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A strategy to employ a linear combination of the connectivity in-
dexes (LCCI) method to model a physicochemical property of a se-
ries of molecules is outlined throughout. The chosen physicochemi-
cal property is the solubility of 19 natural amino acids. This prop-
erty is modeled with the aid of normal LCCI and of linear combi-
nations of special constructions of connectivty indexes relating to
different numbers of amino acids, including and excluding extreme
outliers. The employed indexes are analyzed following their de-
scriptive power of solubility of natural amino acids. A linear com-
bination of reciprocal connectivity indexes (LCRCI) showed the
best mapping of the water solubility of 16 amino acids while a
model based on LCRCI, along with the use of supraconnectivity in-
dexes for the amino acids proline, serine and arginine, achieved
very good modeling of the water solubility of the entire set of n =
19 natural amino acids. Linear combinations of fragment connec-
tivty indexes were also analyzed while linear combinations of or-
thogonal connectivty indexes (LCOCI) were used to improve the
modeling and to detect dominant descriptors for this physicochemi-
cal property. Non connectivity 'ad hoc' indexes, already used in a
previous study with good success, did not achieve the same good
quality as the linear combination of reciprocal connectivity indexes.

INTRODUCTION

Recently, a graph theoretical molecular modeling (MM) method formed
from linear combinations of molecular connectivity indexes, LCCI-MM, was
successfully applied to the modeling of seven different physicochemical prop-
erties of different numbers of natural amino acids.!"® This method has been
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recently refined and used to encode other physicochemical properties of
amino acids, plus some different properties of inorganic salts as well as dif-
ferent size- and shape-dependent physicochemical properties of different
sets of organic saturated and unsaturated compounds, including properties
dependent on the conformational isomerism in unsaturated molecules.*”
Linear combinations of orthogonal indexes (LCOCI) have also been applied
to improve the modeling and to derive the dominant descriptors of a specific
property, whenever possible. The parallelism between the LCCI-MM method
and the LCAO-MO (linear combination of atomic orbitals — molecular or-
bital) method from quantum theory is somewhat stunning but while the
LCAO-MO constructs, with non-structure-explicit basis functions, the
molecualr orbitals (MO) that are subsequently used to derive the values of
the physical properties, the LCCI-MM method uses structure-explicit topo-
logical indexes®!7 to estimate physical properties or biological activities.

The aim of the present paper will be to delineate a strategy of modeling
the solubility of 19 natural amino acids using a linear combination of con-
nectivity indexes (LCCI) or linear combinations of special X = Aly) construc-
tions of connectivity indexes (LCXCI). It should be mentioned that modeling
of the solubility of 13 amino acids has already been tried? with different
kinds of connectivity and non-connectivity indexes and that recently® it was
suggested that connectivity indexes are defective in modeling sets of com-
pounds containing species that undergo association or strong solvation phe-
nomena in solution.

METHOD

The molecular connectivity indexes are computed using the following
relations

D=Ei6i (1)

o PED N PR ) (2)

Delta and valence delta values are atom-level numbers® that describe, re-
spectively, the numbers of nearest-neighbours and the number of valence
electrons of a non-hydrogen (heteroatom) atom of a molecule. In these equa-
tions, m = 0, 1, 2,..,, is the order and ¢ the type (path, path-cluster, cluster,
etc.; for more details see Ref. 9.) of the molecular connectivity index. Sum-
mation in Eq. (1) runs over the different delta values of a molecule while
in Eq. (2) it runs over the m-order paths; subscripts 1, 2, m+1 describe the
delta values of adjacent atoms in a molecule. The corresponding valence mo-
lecular connectivity indexes are obtained by introducing the valence delta
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values &" of the heteroatoms in amino acids into Eqs. (1) and (2). The fol-
lowing minimal set of y connectivity indexes will be used in this study (in %
the summation runs over the number of heteroatoms and in lx it runs over
the number of o bonds. The type ¢ index is meaningless here since zeroth-
and first-order indexes only are used)

{x} ={D, D", %, %", 1y, x*} .

Modeling of every value of solubility S is accomplished with the aid of the
following dot product

S=C-g (3)

where C is the row correlation vector resulting from the multivariate analy-
sis and yx is the best connectivity vector, made up of the parameters of the
given minimal y set plus the unitary connectivity index »° = 1.256 The LCCI-
MM method searches the entire space of possible combinations of the given
six y indexes (63 combinations), sorting the best @ = r/s% combinations with
their F (F=f-r?/[v-(1-r?)], f = freedom degrees and v = number of vari-
ables) values. While, the quality @ factor minimizes the standard deviation
of estimates s for a given r (correlation coefficient), F' controls that, for a
given r, the number of y variables does not grow excessively. As some of the
estimated values are sometimes negative, it is advantageous to use the fol-
lowing modeling equation

S=|C x| (4)

where bars stand for absolute values. Normally, Eq. (4) improves the de-
scription of the estimated property.

In this study, orthogonal 2 connectivity indexes and the corresponding
LCOCI will be also used to improve the modeling of the solubility values.
Use of these orthogonal indexes allows bypasing the problem of partial col-
linearity of the given connectivity y indexes, a collinearity that, neverthe-
less, does not prevent optimal modeling of the studied properties.!9-22235-7
Normally, the orthogonalization procedure chooses the best single y index
as the first orthogonal X2 index and goes on deriving from the next best iy in-
dex the corresponding i2 index orthogonal to every previous /2 index with
J =1, 2..., i~1 (for more details see Refs. 19-22.). The degree of collinearity
between two y and y' indexes is detected following the collinearity crite-
rion!* that states that the correlation coefficient r of the linear regres-
sion, y = ay' + b, is taken as a measure of collinearity and a strong collinear-
ity is characterized by r(y,x") > 0.98. To measure the interrelation of a full
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set of indexes used to describe a property, the mean correlation coefficient
<rmu(P:{x})> of the interrelation matrix? can be used.

RESULTS AND DISCUSSION

In Tables I and II, the connectivity and fragment connectivity indexes,
respectively, for 19 natural amino acids, together with their water solubility
values (Table I) taken from Ref. 18. (Table I), have been collected.

In the course of a previous study? on amino acids it was realized that
the water solubility of a set of n = 13 natural amino acids was well modeled
by a linear combination of fragment connectivity indexes (LCFCI), that is,
of 7; indexes based mainly on the functional groups of the amino acids. In
fact, the following y; and correlation C vectors achieved satisfactory modeling

2= (D, D %, %", 1%, C=(49.69,57.83,127.5,-1070, 282.8)
f ¢

@ =0122, F=87,r=0.989,s=81,n=13.

TABLE 1

Experimental water solubility S at 25 °C in units of grams per kilogram of
water of 19 amino acids (AA) and their molecular connectivity index values

AA S D DV OZ OXU 1}( IZU

Pro 1622 16 28 5.983 4.554 3.805 2.767
Ser 422 12 28 5.862 3.664 3.181 1.774
Gly 251 8 20 4.284 2.640 2.270 1.190
Arg 181 22 42 9.560 6.709 5.537 3.600
Ala 167 10 22 5.155 3.510 2.643 1.627
Thr 97 14 30 6.732 4.535 3.553 2.219
Val 58 16 28 6.732 5.088 3.553 2.538
Met 56 16 26.7 7.276 6.146 4.181 4.044
His 43 24 42 8.268 5.819 5.198 3.155
Gln 42 18 38 8.146 5.410 4.537 2.804
Ile 34 16 28 7.439 5.795 4.091 3.076
Phe 29 24 42 8.975 6.604 5.698 3.722
Asn 25 16 36 7.439 4.703 4.037 2.304
Leu 23 16 28 7.439 5.795 4.036 3.021
Trp 12 32 54 10.836 8.104 7.182 4.716
Glu 8.6 18 40 8.146 5.280 4.537 2.739
Lys 6 18 32 7.983 5.916 4.681 3.366
Asp 5 16 38 7.439 4.572 4.037 2.239

Tyr 0.5 26 48 9.845 6.974 6.092 3.857
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TABLE II

Fragment yy connectivity values of 19 natural amino acids (AA)

AA D DV OX OZU 1Z lxu

Pro 7 19 3.284 1.855 1.896 1.005
Ser 7 23 4.577 2.380 2.772 1.366
Gly 6 18 3.577 1.933 2.065 1.050
Arg 4 14 2.870 1.433 1.249 0.546
Ala 6 18 3.577 1.933 2.065 1.050
Thr 7 23 4.577 3.380 2.642 1.308
Val 6 18 3.577 1.933 2.065 1.050
Met 6 18 3.577 1.933 2.065 1.050
His 4 13 2.870 1.486 1.565 0.792
Gln 9 25 4.154 2.264 2.473 1.319
Ile 6 18 3.577 1.933 2.065 1.050
Phe 6 18 3.577 1.933 2.065 1.050
Asn 9 25 4.154 3.264 2.473 1.319
Leu 6 18 3.577 1.933 2.065 1.050
Trp (] 18 3.577 1.933 2.065 1.050
Glu 11 33 6.154 3.288 3.628 1.831
Lys 5 15 2.577 1.356 1.358 0.642
Asp 11 33 6.154 3.288 3.628 1.831
Tyr 7 23 4.577 2.380 2.642 1.274

If fragment y; indexes are used to model the recently published!® solu-
bility of n = 19 amino acids, the result achieved is, however, very poor. The
best linear combination of {D, D?, %y, 1y, Lyv, 2°};indexes rates: @ = 0.00093,
F=042,r =0.374, s = 403, n = 19.

While in the following paragraph an attempt will be made to find the
optimal modeling of the solubility values of amino acids without leaving the
frame of the molecular connectivity theory, an outlined by Randié¢, Kier and
Hall (RKH), it should be added that during the mentioned study it was
found that the solubility of amino acids was well modeled by a set of 6 low
collinear characteristic properties, designed as I" indexes? and collected in
Table III. These I" indexes, derived by Kidera, Konisci, Oka, Ooi and Scher-
aga®?* and designated with the acronym KOKOS, are 'ad hoc' indexes since
they have been derived by applying several multivariate statistical analyses to
188 physical properties (many directly related to solubility) of amino acids in
proteins. When these indexes are used to model the solubility of n = 19 amino
amino acids, the following satisfactory best linear combinations (LCII) are
obtained

{11, 2T, %1, 40, %, °r): - @ = 0.0061, F = 18.0, r = 0.935, s = 154.3 .
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TABLE III
KOKOS " indexes of n = 19 natural amino acids (AA)

AA r 2r 3r ir 5r 5

Pro -0.71 0.9 021 -0.72 -1.26 0.86
Ser -121 -1.19 -0.33 -046 -0.54 0.22
Gly -2.16 -102 -0.19 -0.03 -0.84 -0.99
Arg 1.16 -057 -152 -1.07 -0.28 -0.13
Ala -1.44  -0.47 0.11 032 -051 -0.86
Thr -0.67 -0.97 0.1 -0.36 0.57 0.86
Val -0.34 0.42 0.77 1.38 1.84 1.66
Met 0.44 0.2 0.72 1 0.45 0.24
His 052 -046 -0.18 -0.13 -0.56 -0.1

Gln 022 -124 -046 -1.05 0.19 -0.42
Ile 0.21 1.37 0.97 1.52 1.91 1.27
Phe 1.09 1.6 1.24 1.16 0.88 0.48
Asn -0.34 -125 -0.06 -096 -1 -1.19
Leu 0.25 1.06 1.01 1.14 0.69 0.02
Trp 2.08 2.06 1.55 0.67 0.61 0.42
Glu 0.17 -062 -165 -1.03 -1.74 -1.78
Lys 068 -0.16 -162 -1.76 -0.86 -0.19
Asp -054 -0.75 -1.74  -1.07 117  -1.72
Tyr 1.34 1.16 1.04  -0.07 1.02 1.21

If LCFCI are poor descriptors of the full n = 19 set of solubility values,
the best way is to revert, as a starting point, to the normal y indexes and
to the corresponding LCCI. The search for the @-best LCCI ends up with
the following insufficient LCCI modeling

%, %} : @ =0.0022, F =593, r=0652,s =297, n=19

{D,D’, Yy, 2y} : @ = 0.0023, F = 3.25, r = 0.694, s = 302, n = 19 .

To gain a deeper insight into the modeling power of the given y indexes, it
is worth analyzing the variability of these indexes with the solubility. Figure
1 should help us in this task. In this figure, the experimental water solu-
bility values of the given 19 amino acids have been plotted versus D, and
DV (other y indexes show the same kind of variability). Striking features of
this figure are: i) the similarity of the variability for normal and valence con-
nectivity indexes and ii) the hyperbolic character of this variability (S - y ~
cost, dashed lines) a fact that becomes more evident if outliers Pro, Ser and
Arg are left out of the plot. While the partial collinearity of the given set of
indexes with < rp(S;{y}>= 0.905 explains their similar behaviour along the



A STRATEGY FOR MOLECULAR MODELING 101

1700 =
| .
1250 -
° 800 -
(/) 4
350 - - °
] e b
- AN o
- S a
Tr-2s B y--0fal. ..o _.a
5 5 2 3 45 55

0D/ DY

Figure 1. Experimental water solubility values of 19 amino acids versus D and D"
connectivty indexes (M: normal y values; O: valence connectivty values).

solubility dimension, point ii) suggests that introduction of reciprocal con-
nectivity 1/y = R indexes should improve the modeling of S. The following
set of reciprocal connectivty indexes is, then, selected to build the linear
combinations (LCRCI) to model the solubility of amino acids

{R} = {DR, DR", OR, OR“, lR, lR”} .
Now, the best successive LCRCI appropriate for modeling S (n = 19) are

{°R}: @ =0.0011. F = 2.75, r = 0.873, s = 353

{°R,°R} : @ =0.0037, F = 16.8, r 0.823, s = 222

{P°R,°R,°RY,'R"} : @ = 0.0046, F = 12.8, r = 0.886, s = 194 .
The chosen R and C simulating vectors are
R = (PR, °R, °RY, 'R, RY), C = (-36121, 18636, 22730, —7432.8, —1830.7) .
From the given series of combinations we notice that i) there is a nice

statistical improvement from the single- to the two-index combination, ii)
the @-best combination is the last one. Thus, while the poor statistical score
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TABLE IV
Orthogonal reciprocal connectivity indexes of n = 19 amino acids
(AA)

AA 10=0R 20 ¢ 40
Pro 0.16714 -0.01759 -0.00121 -0.02074
Ser 0.17059 0.00109 0.017792 -0.01401
Arg 0.104603 0.004459 0.000677 -0.00075
Gly 0.233427 0.003478 0.013459 0.001466
Ala 0.193986 0.003132 -0.01302 0.01859
Thr 0.148544 0.002965 -0.0001 0.004005
Val 0.148544 -0.00596 -0.01045 0.037834
Met 0.137438 0.000979 -0.03604 -0.03385
His 0.120948 -0.00576 0.011339 0.008074
Gln 0.12276 0.00321 0.007582 -0.00858
Ile 0.134427 0.002862 -0.02395 0.007863
Phe 0.111421 -0.00359 0.003762 0.006883
Asn 0.134427 0.002862 0.016117 -0.00208
Leu 0.134427 0.002862 -0.02395 0.013782
Trp 0.092285 -0.00205 0.005827 0.012363
Glu 0.12276 0.00321 0.012133 -0.01361
Lys 0.125266 0.001643 -0.01009 -0.0155
Asp 0.134427 0.002862 0.022209 -0.00755
Tyr 0.101574 -0.00064 0.007926 0.005811

of the single-index combination points to the possible existence of a domi-
nant orthogonal descriptor, the introduction of LCRCI seems to be a good
move in the right direction. The only negative point concerns the very high
values of the standard deviation of the estimate s. It is now worthy deriving
the corresponding orthogonal reciprocal connectivity indexes to detect better
dominant orthogonal descriptors and a better LCOCI. It is noticeable that
R indexes of the best combination are to some extent interrelated with
< rpu(S;{R} o> Table IV presents the values of the orthogonal indexes de-
rived by an orthogonalization procedure performed on the {°R, D® °RY RV}
ordered combination (first, second, third and fourth beest descriptors). The
best LCOCI are

{22} : @ =0.0028. F = 19.8, r = 0.734, s = 258
{12,20,%0} : @ =0.0047, F = 18.1, r = 0.885, s = 188
{€,i=1-4} : @ = 0.0046, F = 12.8, r = 0.886, s = 194 .
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While the improvement of %2 index relative to °R index clearly indicates
that this orthogonal index is the dominant component in the modeling of the
solubility of amino acids, the second orthogonal combination is the best over-
all descriptor of the solubility of the amino acdis. The last 2 combination
can be used as a validity test for the orthogonalization procedure since it
should have the same statistical score of the parent LCRCI, as it really does.
In Figure 2, the S values calculated with the aid of the following 2 and C
vectors and of Eq. (4) are plotted versus the corresponding experimental
ones.
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Figure 2. Calculated (using orthogonal LCRCI) versus experimental water solubility
of n = 19 amino acids.

Q=(10Q,%,40Q,0%, C = (4079.1, -51211, -7459.1, —404.28)

Equation (4), where 2 replaces y, is used here because 6 estimated S values
are negative; furthermore, Eq. (4) gives a better estimation of S (Eq. (3):
@ = 0.0030, F = 22.2; Eq. (4): @ = 0.0040, F = 39.1).

Figure 2 shows, nevertheless, that the modeling is far from being opti-
mal. An analysis of Figure 1 shows that the solubility values of Pro, Ser and
Arg (highly soluble compounds, especially Pro) are strong outliers, and thus,
interesting hints could be obtained about the modeling power of a LCCI or
a LCRCI if they are excluded from the modeling. The following are the best
LCCI and LCRCI for a description of the restricted solubility n = 16 set
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%} : @ =10.0202, F = 27.8, r = 0.816, s= 40.3
% %} : Q=0.0871, F = 46.8, r = 0.937, s = 25.24
%% %"} : @ =0.0374, F = 31.7, r = 0.942, s = 25.18

24.7

{R}: Q=0.038, F=974,r=0.935,s
{°R,'R} : @ =0.044, F = 66.2, r = 0.954, s = 21.7
{PR,PR",°R,°R"} : @ =0.053, F = 47.9, r = 0.972, s = 18.3

{R}: Q=0.058, F=376,r=0.981,s =170 .

The differences between the two sets of linear combinations are evident: i)
LCRCI scores better than LCCI, ii) the single-index LCRCI shows a good
quality, iii) @-score of LCRCI improves with the introduction of the next R
index while LCCI deteriorates after the three-index combination and ivi) the
two-R-index LCRCI is better than the @-best LCCI. To derive the calculated
S (n = 16) values plotted versus the corresponding experimental values in
Figure 3, the following R and C vectors together with Eq. (4) where R re-
places y) have been used

R = (PR, PRv, °R, °R¥, R"), C = (8113.1, 26638, 11696, —-5227.3, —199.08) .

300 : > |

200 A
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100 -
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Figure 3. Calculated (using LCRCI) versus experimental water solubility of n = 16
amino acids.
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As two S values estimated using Eq. (3) are negative, Eq. (4) is to be pre-
ferred; furthermore, its modeling power is more convincing

Eq. (3): @ = 0.060, F = 243.7, Eq. (4): @ = 0.062, F = 262.7 .

The 4-R-index combination has been chosen for the modeling as, even if it
does not show the betst @ value, it nevertheless shows a better F value than
the following two combinations. It is noticeable that this description of S
(n = 16) is nearly as good as the S (n = 13) description wiht a LCFCI.

Let us retrieve our fragment connectivity indexes and examine their de-
scriptive power. The best @-LCFCI for the solubility of n = 16 amino acids
is rather poor

{D, Dv, Oy, 1;(}f: Q = 0.0073, F = 0.895, r = 0.496, s = 68.3 .

To check if reciprocal fragment connectivity indexes are good descriptors of
the solubility of amino acids let us analyze the variability of y;indexes with
the solubility, as previously done for y indexes. Figure 4 shows the variabil-
ity for D; and D} indexes (other indexes behave similarly). Leaving out the
last two points, the variability seems totally random, a fact that would ex-
clude the use of reciprocal fragment connectivity indexes for achieving better
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Figure 4. Experimental water solubility values od n = 19 amino acids versus frag:
ment D and D’ indexes (B: normal fragment yf values; O: fragment connectivity va-
lence values).
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modeling. Anyway, the statistical score of the best @-LCRFCI (linear com-
bination of reciprocal fragment connectivity indexes) for n = 19 is

{PRY, °RY, 'R, 1R"},»: Q =0.0013, F =10, r =0474,s =369, n = 19 .

The only fairly acceptable modeling of a LCRFCI is with n = 14 low points,
that is, excluding the most soluble amino acids, Pro, Ser, Gly, Arg and Ala,

{PR, °R, °RY, R’};: @ =0.060, F =83, r=0887,s=14.8,n = 14 .

The KOKOS indexes, instead, release a more satisfactory description of this
n = 16 solubility values, even if not as good as the LCRCI description,

{Ir,3r,*r,°ry: @ =0.029, F = 14.6, r = 0.917, s = 31.3 .

To model also the high solubility values of Pro, Ser and Arg, suprareciprocal
connectivity indexes, a - R (where a > 1 is an association parameter) are in-
troduced, as recently done for caffeine homologues, where supraconnectivity
a - y indexes have been successfully used.® The reason for doing this is here
one inferential and due to the abnormally high solubility values of Pro, Ser
and Arg. Even if there is no experimental evidence that Pro, Ser and Arg
undergo intermolecular association in aqueous solutions, their high solubil-
ity (especially Pro) can be better grasped conceiving either self-association
or strong solvation phenomena, which can be simulated by introduction of
supramolecular connectivity indexes®2? that take the solvated or self-asso-
ciated molecules as supramolecular species. Using LCRCI with supra-(a - R)-
indexes for Pro (a = 4), Ser (a = 1.5) and Arg (a = 2) it is possible to derive
the following best single-index, @-best and F-best combinations for n = 19

46.1

(R} : @ =0.022, F = 1141, r = 0.9926, s

{°R,1R} : @ =0.029, F = 1028, r = 0.9961, s = 34.4

{PR",°R, 'R’} : @ = 0.030, F = 732, r = 0.9966, s = 33.3 .

The description of the solubility of amino acids is now optimal and, while
the @ and s values are not as good as in the former description (n = 16),
the correesponding F' and r values are much better. As two solubility values
are negative, Eq. (4) is used here (@ = 0.034, F = 2795, Eq. (3): @ = 0.032,
F = 2488) to model, together with the following R and C vectors, the solu-
bility of amino acids (see Figure 5)

R = (°RrY, °R, 1RY, R"), C = (-8018.9, 5271.0, —-316.16, —299.06) .
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Figurte 5. Calculated (with LCRCI plus supraconnectivity R values for Pro, Ser and
Arg versus experimental water solubility values of n = 19 natural amino acids.

The use of supra-(a - I'-indexes for Pro, Ser and Arg gives the following Q-
best LCTI, which has no better modeling ability than the previous LCRCI
with supraindexes

{Ir,°r,ry: @ =0.0139, F = 158, r = 0.985, s = 70.9 .

Aa expected, reciprocal 1 /I indexes, with and without suprareciprocal in-
dexes, provide less satisfactory modeling since I's are 'ad hoc' indexes di-
rectly derived from the physical properties they describe.

Figure 1 could raise the suspicion that the variability of connectivity in-
dexes is exponential (S - e¥ ~ cost). Let us, then, find out the best linear com-
bination of connectivity indexes (LCCI) apt to model In(1/S) instead of S

(D", %, %} : Q@=048,F=45r=069,s=145n=19.

Clearly, a comparison with previous results should be based on F and r pa-
rameters, since the good scores of s and, consequently, of @ are due to the
use of the logarithmic form of solubility.

CONCLUSION

The value of the proposed LCCI-MM strategy for modeling the solubility
of 19 amino acids goes beyond the specific property analyzed since it deline-
ates a general method for modeling every kind of molecular property with
a self-consistent set of graph theoretical indexes, defined within the frame
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of the RKH molecular connectivity theory. The central moment of this strat-
egy is the analysis of the variability of the used indexes along the solubility
dimension. This variability provides precious information on the derivation
of new kinds of indexes from the original ones. The second important aspect
can be phrased in the following way: outliers are useful, since they can help
to design indexes that are able to describe an entire set of values of a given
property. The third not unimportant aspect has to do with the modeling
equation: form Eq. (4) of the modeling equation normally achieves a better
description than Eq. (3) since it allows handling positive calculated values
and excludes negative values that have no physical meaning.

Modeling of the water solubility of the n = 19 amino acids confirms a
recent general observation that claims that normal connectivity y indexes
are generally good descriptors of low solubility and gas phase properties,®
where association phenomena are negligible. This modeling confirms also,
through the analysis of the variability of y indexes and through the analysis
of outliers, that the supra-y, a - y or a - f{y) (with a > 1) types of indexes
contribute to improvement of the quality of molecular modeling. Linear com-
binations of reciprocal connectivity indexes LCRCI (where, f{y) = 1/ x) are
satisfactory descriptors of the full solubility set of values and optiomal de-
scriptors of the restricted n = 16 solubility space. Introduction of suprare-
ciprocal connectivity indexes for Pro, Ser and Arg as well as employment of
LCRCI that include these kinds of indexes produce an exceptional descrip-
tion of the n = 19 solubility values. Thus, the aim of descrbing the solubility
of amino acids with graph theoretical indexes has not only been achieved
but has ended with the finding of new f{y) connectivity descriptors that are
even better than the y indexes. The suprareciprocal indexes for Pro, Ser and
ASrg are, clearly, not experimentally grounded and the value of the asso-
ciation o constant is just inferential and based on rational arguments, but,
even if it is very important that these supraindexes should be experimen-
tally grounded, the inferential power of the method should not be under-
scored or obliterated.
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SAZETAK

Pristup molekularnom modeliranju s pomoéu
linearne kombinacije indeksa povezanosti

Lionello Pogliani

Prikazan je pristup modeliranju fizikalno-kemijskih svojstava s pomo¢u linearne
kombinacije indeksa povezanosti. Upotrijebljeno fizikalno svojstvo bila je topljivost
19 prirodnih aminokiselina. To je svojstvo modelirano s pomoéu linearne kombinacije
indeksa povezanosti (LKIP) i s pomoé¢u linearne kombinacije specijalno konstruira-
nih indeksa povezanosti. Model utemeljen na linearnoj kombinaciji reciproénih in-
deksa povezanosti (LKRIP) pokazao se najboljim u predvidanju topljivosti 16 ami-
nokiselina. Taj je model znatno pobolj$an kada su uz LKRIP upotrijebljeni i indeksi
superpovezanosti za aminokiseline prolin, serin i arginin. Takoder je proudavana
upotrebljivost linearne kombinacije indeksa povezanosti fragmenata. Upotrijebljena
je i linearna kombinacija ortogonalnih indeksa povezanosti, koja je poboljsala model
i pomogla da se odrede dominantni deskriptori za topljivost. Ad hoc indeksi nisu
proizveli modele koji su usporedljivi s navedenima.
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