ISSN 0011-1643 CCA-2284

Original Scientific Paper

Stability Constants of Cadmium Chloride Complexes in (10, 30 and 50 Mass per Cent) Acetone-Water Mixtures from Electromotive Force Measurements

Marija Višić^a and Ivica Mekjavić^b*

^aFaculty of Natural Sciences and Arts, University of Split, Teslina 12, 21000 Split, Croatia

^bLaboratory of Physical Chemistry, Faculty of Technology, University of Split, Teslina 10, 21000 Split, Croatia

Received November 11, 1994; revised February 8, 1995; accepted February 17, 1995

Stability constants (K_n) were determined, using the potentiometric method, of different cadmium chloride complexes at different ionic strengths in 10 mass per cent acetone-water mixture at 288.15, 298.15 and 313.15 K, and in 30 and 50 mass per cent at 288.15, 298.15 and 308.15 K, respectively. These values were used to establish the thermodynamic stability constants (K_n°) of $[CdCl]^+$, $[CdCl_2]$, and $[CdCl_3]^-$ complexes in 10 mass per cent mixture acetone, as well as in other mixtures also of the $[CdCl_4]^{2-}$ complex. On the basis of the temperature dependence for K_n° , thermodynamic quantities were calculated for reactions forming these complexes; the results obtained indicate that the reactions are endothermic and that they result in an increase in entropy. The values obtained for K_n° and thermodynamic quantities were compared with analogous data in 2-propanol-water mixtures.

INTRODUCTION

The stability constants of different cadmium chloride complexes are determined by using the polarographic method at 298.15 K in the mixed solvents methanol-water, ^{1,2}, ethanol-water, ^{2,3} and dioxan-water, ⁴ and, in our work, ⁵ by

^{*} Author to whom correspondence should be addressed.

18 m. višić and i. mekjavić

means of the potentiometric method in 2-propanol-water mixtures in the temperature range of 288.15 – 313.15 K. The obtained values indicate that a decrease in the dielectric constant of the solvent results in an increase of the degree of complexation. From the temperature dependence of the stability constants in 2-propanol-water mixtures it was possible to determine the thermodynamic quantities for the reactions forming the above mentioned complexes.

In this work, the stability constants of cadmium chloride complexes were determined in acetone-water mixtures (10, 30 and 50 mass per cent acetone); the aim was to compare these values with those obtained for 2-propanol-water mixtures in order to establish a possible influence of the organic component (keto instead of alcohol group) on the stability constants and thermodynamic quantities of the reactions forming these complexes. Moreover, the obtained stability constants will be used in our next work in the processing of the measured values for the electromotive force of the cell: $\operatorname{Cd}(\operatorname{Hg})(1,\operatorname{satd}.) |\operatorname{CdCl}_2(m)|\operatorname{AgCl}(s)|\operatorname{Ag}(s)$ in the same acetone-water mixtures.

The stability constants were determined on the basis of the e.m.f. measurements of the following concentration cell:

at 288.15, 298.15 and 313.15 K for the 10 mass per cent acetone at ionic strengths (I) 1.0, 2.0 and 3.0 mol dm⁻³, and at 288.15, 298.15 and 308.15 K for the 30 and 50 mass per cent acetone at the same ionic strengths. In all cases, the x and y concentrations were 0.01 mol dm⁻³, while the z value was in the 0.025–0.50 mol dm⁻³ interval for the 10 and 30 mass per cent acetone, and in the 0.025–0.40 mol dm⁻³ interval for the 50 mass per cent acetonewater mixture.

EXPERIMENTAL

Two stock solutions, stock 1 and stock 2, were prepared for each mixed solvent. Stock 1 solution contained: $0.01 \text{ mol dm}^{-3} \text{ Cd}(\text{ClO}_4)_2$, $0.01 \text{ mol dm}^{-3} \text{ HClO}_4$ and (I-0.04) mol dm⁻³ NaClO₄. Stock 2 solution was composed of $0.01 \text{ mol dm}^{-3} \text{ Cd}(\text{ClO}_4)_2$, $0.01 \text{ mol dm}^{-3} \text{ HClO}_4$, $0.50 \text{ mol dm}^{-3} \text{ NaCl and } (I-0.54) \text{ mol dm}^{-3} \text{ NaClO}_4$ for the 10 and 30 mass per cent acetone, and of $0.40 \text{ mol dm}^{-3} \text{ NaCl and } (I-0.44) \text{ mol dm}^{-3} \text{ NaClO}_4$ for the 50 mass per cent acetone-water mixture. The procedure used in preparing these solutions was described earlier.⁵

The Cd(Hg) electrode was saturated and prepared as before.⁶ The cell description and the procedure used in the e.m.f. measurements were also previously described.⁵

At least two potentiometric titration were performed for each mixed solvent and ionic strength at a determined temperature, and always with a freshly prepared amalgam. The average deviation of individual measurements from their mean values was within $\pm~0.12~\text{mV}$.

RESULTS AND DISCUSSION

Table I presents the mean values of e.m.f. measurements of the cell (1) in the investigated solvents for different additions of NaCl at different ionic strengths and temperatures.

These values were used to calculate the stability constants (K_n) for the following complexation reactions

$$Cd^{2+} + nCl^{-} = [CdCl_n]^{(2-n)+}, (n = 1, 2, 3 \text{ and } 4).$$
 (2)

The expression for K'_n is in the form

$$K'_{n} = \left(c([\mathrm{CdCl}_{n}]^{(2-n)+})/c^{\circ}\right)/[\left(c(\mathrm{Cd}^{2+})/c^{\circ}\right)(c(\mathrm{Cl}^{-})/c^{\circ})^{n}], \tag{3}$$

where c(X) denotes the concentration of ion X, and $c^{\circ} = 1 \text{ mol dm}^{-3}$.

Calculation of K_n values was carried out by Leden's method⁷ of successive graphical extrapolations, the basis of which is the following equation

$$\frac{x - c(\mathrm{Cd^{2+}})}{c(\mathrm{Cd^{2+}}) c(\mathrm{Cl^{-}})} = \sum K_n' [c(\mathrm{Cl^{-}})]^{n-1} = K_1' + K_2' [c(\mathrm{Cl^{-}})] + K_3' [c(\mathrm{Cl^{-}})]^2 + K_4' [c(\mathrm{Cl^{-}})]^3$$
(4)

where x is the concentration of total Cd^{2+} ions $(0.01 \text{ mol dm}^{-3})$, $c(Cd^{2+})$ concentration of free Cd^{2+} ions, which is calculated by means of the Nernst equation from the measured e.m.f. of the cell, and $c(Cl^{-})$ is the concentration of free Cl^{-} ions. However, the original Leden's method was modified so that the right side of equation (4) was solved by computer (IBM 4143) as a polynomial by repeating the calculations until the constant K'_n values were obtained according to the procedure described in our earlier work. The number of iterations was increased with an increase in the acetone content in the mixed solvent. This number was considerably larger than in 2-propanolwater mixtures. For example, for 50 mass per cent acetone, the number of iterations was about 30, as compared to 20 for 2-propanol.

The calculating procedure for K'_n values was repeated with the e.m.f. data corrected for the amount of the junction potential, which was calculated using the Henderson equation.

20 m. višić and i. mekjavić

TABLE I Electromotive force (e.m.f./mV) of the cell (1) for different additions of chloride ions in x mass per cent acetone-water mixture at different ionic strengths and temperatures

c(NaCl)	I = 1	1.0 mol	dm^{-3}	I = 2	2.0 mol	dm^{-3}	I = 3	3.0 mol	dm^{-3}
		T/K			T/K			T/K	
$\mathrm{mol}~\mathrm{dm}^{-3}$	288.15	298.15	313,15	288.15	298.15	313,15	288.15	298.15	313,15
				<i>x</i> =			1.117722		
0.025	5.83	6.48	6.34	6.52	6.99	6.74	8.40	8.44	8.36
0.050	10.51	11.51	11.45	11.69	12.44	12.88	14.75	14.90	15.11
0.075	14.37	15.58	15.70	15.91	16.89	16.92	19.81	20.13	20.76
0.100	17.70	19.03	19.36	19.53	20.68	20.98	24.06	24.58	25.67
0.150	23.24	24.73	25.57	25.59	27.02	27.92	31.09	32.06	34.00
0.200	27.81	29.46	30.82	30.66	32.32	33.83	36.87	38.30	40.94
0.250	31.74	33.56	35.43	35.08	36.93	38.99	41.84	43.70	46.93
0.300	35.22	37.21	39.56	39.01	41.03	43.61	46.22	48.49	52.19
0.350	38.34	40.53	43.32	42.58	44.75	47.79	50.15	52.78	56.88
0.400	41.18	43.57	46.78	45.84	48.15	51.60	53.71	56.67	61.10
0.500	46.23	49.04	52.96	51.65	54.19	58.36	59.98	63.51	68.48
		T/K			T/K			T/K	
	288.15	298.15	308.15	288.15	298.15	308.15	288.15	298.15	308.15
				<i>x</i> =	30				
0.025	8.44	9.88	9.97	8.46	9.94	10.32	10.87	11.33	12.14
0.050	14.55	16.94	17.16	14.78	17.42	17.90	19.24	19.72	21.65
0.075	19.36	22.40	22.78	19.95	23.42	24.03	26.12	26.37	29.31
0.100	23.46	26.99	27.54	24.48	28.56	29.32	32.10	32.11	35.88
0.150	30.60	34.75	35.74	32.39	37.35	38.57	42.31	42.15	47.13
0.200	36.91	41.42	42.97	39.35	44.89	46.73	50.92	51.10	56.83
0.250	42.66	47.38	49.59	45.62	51.60	54.10	58.41	59.22	65.42
0.300	47.99	52.82	55.73	51.33	57.65	60.80	65.02	66.60	73.12
0.350	52.93	57.81	61.45	56.55	63.16	66.91	70.93	73.29	80.07
0.400	57.51	62.43	66.77	61.34	68.22	72.51	76.27	79.37	86.35
0.500	65.73	70.71	76.34	69.83	77.20	82.39	85.57	89.98	97.28
				<i>x</i> =	50				
0.025	13.33	16.04	18.07	15.89	17.65	18.20	18.45	18.85	19.58
0.050	23.52	27.70	30.32	27.56	30.07	31.60	32.20	33.27	34.67
0.075	31.97	37.33	40.36	37.42	40.68	42.61	42.96	45.06	47.93
0.100	39.48	46.14	49.77	46.63	50.61	53.21	52.36	55.50	60.03
0.150	52.87	62.00	67.04	63.27	68.39	71.72	68.66	73.39	80.53
0.200	64.46	75.49	81.70	77.10	83.10	86.96	82.07	87.84	96.54
0.250	74.42	86.79	93.84	88.44	95.09	99.37	93.15	99.58	109.22
0.300	83.00	96.33	103.97	97.88	104.92	109.56	102.44	109.33	119.60
0.350	90.45	104.49	112.59	105.90	113.47	118.45	110.20	118.50	128.42
0.400	97.01	111.60	120.07	112.84	120.71	125.89	117.27	124.79	135.88

TABLE II Viscosity coefficient ($\eta \times 10^3/{\rm Pa~s}$) of x mass per cent acetone-water mixture at different temperatures

		T	/K	
x	288.15	298.15	308.15	313.15
10	1.4376	1.0995	_	0.7975
30	1.8341	1.3666	1.0749	_
50	1.6545	1.2664	1.0440	-

Data required for the conductivity of particular ion species in the working and reference half-cell were obtained by using Walden's rule, as described in our previous work.⁵ Viscosities of the mixed solvents were determined by means of Ostwald viscosimeter and are given in Table II, while the density data are taken from literature.⁸ The final K'_n values are found in Table III.

It is seen from the Table III that in the 10 mass per cent acetone, up to the ionic strength I=3 mol dm⁻³, complexes [CdCl]⁺, [CdCl₂] and [CdCl₃]⁻ exist, while in the solvents with a higher content of acetone also complex [CdCl₄]²⁻ is present; the same was found in the case of 2-propanol-water solvents.⁵

Values of K'_n were applied in calculating the thermodynamic stability constants, *i.e.* the stability constants at zero ionic strength. For this purpose, the left-hand side of equation (5) is presented graphically against ionic strength:

$$\ln K_n' - \Delta z^2 A I^{1/2} / (1 + B\alpha I^{1/2}) = \ln K_n^0 + (\ln 10) \Delta C_n I / c^0.$$
 (5)

From the intercept of the obtained straight line we get the K_n' values, and from its slope the values for ΔC_n . In equation (5) A and B represent the Debye-Hückel constants which were calculated by using the dielectric constants of the solvents taken from Åkerlöf, a is the ion-size parameter (taken as 0.45 nm), $\Delta z^2 = z^2$ ($[CdCl_n]^{(2-n)+}$) $-z^2(Cd^{2+}) - nz^2(Cl^{-})$, and $-\Delta C_n = C([CdCl_n]^{(2-n)+}) - C(Cd^{2+}) - nC(Cl^{-})$. In these expressions, z and z are the charge and the empirical constant of each individual ion. The value for z of 0.45 nm was chosen because, in graphical presentation, the best straight lines can be obtained for z in the interval from 0.43 to 0.47 nm; for this reason, the mean value was taken and was used in calculating the constants for all the complexes and mixed solvents. The values of z0 and z1 are given in Table IV. Deviations of z1 are setting estimated by repeating graphical presentations of the values; they represent the average deviations, which are in agreement with the corresponding interval of the values for z1 are in agreement with the corresponding interval of the values for z1 and z2 nm).

TABLE III

Stability constants K_n of the cadmium chloride complexes in acetone-water mixtures containing x mass per cent of acetone and temperatures

	I	$l = 1 \text{ mol dm}^{-3}$	-3	I	$I = 2 \text{ mol dm}^{-3}$	က္	I	$I = 3 \text{ mol dm}^{-3}$	F_1
K_n		T/K			T/K			T/K	
	288.15	298.15	313.15	288.15	298.15	313.15	288.15	298.15	313.15
					x = 10				
K_1	26.6	29.3	26.9	31.3	33.0	28.9	44.9	43.4	38.3
K_2	84	85	78	104	109	116	209	196	238
K_3	06	112	202	234	257	339	527	710	840
		T/K			T/K			T/K	
	288.15	298.15	308.15	288.15	298.15	308.15	288.15	298.15	308.15
					x = 30				
K_1	46.2	55.3	52.9	45.4	54.3	55.3	63.9	66.7	67.8
K_2	115	214	229	178	248	292	653	543	905
K_3	828	927	647	1185	1295	1490	1400	1440	1860
K_4	1495	1790	4000	2020	3750	5625	0666	17760	24420
					x = 50				
K_1	88	114	141	126	134	141	161	155	159
K_2	1345	2190	2145	1930	3005	3015	4485	4632	4340
K_3	6885	7975	0886	19000	12810	15715	23190	33515	55145
K_4	113700	314100	464900	451500	655700	714800	639800	843800	1459000
						The state of the s			

CADMIUM CHLORO COMPLEXES 23

TABLE IV Stability constants K_n° of the cadmium chloride complexes and ΔC_n in x mass per cent acetone-water mixtures at different temperatures

	288.15 K	298.15 K	313.15 K
		x = 10	
K_1°	126 ± 4	153 ± 4	166 ± 6
K_2°	690 ± 45	740 ± 10	890 ± 37
K_3°	660 ± 25	1000 ± 33	1515 ± 43
ΔC_1	0.200	0.170	0.140
$_\Delta C_2$	0.367	0.347	0.357
ΔC_3	0.507	0.480	0.467
	288.15 K	298.15 K	308.15 K
		x = 30	
K_1°	363 ± 16	457 ± 23	490 ± 11
$egin{array}{c} K_2^2 \ K_3^2 \ K_4^2 \end{array}$	1260 ± 70	3550 ± 130	3980 ± 220
K_3°	11220 ± 910	19950 ± 1100	26915 ± 2200
K_4°	3900 ± 300	6310 ± 500	13490 ± 1100
ΔC_1	0.180	0.160	0.163
ΔC_2	0.500	0.417	0.217
ΔC_3	0.483	0.350	0.333
ΔC_4	0.553	0.520	0.513
		x = 50	
K_1°	1445 ± 70	2290 ± 95	3550 ± 140
K_2°	41700 ± 2800	71000 ± 6500	87100 ± 3400
K_3°	420000 ± 30000	631000 ± 44000	980000 ± 60000
K₃̈́ K₄̂	$1.25 \times 10^6 \pm 100000$	$4.27 \times 10^6 \pm 260000$	$5.01 \times 10^6 \pm 270000$
ΔC_1	0.235	0.200	0.135
ΔC_2	0.510	0.430	0.430
ΔC_3	0.475	0.450	0.455
ΔC_4	0.485	0.360	0.380

It is seen from the Table IV that K_n° values increase with increasing the acetone content and, in the same solvent, they increase with rising temperature. Figure 1 shows the dependence of K_n° on the dielectric constant of the solvent (plot $\ln K_n^{\circ}$ against D^{-1}), together with the values for aqueous solution⁵ and for the 2-propanol-water mixtures.⁵

Figure 1 shows that straight lines were obtained (K_3°) value for 50 mass per cent acetone and 50 mass per cent 2-propanol slighty deviating) which indicate that the values from K_1° to K_3° with the same dielectric constant are higher in the acetone-water mixtures than in the 2-propanol-water ones. It is evident that the complexation reaction and, thus, the stability constants,

24 m. višić and i. mekjavić

are influenced not only by the physical properties of the mixed solvents, expressed by the dielectric constant, but also by their chemical properties. *i.e.* the nature of the organic component in the solvent. No values for K_4° are shown because there are only two of them; however, for the same dielectric constant, they are also higher in the acetone-water mixtures than in the 2-propanol-water ones. It should be noted that Turyan and Zhantalay² have found a common straight line for the methanol-water and ethanol-water mixtures for K_1° and K_2° , respectively.

The standard thermodynamic quantities for the reactions forming the complexes were calculated on the basis of K_n° values at different temperatures (Table IV). From the slope of the straight line in the plot $\ln K_n^{\circ}$ against T^{-1} the value of ΔH° was determined, and the values of ΔG° and ΔS° were

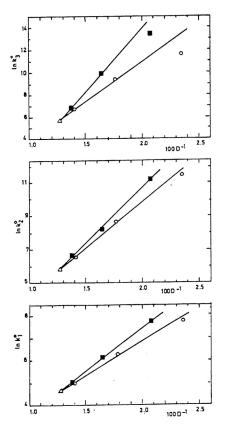


Figure 1. Variation of $\ln K_n^{\circ}$ with D^{-1} at 298.15 K for: aqueous solution (Δ) (Ref. 5), 2-propanol-water (o) (Ref. 5) and acetone-water (\blacksquare) mixtures.

CADMIUM CHLORO COMPLEXES 25

established by means of the usual thermodynamic relations. The values at 298.15 K are given in Table V. Deviations of ΔG° were calculated from the deviations of K_n° , those for ΔH° were obtained by averaging the slope of the straight line, while the values for ΔS° were calculated from the deviations of ΔG° and ΔH° .

TABLE V

Standard thermodynamic quantities for the formation reaction of the cadmium chloride complexes (2) at 298.15 K in x mass per cent acetone-water mixtures

			····
Complex	x = 10	x = 30	x = 50
Complex		$\Delta H^{\circ}/\mathrm{kJ\ mol^{-1}}$	
$[CdCl]^+$	8.6 ± 0.1	12.2 ± 0.3	32.2 ± 0.3
$[CdCl_2]$	10.3 ± 0.2	28.0 ± 1.8	33.3 ± 1.2
$[\mathrm{CdCl_3}]^-$	23.0 ± 0.2	27.7 ± 1.7	31.3 ± 0.8
$[\mathrm{CdCl_4}]^{2-}$	-	31.3 ± 2.0	44.6 ± 2.1
		$\Delta G^{\circ}/\mathrm{kJ\ mol^{-1}}$	
[CdCl]+	-12.5 ± 0.1	-15.2 ± 0.1	-19.2 ± 0.1
$[CdCl_2]$	-16.4 ± 0.1	-20.3 ± 0.1	-27.7 ± 0.2
$[\mathrm{CdCl_3}]^-$	-17.1 ± 0.1	-24.5 ± 0.1	-33.1 ± 0.2
$[\mathrm{CdCl_4}]^{2-}$	_	-21.7 ± 0.2	-37.8 ± 0.2
	$\Delta S^{\circ}/J \ K^{-1} \ \mathrm{mol}^{-1}$		L
[CdCl]+	70.8 ± 0.4	91.9 ± 1.3	172.4 ± 1.4
$[CdCl_2]$	89.6 ± 0.8	162.0 ± 6.1	204.6 ± 4.0
$[\mathrm{CdCl_3}]^-$	134.5 ± 0.9	175.1 ± 6.0	216.0 ± 3.2
$[\mathrm{CdCl_4}]^{2-}$		177.8 ± 6.7	276.4 ± 7.6

It can be seen from the Table V that all the reactions forming the cadmium chloride complexes are endothermic, and that they are accompanied by a rise in entropy which increases as the amount of acetone in the solvent becomes larger. It should be noted that reactions (2) in the 2-propanol-water mixtures⁵ were found to be endothermic also with an increase in entropy, although in the acetone-water mixtures their endothermicity and entropy increase were more pronounced. It can, therefore, be concluded that the values of ΔH° and ΔS° are also affected by the nature of the organic component in the mixed solvent.

Acknowledgement. – This work was supported by the Ministry of Science and Technology of the Republic of Croatia through grant No. 1-07-112.

REFERENCES

- O. I. Hotsyanovskii and O. K. Kudra, Izv. VUZ MVO SSSR, Khim. Khim. Tekhnol. No. 1 (1958) 43.
- 2. I. Ya. Turyan and B. P. Zhantalay, Zh. Neorg. Khim. 5 (1960) 1748.
- 3. O. I. Hotsyanovskii and O. K. Kudra, *Izv. VUZ MVO SSSR, Khim. Khim. Tekhnol.* No. 2 (1958) 36.
- 4. I. Ya. Turyan, Zh. Neorg. Khim. 1 (1956) 2337; 4 (1959) 813.
- 5. M. Višić, A. Jadrić, and I. Mekjavić, Croat. Chem. Acta 66 (1993) 489.
- 6. M. Višić and I. Mekjavić, J. Chem. Thermodyn. 21 (1989) 139.
- 7. I. Leden, Z. Phys. Chem. A188 (1941) 180.
- 8. J. H. Perry, Chemical Engineers' Handbook, McGraw-Hill, New York, 1950, p. 192.
- 9. G. Åkerlöf, J. Chem. Soc. 54 (1932) 4125.

SAŽETAK

Konstante stabilnosti kadmij klorid kompleksa u smjesama aceton-voda (s 10, 30 i 50 masenih % acetona) na osnovi mjerenja elektromotorne sile članka

Marija Višić i Ivica Mekjavić

Potenciometrijskom metodom određene su konstante stabilnosti (K_n) kadmijevih kloro-kompleksa pri raznim ionskim jakostima u 10%-tnoj smjesi aceton-voda pri 288.15, 298.15 i 313.15 K i u 30 i 50%-tnoj smjesi pri 288.15, 298.15 i 308.15 K. Iz tih vrijednosti dobivene su termodinamičke konstante stabilnosti (K_n°) za komplekse $[\mathrm{CdCl}_2]^+$, $[\mathrm{CdCl}_2]^-$ u 10%-tnom acetonu, a u ostalim smjesama i za kompleks $[\mathrm{CdCl}_4]^2$. Na osnovi temperaturne ovisnosti K_n° izračunane su termodinamičke veličine za reakcije nastajanja spomenutih kompleksa, iz kojih vrijednosti proizlazi da su sve reakcije endotermne i da dovode do porasta entropije. Dobivene vrijednosti za K_n° i termodinamičke veličine uspoređene su s analognim literaturnim podacima za smjese 2-propanol-voda.