsequent sections, if m = 1 or m = 2, the calculations re-
quired by Eq. (17) are still feasible.

CALCULATION OF ™Z OF DISCONNECTED GRAPHS

First of all, note that the quantity ™Z(G) is well defined irrespective of
whether graph G is connected or disconnected. Although molecular graphs
are (usually) connected, throughout the recursive evaluation of ™Z we
sooner-or-later encounter disconnected graphs. (For an example see the last
section.)

The following result holds for all m, m > 1. Let G be composed of dis-
connected components G; and G,. Then, parallel to Eq. (11) we have

"Z(G) = "Z(Gy) Z(Gy) + ™Z(Gy) Z(Gy) (18)
which can be written also as
"Z(G) _"ZG)  "ZCy)
ZG)  ZGpy ZGy

If G has several componénts, say Gy, Go,......, G,, then the above identity is
immediately generalized as

"Z@) _"ZG) "ZGy L "2Gy)
Z@&)  ZGy ZGy T ZGy

(19)

In order to prove Eq. (18) observe that each path ”P in graph G lies either
fully in G, or fully in G,. This implies that the set ™P (G) is the union of
the disjoint sets "P (G;) and ™P (G,). Consequently, bearing in mind Eq. (1),

mZ(G) = 2 Z(Gy —"P U Go) + 2. Z(Gy \J Gy — ™P).
"P(@G,) ™P(Gy)

Using Eq. (11), we now obtain
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mZ(G) = Z(Gy) Y, Z(Gy — "P) + Z(Gy) 2, (G — ™P)
"P(G,) "B(G,)

from which formula (18) follows immediately.

Formulae (18) and (19) show that in order to calculate the m-th path
number of a disconnected graph G, we must know the m-th path numbers
of all components of G, as well as the Hosoya indices of all components of G.

CALCULATION OF 1z

The fundamental expression, connecting 1Z with the Hosoya Z index is
the previously reported:®

1ZG) =Y. Z(G -e). (20)
As explained above, the polynomial @(G) can be calculated recursively.

If this polynomial is known, then 'Z is also known. Namely, the following
identity is obeyed

1Z(G) = M Q(G; 1) - Q'(G; 1) (21)

where M is the number of edges of G. Another form of the same result is

Z(G)
ZG)

x=1"

M—%ln Q(G; x)

The above formulae are obtained® by combining Eqgs. (8), (10) and (20).

Let e be an edge of graph G and let 5(e) be the number of edges incident
to e. Note that if e = (1,v), then &(e) = 5(u) + 5(v) — 2.

For x = 1, Eq. (2) becomes

QG 1) =Q(G -e;1) + QG —[e]; 1)

whereas by differentiating Eq. (2) with respect to the variable x and then
setting x = 1 we get

R(G1D=Q(G-¢e1)+QG-[e; 1) + QG —[e]; 1).

When these relations are substituted back into (21), then by noting that the
subgraphs G — e and G - [e] have M — 1 and M — 1 — 5(e) edges, respectively,
we arrive at
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ZG@®) =[M-1) QG -e;1) - QG —e; D)+ QG —-¢e1) +
+[(M-1-5() QG —[e]; 1) - Q(G —[e]; 1)] +
+[1 +6)] QG —[e]; 1) - QG - [e]; 1)].

Because

M-DQG-¢1)-Q(G-e;1)=1Z(G -e)

and

(M - 1-5@) QG —[e]; 1) - QG - [e]; 1) = 1Z(G — [e])

we finally obtain

1Z(G) = 1Z(G —e) + 'Z(G - [e]) + Z(G —e) + 6() Z(G — [eD (22)

which enables a direct recursive calculation of 1Z.

Formula (22) could, of course, have been deduced also from Eq. (17). For
this one has to notice that the subset 'P'(G) has just a single element, for
which G - P = G — e. Further, the subset !P"(G) has (e) elements, each of
which satisfying the condition (G - 'P) —[e] = G - [e].

Formula (22) should be compared with Eq. (10). In fact, comparison of

(10) and (22) reveals that it is reasonable to evaluate the two indices Z and
1Z simultaneously.

CALCULATION OF 2z

The fundamental expression, connecting 2Z with the Hosoya index is:

2Z(G) = u(G) Z(G) - Y [6(v) - 1] Z(G - v) (23)

where the auxiliary quantity u(G) is defined as

wG) = Z [[5(21))J -8(v) + 1j] = %z Sw)?2 + N -3M

v
with summation going over all vertices of G.
In order to deduce Eq. (23), we have to observe that every path of length
two embraces two edges. Consider a path 2P consisting of the edges

e; = (43, v) and ey = (uy, v). Hence, G — 2P =G - e; — e,. From Eq. (10), it
immediately follows:
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ZG) =Z(G—e) + ZG - [e]]) = Z(G — e;— ep) + Z(G — ey — [eg]) + Z(G — [e;]).

Because, evidently, G — e; — [e;] = G — [ey], the above relation yields

Z(G~%P) = Z(G) - Z(G - [e;]) = Z(G — [e)). (24)

Now, 2Z(G) is obtained by summing the right-hand side of Eq. (24) over all
paths of length two. Instead, we may sum over all vertices of G, taking into

account that each vertex v is the non-terminal vertex of exactly (6(2”)) paths
of length two. This results in

6(v)

I
2Z@G) =2, ( E;”] ZG) - 2 B -1 22 - [¢)

which, in view of Eq. (13), becomes

5
2ZG)=Y. ( (20)) Z(G) - 2. B@) - 1] [Z(G) - Z(G - v)).

Now, Eq. (23) follows straightforwardly.

In the general case, the calculation of the right-hand side of Eq. (23) is
not easy. The reason for this is, of course, the term 5(v) — 1. If, however, G
is a regular graph, i.e,, if all vertices of G have equal degrees (say, &), then
by bearing in mind the identity (9), Eq. (23) reduces to:

G-1)F-2)N

27(G) = 5

-@-DRG;D.

Hence, in this special case, it is possible to directly evaluate 2Z(G) from the
knowledge of the numbers a(G, k), k£ >0, or (what is the same) from the
knowledge of the polynomials Q(G; x) or R(G; x).

Recall that the molecular graphs of fullerenes are regular of degree § = 3.
Cycle Cy is also a regular graph, of degree § = 2.

AN ILLUSTRATION AND CONCLUDING REMARKS

In order to illustrate the applications of the present results, we consider
the molecular graph of azulene (graph Az depicted in Figure 1). As prepa-
ration, we first calculate the Hosoya Z index and the path numbers of the
path Py, also depicted in Figure 1.
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Figure 1. The molecular graph of azulene (Az) and some auxiliary graphs needed
for the calculation of its Hosoya index and path numbers.

From Egs. (10) and (11) one directly obtains

Z(Py) = Z(Py_y) + Z(Py_y)

which, together with the initial conditions Z(P;) = 1 and Z(P,) = 2 leads to
the conclusion® that the Z index of the N-vertex path graph is just the N-th
Fibonacci number, Fy. Recall that F3 =2 + 1 =3, F, =3 +2=5F,=5 +
3 = 8, etc. The first few values of Z(Py) are reproduced in Table I. From Eq.
(20) it now follows

N-1

Z(Py)= D Fy Fyy - (25)
k=1

Bearing in mind the identity

Fy=F,Fy,+F,; Fy,,

formula (25) is transformed into
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TABLE I

The Hosoya index and the first five path numbers of the graphs Py , 1 < N < 12;
Z(Py) is the N-th Fibonacci number; observe that the value 566 for 1Z(P,,) is ob-
tained by summing Z(P1o) = 89, !Z(Pg) = 310 and 17(Pg) = 167

N ZPy) ZPyn) 2ZPy) 3ZPy) Py  5Z(Py)
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 3 4 1 0 0 0
4 5 10 4 1 0 0
5 8 22 10 4 1 0
6 13 45 22 10 4 1
7 21 88 45 22 10 4
8 34 167 88 45 22 10
9 55 310 167 88 45 22
10 89 566 310 167 88 45
11 144 1020 566 310 167 88
12 233 1819 1020 566 310 167

IZ(PN) = (N— 1) Z(PN) - 2Z(PN_2) = ]'Z(PN_2)

from which the 'Z-values of Py are calculated recursively; the initial condi-
tions are 1Z(P;) = 0 and Z(P,) = 1. The respective results up to N = 12 are
presented in Table I.

The higher path numbers of P, are deduced from the relations®

'ZPy) =*Z(Py,)) = *Z Py, = ... = "Z (P -1)

and "Z(Py) = 0 whenever N <m. Since the values of Z(Py) have previously
been established, no extra calculation is required at all; see Table I for il-
lustration.

We further need the Z and ™Z indices of the cycle Cy. These are easily
obtained® from the data collected in Table 1:

Z(CN) = Z(PN) + Z(PN_2)
"ZC =N-m+ 1) ZPy-m+1); m=1,2,...

In partlcular Z(Cyp) = 89 + 34 = 123, 1Z(Clo) =10 -89 = 890, 2Z(C,,) = 9 - 55
= 495, 3Z(C;q) = 8 - 34 = 272, ete.
Consider now the azulene graph Az, Figure 1. Let e be the edge connecting
its vertices v; and v;. Then, Az — e = C}; and Az —[e ] = P; \U Pj, see Figure 1.
From Egs. (10) and (11):
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Z(Az) = Z(Cyp) + Z(Pg) - Z(P5) = 123 + 3-8

resulting in

Z(AZ) = 147.

From Egs. (22) and (18):

1Z(Az) = 'Z(Cyg) + 'Z(P3 U Py) + Z(Cy) + 4- Z(Py U Py) =
= 1Z(Cyg) + Z(Py) Z(P5) + 'Z(Py) Z(P3) + Z(Cyo) + 4 - Z(P3) Z(Py) =
=890+4 8+22-3+123+4-3-8

which gives
1Z(Az) = 1207.

In order to calculate 2Z(Az) via Eq. (17), m = 2, we have to find the sub-
sets “P'(Az) and 2P"(Az). For the choice e = (v;, v,) we have:

2P'(Az) = {my, my, 73, 7y}

2P"(Az) = {rs, mg, mq, Mg}

where

wy = Uy, U7, Vg) 7y = (Vy, Vg, Vg) g = (Vy, U, U7) 7y = (vq, Uy, v10)

s = (Ul’ Vo, U3) g = (Ul, U105 UQ) Ty = (U7, Vg, U5) g = (U7, Ug, Ug) .

Further, fori = 1, 2, 3, 4,

Az - 7; = Py, Z(Az - 7;) = 89

fori =57

Az - ;- [e]=P, UP; U P, Z(Az - m;-[e]) =1-83-5=15

whereas for i = 6, 8

Az -7, —[e]=P, U P, U Py ZAz -7, —[e]) =1-2-8 = 16.
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Bearing the above in mind we obtain

Y Z(Az - 2P) + D, Z((Az - 2P) - [e]) =
2P'(Az) ’P"(Az)

=[89 + 89 + 89+ 89] + [15 + 16 + 15 + 16] = 418.

Since, in addition, 2Z(Az —e) = 2Z(C,,) = 495 and 2Z(Az —[e]) = 2Z(P5 U Py)
= 2Z(Py) Z(P5) + 2Z(P5) Z(P3) = 1-8 + 10 - 3 = 38, formula (17) yields 2Z(Az)
=495 + 38 + 418, i.e.,

2Z(Az) = 951.

By comparing the families of formulae (10), (17), (22); (11), (18) as well
as (20), (23) we see that with increasing the value of m, the calculation of
mZ becomes more and more tedious. On the other hand, these formulae, as
well as the above example, suggest a general strategy for such calculations:
it is expedient to evaluate all the indices !Z, 2Z, ... simultaneously, and to-
gether with the Hosoya index Z.
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SAZETAK
Radunanje staznih brojeva 'Z, A Hosoyina Z indeksa

Ivan Gutman, Dejan Plavsié, Milan Soékic’, Irena Landeka i Ante Graovac

Za aciklicke molekule Randi¢* je uveo niz novih topologijskih indeksa,
stazne brojeve "Z, m = 1, 2, ..., koji se izvode iz Hosoyine matrice. Koncept
staznog broja nedavno je proSiren na molekule koje sadrze prstenove.
Nadene su relacije koje povezuju Z, 2Z s Hosoyinim indeksom Z.6 U ovom
radu ukazujemo na jo$ neke relacije staznih brojeva, koje vrijede za aciklicke
i ciklicke sustave, i omoguéuju rekurzivno radunanje indeksa ™Z, posebice
zam =11im = 2. S algoritamskog stajaliita korisno je izratunati sve indekse
1Z,2Z, ... istovremeno i zajedno s Hosoyinim indeksom Z.
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