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Using a recently developed technique for the calculation of the Wie-
ner number (W) of benzenoid systems, we determine explicit ex-
pressions for W for several homologous series of pericondensed ben-
zenoid hydrocarbons. An elementary proof for the correctness of the
used method is also included.

INTRODUCTION

Finding explicit combinatorial expressions for the Wiener numbers (W)
of particular classes of molecular graphs was initiated in 1977 by Bonchev
and Trinajstié¢! and was followed by numerous subsequent researches. Es-
pecially numerous were the results obtained for acyclic molecular graphs.?8
Expressions for W of polycyclic systems were somewhat more difficult to de-
duce and, until relatively recently, significantly fewer results of this kind
have been communicated. With a few exceptions,”1? the only polycyclic sys-
tems studied were catacondensed benzenoid hydrocarbons.!-4

The situation changed a few years ago.

* Author to whom correspondence should be addressed.
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First, Shiu and Lam, mathematicians from Hong Kong, developed a
combinatorial algorithm by which they succeded in finding formula for W
of the benzene/coronene/circumcoronene series.!®> The Shiu-Lam method
divides the calculation of W into many individual steps, each based on the
finding of an expression for distances between particular families of ver-
tices of the molecular graph considered. Therefore, the method requires
extensive and rather tedious computations and deals with difficult-to-han-
dle algebraic expressions. Nevertheless, the Shiu-Lam procedure was re-

cently successfully applied to several classes of pericondensed benzenoid
systems.16-19

Another technique for computing W, applicable (among others) to all
benzenoid systems, was recently communicated by two of the present
authors and Mohar.2%?! This method is based on a simple formula

W= % n,(C) ny(C) 1)

in which C denotes an elementary edge-cut of the respective benzenoid sys-
tem and the summation goes over all edge-cuts. The edge-cut C dissects the
benzenoid system into two parts, having n,(C) and n,(C) vertices. (Thus,
ny(C) + ny(C) is independent of the cut C and is equal to the number N of
vertices of the respective benzenoid system).

Precise definitions of elementary edge-cuts and more details with regard
to formula (1) can be found in our earlier publications.2’-22 A self-explana-
tory example is given in the subsequent section. An elementary proof of for-
mula (1) is given in the Appendix.

The main purpose of this paper is to demonstrate that the method of
edge-cuts is very simple to apply and that general expressions for W are eas-
ily obtained. This has already been demonstrated in the case of ben-
zene/coronene/circumcoronene series,?! and in this paper we offer quite a
few additional formulas of the same kind. We believe that, for additional
benzenoid systems of interest to the readers, it will not be difficult to ob-
tain the corresponding formulas for W along the same lines. In the Ap-

pendix we also give a simple, elementary proof for the validity of the used
procedure.

COMPUTATIONAL DETAILS

In all benzenoid systems G considered we will partition the elementary
edge-cuts of G into sets of parallel elementary cuts C,, C,, C;. Figure 1
shows an axample of a benzenoid system and the corresponding partition of
cuts.
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Figure 1. A benzenoid system and the corresponding elementary cuts Ci, C, Cs.

Throughout the paper, N will denote the number of vertices of the ben-
zenoid system considered. In addition, expressions of the form

k
% (i2n +2)- 1) (V- Gen + 2)-1),
will be written as

Z;(i(zmz)— )(N-7),

i.e. ¥ will stand for the value of the »first bracket«. In the above example,
we thus have ¥ = i(2n + 2) — 1. For the benzenoid system G, we will also
use the following notations:

W,=2 ny(C) nyC) ,
CeC,

W,= )y n,(C) ny(C) ,
CEC2

and

W, =c§cn1(c) ny(C) .

Then, in view of Eq. (1), we have W(G) = W; + Wy + W3 .



982 S. KLAVZAR ET AL.

PARALLELOGRAMS AND TRAPEZIUMS

In this section, we compute W of two relatively simple families of ben-
zenoid systems: parallelograms and trapeziums.

Parallelograms

Forn>1and 1<k <n,let P(n,k) be the parallelogram benzenoid system.
The definition of P(n,k) should be clear from the example P(7,4) shown in

Figure 2.
m
N— ——— —
7

Figure 2. Parallelogram P(7,4).

For P(n,k), we have:

N=@k+2)n+1)-2,
k
W1=i§[(i(2n +2)-1)(v-95)],
W, =2k + ) +i-1) (V- 7).

It remains to consider the Cy cuts. We first consider the first & — 1 cuts (from
left to right) and the last 2 — 1 cuts. We obtain:

K’Z‘ (B+2(G - 1)))(N- f)} .

Finally, for the middle n + 3 — 2k cuts from C3, we have

k-1

W3'=2.

i=1

i=1 J

n—k+1 k-1
W, = % KZI B+2(-1) +i@k+1)+i- lj(N— T)J .
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Clearly, Wy = W,' + W,". Simplifying the expression W; + W, + W3 + W,",
we get the following expression for W(P(n,k)):

4ndk2 + 2k +1) 2kn2(k%+ 9k + 8)
W= + +
3 3
n(kt+8k3+16k2+ 2k —1)  k(k*—20k2 + 4)
‘ 3 - 15 :

For instance, for 2 = 1 the above expression reduces to

WEP(n,1))= % (16n3 + 36n? + 26n + 3) ,

which is the well-known formula for W of polyacenes, usually denoted by L,
i.e, L, = P(h,1).

Trapeziums

For n>1 and 1<k <n, let T(n,k) be the trapezium benzenoid system.
The definition of T(n,k) should be clear from the example 7(9,5) shown in
Figure 3.

Figure 3. Trapezium T(9,5).

For T(n,k) we have:

N=(k+1)@n+1)-kE-1),

W= [Gen+1-@-ni-2)N-7F)].
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Consider the first £ cuts (from left to right) from C,. We obtain:

Wy =X i +2)][N- 7.

For the remaining n — & cuts from C,, we have
n-k

W, = [kek +2) + i@k + 2)| [N - 7]

Clearly, Wy = W, + W2 and by symmetry we have Wy = W,. Simplifying the
expression W, + 2(W,' + W,"), we get the following expression for W(T(n,k)):

4n(k* + 2k +1)  2n%k + 1)(2k2 - 8k — 3)
= - +
3 3
2n(k* —4k® + 6k> + 9k + 1)  k(8k* + 35k2 — 45k — 28)
3 - 30 ‘
Again, for k = 1, the above expression reduces to

W(P®n,1)) = % (16n3 + 36n2 + 26n + 3) .

PARALLELOGRAM-LIKE BENZENOID SYSTEMS

First Example

Forn > 1 and 1<% <n, let P(n,k) be the parallelogram-like benzenoid
system of type 1. The definition of P,(n,k) should be clear from the example
P,(7,3) shown in Figure 4.

_

~
7

Figure 4. Parallelogram-like benzenoid system P1(7,3).
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For P,(n,k), we have:

N=2n+4k(n+1),

W1=2§[(i(2n+2)- 1)(N-7)].

For the C, cuts, we first consider the first £ cuts (from left to right) and the
last & cuts. We obtain:

W, =2 ﬁi Kl (4 — l)j(N— f)} .

For the next cut, just after the first 2 cuts from the left, we have
k
W)= S@-D+@hk+D (N-7).
=

For the remaining middle n — (¢ + 1) cuts from C,, we have

=1 | j

n—(k+1) k
AL [_1 (4 - 1) + 4k + 1) + i(4k + 2)] (N-17).

Clearly, Wy = W, + W, + W,”". Finally, for the C, cuts, again we consider
the first £ cuts (from left to right) and the last 2 cuts. We obtain:

W3'=2é|:é (4+ 1)(N—T):| .

For the middle n — (¢ + 1) cuts from Cj, we have

n—(k+1)| E
W= | Z@+D+ik+2) |[N-7].
i= Jj=

Clearly, W = W3' + W,". Simplifying the expression W; + W, + W," + W, +
Wy + W,", we get for W(P,(n,k)):

_4n®k + 1  8kn’(k +4)(2k +1) N

G 3 * 3

n(8k* + 48k3 + T8k2 + 14k — 1)  k(8k* — 20k% — 110k2 — 25k + 27)
3 B 15 ’



986 S. KLAVZAR ET AL.

Second Example

For n>1 and 1<k <n, let Py(n,k) be the parallelogram-like benzenoid
system of type 2. The definition of Py(n,k) should be clear from the example
Py(7,4) shown in Figure 5.

Figure 5. Parallelogram-like benzenoid system Po(7,4).

For Py(n,k), we have:

N=2k(2n+1),

2k-1

W= 2 lien + 1] [N-7].

For the C, cuts, we first consider the first £ cuts (from left to right) and the
last 2 cuts. We obtain:

w2 2[2 (1) f)} |

For the middle n — (¢ + 1) cuts from C,, we have

n—(k+1)| ¢
W, = X [2 (4j—1)+i(4k):|[N—-T:|.

i=1 J=1
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Clearly, Wy = Wy + W,", and by symmetry W3 = W,. Hence, simplifying the
expression W, + 2(W,' + W,"), we get for W(Py(n,k)):

16k%n0  4kn’(4k°+ 6k = 1)

W= 3+t 3
Okn(4k3 + 8k% + 3k —2)  k(8k*— 20k3 — 30k% + 20k + 7)
3 - 15 )

For instance, for £ = 1, the above expression, as previously, reduces to

W(P%(n,1)) = %(IGn3 +36n%+26n +3) .

Third Example

For n>1 and 1<k <n + 1, let Py(n,k) be the parallelogram-like ben-
zenoid system of type 3. The definition of Pg(n,k) should be clear from the
example P3(4,3) shown in Figure 6.

N~

4
Figure 6. Parallelogram-like benzenoid system P3(4,3).

For Py(n,k), we have:

N=2k(2n +3)-4,

1

W,= % [(i@n+3-2) (- 7).
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For the C, cuts, we first consider the first £ — 1 cuts (from left to right) and
the last £ — 1 cuts. We obtain:

i

k-1
w, =22 @+ nwv-p).

For the next cut, just after the first 2 — 1 cuts from the left, we have

k-1
W{:[g 4+ 1)+ (dk - 1)} -9 .

For the remaining middle n — £ cuts from C,, we have

n-tk| k-1

W, = Z| T @+ 1)+ (@k-1)+i4k) |[N- 7]

i=1] j=
Clearly, Wy = Wy’ + W," + W,", and by symmetry W, = W,. Hence, simpli-
fying the expression W + 2(W," + W, + W,”"), we get for W(P,(n,k)):
a 16k2n3 N 4kn? (4%2 + 18k — 13) . 2n(4k* + 24k°% + 27k2 — 54k + 12)
-3 3 3 -

(8k° — 60k* — 110k® + 180k? + 27k — 60)
15 )

w

For instance, for £ = 1, the above expression, as previously, reduces to

W(P,(n,1)) = %(16n3 +36n?% +26n + 3) .

BITRAPEZIUMS

In this section, we consider W of bitrapeziums which include the special
cases of trapeziums and parallelograms. To consider these special cases and,
most importantly, to include all kinds of bitrapeziums, we neeed to consider
two cases.

Case 1.

Forn>1,0<k;<n-1,0<ky<n-—1andk, +ky <=n, let BT(n,k,k,) be
the bitrapezium benzenoid system. The definition of BT(n,k,,k,) should be
clear from the example BT(6,2,3) shown in Figure 7.

For BT(n,k,,ks), we have:

N=2nk,+ky,+2)—k2—k2+2 .
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Figure 7. Bitrapezium BTY(6,2,3).

For the first 2; + 1 cuts from C, (from the top), we obtain

W, =k:=2+11 [ii + 2n —28,) (V- 7)] .

For the last %, cuts from C; (from the bottom), we obtain

W, = kZl [i(i + 2n - 28,) (V- F)] .

Clearly, W, = W," + W,". Now, for the first k; + 1 cuts from C, (from the
left), we obtain

k +1

W, = % [i(i+2k,+2) (V- F)] .

i=1
For the last %, cuts from C, (from the right), we obtain

w, =3 [ii+ 2%, + 2) (V- 7).

For the middle n — (2; + k5 + 1) cuts from C,, we obtain
n—(kl + k2 +1)

W, = (kg 1)k + 28y + 3) + i(2k, + 20, + 4) V- F)] .

i=1
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Clearly, Wy = Wy' + W," + W, and by symmetry, W; = W,. Hence, simpli-
fying the expression W; + 2W,, we get for W(BT(n,k,k,)):

w_ ; ky+ 20 2n%2k3 -~ ky(12k, + 137) + 2%~ 1Tk, 18) |

2n(k] + ky(11k, + 13) + kj + 13k, + 13)

. -
8K + 20kA(k, + 2) + BEY(16k, + 23) + 5k2(23k, + 28)

30 B
k,(20k5 + 80k3 + 115k2 + 80k, + 27)
30 B

85 + 40k4 + 115k3 + 140k2 + 27k, — 30

30 )

For instance, for k; = k, = 0, the above expression, as previously, reduces
to the formula for W od polyacenes, i.e.

W(BT(,0,0)) = %(16713 +36n3 + 26+ 3) .

Moreover, for k, = 0, ky = £ — 1 (respectively, ko =0, ky = k - 1), we obtain
the formula for W of trapeziums benzenoid systems, i.e. W(BT(n,0,k — 1)) is:

4nP(k*+2k +1) 2n%k + 1)(2k2 - 8k —3)
= - +
3 3
2n(k* — 4k® + 6k* + 9k + 1)  k(8k* + 35k% — 45k — 28)
3 - 30 '

w

Case 2.

We may, without loss of generality, assume that &, < ky. Forn > 1, 0 <
k1 <n-1,0 < ky < n-1 and k, + ky > n, let BT(n,kk,) be the bitrapezium
benzenoid system. In this case, the definition of BT(n,kks) should be clear
from the exymple BT(7,4,5) shown in Figure 8.

For BT(n,k,,ks), we have:
N=2nk,+ky+2)—k2-k2+2.

For the first 2, + 1 cuts from C; (from the top), we obtain

W= [+ 2mmk) (V-9
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Figure 8. Bitrapezium BT(74,5).

For the last &, cuts from C,; (from the bottom), we obtain
kZ
w," =2 [i(i + 2n - 2b,) (V- F)] .

i=1

Clearly, W, = W, + W,". Now, for the first n — k, cuts from C, (from the
left), we obtain

nk,
Wy = % (i +2k,+2)(N- F)].
For the last n — &y cuts from C, (from the right), we obtain
n—k,
W)= 2 [i{i+ 28, +2) (V- 9)].

For the middle (2, + k5 — n) cuts from C,, we obtain

(ky+ k)

W= I [e-k)n+k+2)+i@n+2)|[N- 7]
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Clearly, Wy = W, + W," + W, and by symmetry, Wy = W,. Hence, simpli-
fying the expression W; + 2W,, we get for W(BT(n,k,,k,)):

—2n° 2n(ky+ky+1) 4n*2k, + 2k, + 3)
+

W=—Tg+ 3 + 3
2n2(6k3(k, + 1) + k(6k2 + 24k, + 23) + 6k2 + 23k, + 20)
. _
2n(20k3(k, + 1) + 30k%(k2 + 2k, + 1))
15 -
2n(5k(4k3 + 12k% + ky — 9) + 20k + 30k2 — 45k, — 61)
15 -
4k + 20k% + 5k3(15 —8k3) — 5kA(8kS + 24k2 + k, — 20)
30 -
(k,(11 — 5k3) + 4k + 20k4 + 75k3 + 100k2 + 11k, — 30)
30 :

For instance, for &, = 2y = n — 1, the above expression reduces to the formula
for W(BT(n,n-1,n-1)):

n(34n* + 170n3 + 200n% + 10n - 9)

15
which is the formula for W of the parallelogram benzenoid system P(n,n).
Notice that the above formula can also be obtained from the formula for W

of the parallelogram benzenoid system P(n,k) by substituting % = n, i.e.
W(BT(n,n-1,n-1)) = W(P(n,n)).

W=

GENERAL CASE

In this section, we consider W of general benzenoid systems which in-
clude many special cases, for instance the trapeziums, the bitrapeziums and
the parallelograms.

For n>1, 0<k <ks<n, 0<ky<ky>n and ky+ky=ky+k, Ilet
GB(n,ky,kyk3,k,) be the general benzenoid system. Its definition should be
clear from the example GB(7,3,4,5,2) shown in Figure 9.

For GB(n,ky,ko,k3,k,), we have:
N=2n(ky +ky+2)— k3 + ky(2k; + 2k, + 2) + 2ky — B2 + 2 .

For the first £, + 1 cuts from C; (from the bottom), we obtain

W= S [fev o) (V-]



WIENER NUMBERS OF BENZENOID HYDROCARBONS 993

Figure 9. General benzenoid GB(7,3,4,5,2).

For the last &4 + 1 cuts from C,; (from the top), we obtain

k1
) w,"= 2 [(+ 2600 + by~ k) (N - F)] .

For the middle k3 — (2, + 1) cuts from C,, we obtain
ky~k +1)

W, = z‘i [(k1 + 1)(ky +2n + 1) + i(2k, + 2n + 2) (N— Tﬂ :

Clearly, Wy = W' + W," + W,"". For the first k, + 1 cuts from C, (from the
left), we have

W= 3 i+, ) (V- 7).

For the last k5 cuts from C, (from the right), we obtain

Wy =3 (i 2,4 2) (V- 7).

For the middle n — (k5 + 1) cuts from C,, we obtain

n—(k2+1)

W, = X [y + 1)@k, + by + 8) + 2k, + 2k, + 4) (V= )] .

i=1
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Clearly, W, = W,' + W," + W,". For the first k£, + 1 cuts from C; (from the
left), we have

Wy = T [+ 2k, +2) (- 7).

For the last k£, + 1 cuts from C; (from the right), we obtain

W= T [+ 2k, +2) (V-5
For the middle n — (k4 + 2) cuts from C;, we obtain

n—(k,+2)

Wy'= I [(ky+ Dk, + 20, +3) + ik, + 2k, + 4) Ww-9)].

i=1

Clearly, Wy = W3' + Wy" + W,". Simplifyingo the expression W, + W, + Wj,
we get for W(GB(n,ky,koks,k,)):

= Y + Ry + D)2, ; 2k, — 3ky = 3k, —2)
2n*(6k] - 3KY(4k, — 3k, — 5k, + 2))
3
2n*(3hy(k — 2ky(2ky + 4k, + 1) + Zky(k, — 4) + 33 —10k, -8))
3
2n*(=3k3 — k3 — 33k, +2) — hy(Bk2 + 17) — ki + 12k3 — 5k,) _
3
203Uy by~ 2) + kyf2hif, + 3k3 — 2k, — 4 6))
3
n(TkS + 2k3(Ok, — 5ky — 14k, + 1) + 3k3(3kE — 2ky(3k, + 10k, + 4)) .
3
(BRI + ko(8k, = 5) + 12k — 11k, — 13) + 2k, (3k3k, — 3k, ~ 2)
3

n(2k,(3k3(k, — 3, — 2))
: -
n(2k (ky(3ko(4k, + 1) + 27k + 3k, — 20))
2 -
n(2k,(~2k3 — 3k3(2k, + 3) — k(92 — 3k, + 11) — 8k?)
. -
n(2k,(27k2 + 25k, — 11) + 3k} — 2ki(k, + k, — 1)
. : -
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n(k(3k, + Ok2 + Ok, — 2) — ky(ky(6k2 — 6k, — 11) + 12k2)
. _

n(—ky(—24k2 — 59k, — 14) — 2k% — k3(8k, + 17) — kX(9k2 + 51k, + 55))
. -
n(—ky(4k3 + 57k2 + 111k, + 76) — 35k% — 5Tk2 — 2(20k, + 13))
5 -
(225 + 20k4(3k, — 2k, — Bk,) + 10k3(4K2 — ky(6k, + 24k, + T)))
30 B
(10E3(8k2 + ky(12k, — 1) + 2(10k2 — 3)) + 5k2(2k3 — 3k%(8k, + 3)))
30 h
(5k3(ky(24k ik, + T2k + 30k, — 17) — 2k3 + 3k2 (1 — 2k,))
30 B
(53— ky(24K2 — 24k, — 19) — 2(16k3 — 24k2 — 53k, — 18))
30 -
2k (5k4 — 10k3(ky + b, — 1) — BEY(3k, — 12k2 — 9k, — 4))
30 B
2k (—5k(ky(6k2 — 6k, — 5) + 203 — Ok2 — 49k, — 23) — 10k%)
30 -
2k (~5k3(8k, + 15) — BEYOk? + 45k, + 40) — 5k, (4k3 + 63k2))
' 30 -
2k (-5k4(105k, + 53) + 15k% — 220k3 — 475k2 — 290k, — 56)
30 -
—4k5 + 6k + Bk3(6k, + 5) + 10k3(5k2 + 8k, — 2))
30 -
(5R3(14K3 + 51k2 + 22k, — 26) + ko (60k? + 400k3 + 625k2 + 180k, — 121))
30 -
2(6kS + 105k2 + 230k + 150k2 + 4k, — 15) + ki — 10k3(2k, — k2 — 3))
30 -
(—Bk2(6k, + 8k3 + Ok2 + 4k, — 8) — k,(10ky(6k2 + 6k, + 1))
30 -
k,(—30k4 + 130k3 + 355k2 + 200k, — 19)
30 ’
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SOME SPECIAL CASES

From the formula for W of general benzenoid systems obtained above,
it is possible to obtain the formulas for W of most of the benzenoid systems
considered earlier. We consider the following special cases:

Polyacenes
If we set k) = ky = k3 = k4 = 0 in the above expression, it reduces to the
formula for W of polyacenes (i.e. L, = GB(n,0,0,0,0)):

W(GB (n,0,0,0,0) =—31— (16n® + 36n2 + 26n + 3) .

Parallelograms

We have P(n,k) = GB(n, 0,k-1,k-1,0). Thus, in this special case, the above
expression reduces to the formula for W of parallelograms:

4n®k? + 2k + 1) 2kn%(k? + 9% + 8)
= + +
3 3
n(k* + 8k3 + 16k + 2k — 1)  k(k* — 20k2 + 4)
3 - 15 '

w

Trapeziums

Trapeziums can be described as

T(nk)=GBn—k+1,k~1,0,k—1,0)=GB(n,0,k-1,0,k—1)

hence, we can again use the general formula to obtain the expression for the
trapeziums:
4n®(k? + 2k +1) 2n%(k + 1)(2k% - 8k — 3)
= - +
3 3
2n(k* — 4k% + 6k2 + 9k + 1)  k(8k* + 35k2 — 45k — 28)
3 - 30

w

Bitrapeziums

Bitrapeziums can be described as BT\(n, ky,ky) = GB(n — ky, by, ko, by, ko).
So, in this special case, the general formula reduces to

o Gt Ry + 2 2n%2K3 — ky(12k, + 17) + 243 — 1Tk, — 18) .
3 3
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on(kt + ky(11k, + 13) + ki + 13k, + 13)

: -
8k5 + 20k4(k, + 2) + 5k3(16k, + 23) + 5k2(23k,, + 28)

30 -
k(20k3 + 80K + 115k + 80k, + 27)
30 -

83 + 40k4 + 115k3 + 1402 + 27k, — 30)

30 )

Coronene Circumcoronene Series

As the final example, we consider the coronene/circumocoronene series
(Hp). Namely, H, = GB(k,k -1,k -1, k-1, k — 1). Thus, inserting these spe-
cial values into the general formula for the W(GB), we obtain

WH,) = % (164%5 — 30K3 + k) .

APPENDIX: PROOF OF FORMULA (1)

Let G be a connected graph. The distance between the vertices x and y
od G is the length (= numer of edges) in a shortest path connecting x and
y. The Wiener number of G is defined as the sum of distances between all
pairs of vertices of G.

Suppose for a moment that the shortest path between any two vertices of
G is unique. Then, instead of summing the distances of all pairs of vertices,
we may count how many shortest paths go through a given edge, and sum
these counts over all edges of G. [This method for computing W is applicable
for acyclic graphs and was first put forward in Wiener's pioneering paper.2?]

The above argument is certainly not applicable to benzenoid systems
since in them there are many pairs of vertices which are connected by sev-
eral shortest paths.

Let B be the molecular graph of a benzenoid hydrocarbon and let x and
y be its two dinstinct vertices. In the general case, there are several shortest
paths connecting x and y. Choose in an arbitrary manner one of these short-
est paths. Repeat this for all pairs of vertices of B. Denote by n(B) the col-
lection of all chosen shortest paths. Thus, by definition, n(B) consists of
N(N - 1)/2 elements, one shortest path for each pair of vertices. The sum
of the lengths of the paths from n(B) is just the Wiener number of B.

Let C be an elementary edge-cut of B, dissecting B into fragments B’ and
B”, with n,(C) and ny(C) vertices, respectively. It is easy to see that between
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any vertex of B' and any vertex of B” there is a path from n(B) which is
intersected by C. Futhermore, each such path is intersected exactly once
(otherwise it would not have the minimal length). Thus, C intersects exactly
n1(C) ny(C) paths from n(B), and it intersects exactly one edge in each of
them.

On the other hand, the collection of all elementary cuts of B intersects
all edges of B and therefore all edges of all elements of n(B). No two ele-
mentary edge-cuts intersect the same edge.

Then, in analogy with Wiener's original argument,?® we may obtain W(B)
by counting how many paths from n(B) are intersected by an elementary
cut C, and then assuming these count over all elementary cuts. Since the
number of paths from n(B), intersected by C, is just n,(C) ny(C), we have
arrived at formula (1).
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SAZETAK
Wienerovi brojevi za perikondenzirane benzenoidne ugljikovodike
Sandi Klaviar, Ivan Gutman i Amal Rajapakse

Primjenom novog postupka za radunanje Wienerova broja (W) za benzenoidne
sustave odredili smo eksplicitne izraze za W za nekoliko homolognih serija perikon-
denziranih benzenoidnih ugljikovodika. Ukljuden je, takoder, i elementarni dokaz
ispravnosti primijenjene metode.
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