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The detour matrix of a weighted graph and its invariants (the de-
tour polynomial, the detour spectrum, the detour index) are dis-
cussed. A novel method for computing the detour matrix of
(weighted) graphs is proposed.

The detour matrix was recently discussed in this journal.! This matrix
was introduced into the mathematical literature in 1990 by Buckley and
Harary in their book on the distance matrix.2 The detour matrix has been
introduced into the chemical literature in 1994 under the name the maxi-
mum path matrix of a molecular graph by Ivanciuc and Balaban.? The cor-
responding Wiener-like index, called the detour index by Lukovits,* was in-
troduced by Ivanciuc and Balaban® as the half-sum of the maximum path
sums. The detour index was also discussed by us! and by Lukovits.*5 Luk-
ovits was also first to use this index in the structure-property modeling and

* Dedicated to the memory of Professor Stanko Boré¢ié (Shangai, March 1, 1931 — Zagreb,
December 21, 1994), one of the most prominent Croatian chemists of our times.
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has found* that the detour index combined with the Wiener index is quite
efficient in QSPRS studies if a series of molecules considered consists of acy-
clic and cycle-containing molecules. Lukovits also delivered a very stimulat-
ing talk on this work at the Rugjer Boskovi¢ Institute in Zagreb on February
29, 1996.

It should be noted that most graph-theoretical indices proposed to date
are not efficient when both acyclic and cycle-containing molecules are con-
sidered in the structure-property study; the connectivity index’” and in some
cases the Wiener index® are exceptions.®1° However, the above finding war-
rants further studies on the detour matrix and the detour index. In this pa-
per we report the extension of the detour matrix to weighted graphs repre-
senting heterosystems.!1@®

The detour matrix A = A(G) of a labeled connected graph G is a real sym-
metric N x N matrix whose (i,j)-entry is the length of the longest path!l®
from vertex i to vertex j. This definition is the »opposite« of the definition
of the traditional graph-theoretical distance matrix, whose off-diagonal en-
tries are the lengths of the shortest paths between the vertices in G.11(©-13
It is obvious from their definitions that the detour matrix and the distance
matrix are identical for trees.

The construction of the detour matrix for larger graphs (molecules) is not
a trivial task. Lukovits® pointed out quite correctly that the usefulness of
the detour index is diminished by the fact that to date no method (but in-
spection) is available to compute this index. However, we have succeeded in
finding a moderately efficient approach to compute the detour matrix and
consequently the detour index of graphs.!* This procedure is later described
and exemplified in the text.

The detour index w is defined in the same way as the Wiener index,15:16
that is, the detour index is equal to the half-sum of the elements of the de-
tour matrix A:3

o=23 3 @), 5
25

The Wiener index W and the detour index o are, of course, identical for
acyclic structures. For polycyclic structures, W and o are not particularly in-
tercorrelated indices. For example, the linear correlation between W and o
(0 = aW + b) for a set of 37 diverse polycyclic graphs has a modest correla-
tion coefficient (r = 0.79), while the exponential relationship between W and
o (o = aW?) produced only a little better correlation between them r =
0.86).! In Figure 1 we give the distance and detour matrices for a bicyclic
graph G and the corresponding Wiener and detour indices.
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Figure 1. The distance matrix D and the detour matrix A of a labeled bicyclic graph
G and the corresponding Wiener index and the detour index.

In the case of of weighted graphs G,, the detour matrix entries (4,); =
[A(Gy,)];; are defined as:

wy;  if i)
@)= (2)

0 if i=j

where w;; is the maximum sum of edge-weights along the path between the
vertices i and j, which is not necessarily the longest possible path between
these two vertices in G, as it would be in terms of just unweighted edges.
Hence, in the case of the weighted detour matrix, the entry (4,,);;is the maxi-
mum path-weight between the vertices i and j in G,,. The distance and de-
tour matrices for an edge-weighted graph G,, and the corresponding Wiener
and detour indices are given in Figure 2.

Our method for computing the detour matrix of a polycyclic graph G, and
consequently the detour index, is based on considering the distance matrices
of the whole set of spanning trees obtained from G by deletion of the appro-
priate edges. The procedure consist of the following steps:

(i) Labeling of a graph G under the consideration.

(ii) Generation of labeled spanning trees from G and the construction
of their distance matrices.
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Figure 2. The distance matrix Dy, and the detour matrix 4, of a labeled weighted
graph Gy, and the corresponding Wiener index and the detour index.

(iii) Setting up the detour matrix of G by matching the distance matrices
of spanning trees and picking up for each element of the detour ma-
trix only that distance matrix element which possesses the highest
numerical value.

A computer program based on this procedure will appear elsewhere. This
procedure for a simple unweighted bicyclic graph G (already shown in Fig-
ure 1) and weighted bicyclic graph G,, is illustrated in Figures 3 and 4.

The characteristic polynomial n(G,,; x) of the detour matrix, called the
detour polynomial,! of a weighted graph G, is defined as:

(Gy,; x) = det IxI—Awl 3)

where I is the N x N unit matrix. The coefficient form of the detour polyno-
mial is given by:

N
Gy %) =2V = D ¢, x"1 4)
n=1
or

HGy; ) = 2N — ¢y N - — oy px — o ©
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(1) Labeled bicyclic graph G

J

a (o

(2) Labeled spanning trees of G
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0 \’_j 4 212101
123210
G,
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410323
DGD= | 5,301
. ) @ 212101
123210
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301212
410123
Ga)=
DGy 521034
212301
123410
014323]]
103212
DGy 430123
Y 1321012
©; ) s 212101
323210
Gy .

Figure 3. The construction of the detour matrix for the simple bicyclic graph G
from Figure 1.
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Figure 3, continued.
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Figure 3, continued.
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o -

014321
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Gs) 341012
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(3) Detour matrix of G

054545
505434
AG) = 450545
545054
434505
545450

Figure 3, continued from pp. 1581-1583.

The coefficients c,, of the detour polynomial of weighted graphs can be
computed wusing the modified Le Verrier-Faddeev-Frame (LVFF)
method. 1113, 17-20 Thig can be done by using the detour matrix A and the
auxiliary matrices C,, (n = 1, 2, ..., N):

L X
Cp=— Z (An)ii (6)

o n=1
@,); = Q); (CY)y (7
(Cpi; = @) — (¢, Dy 9
(Cn)y = @)y — ey Dy; =0 (10)

The procedure starts with the diagonalization of the detour matrix by
means of the Householder-QL method?! and, then, the LVFF method is car-
ried out with 4, and C, matrices in the diagonal form. The procedure ends
when the auxilliary matrix C, becomes the null-matrix. The computation of
the detour polynomial for a weighted graph G,, on five vertices is shown in
Table 1.



DETOUR MATRIX OF WEIGHTED GRAPHS 1585

(2) Labeled weighted spanning trees of Gy,

— -
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Figure 4. The construction of the detour matrix for the simple weighted bicyclic
graph Gy,.
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Figure 4, continued.
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(3) Detour matrix of the weighted bicyclic graph G,

p— —
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14121210 14 0

b -

Figure 4, continued from pp. 1585-1587.

TABLE I

Computation of the detour polynomial of a weighted graph G,, on five vertices
using the modified Le Verrier-Faddeev-Frame method

(1) The detour spectrum of G,

{4.472902898666935e+01, —1.891336860675328e+01, —1.137548047084902¢e+01,
-9.019959525687815e+00, —3.746409753799866e+00, —1.673810629579382e+00}
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TABLE I, continued.

@) 0 =2 @y=0;  @y=W@;
> ‘

(3) [(Cyj;=@A);; — (ciD)izr,. 6=
{4.472902898666935e+01, —1.891336860675328e+01, —1.137548047084902e+01,
—9.019959525687815e+00, —3.746409753799866e+00, —1.673810629579382e+00}
[@Ag)i = @A);; - (Cylie,. 6=
{1.403558604336678e+01, 2.801642023692891e+00, 8.135966984504609e+01,
1.294015559426670e+02, 3.577155120549204e+02, 2.000686034090305e+03}

1
¢y =7 2 (4);; = 1203
i

(4) [(Co);; = A9);; — (coD)iy,. 6=
{~1.278964413956632e+03, —1.290198357976306e+03,
-1.211640330154954e+03, —1.163598444057332e+e3, —9.352844879450788e+02,
7. 076860340903061e+02}

[(A3)u (A)u (C2)u]t—
{4.791524755210062e+03 2.159547725846602e+03, 1.092894673768871e+04,
1.323649137628450e+04, 1.768938027268379e+04, 3.165410913228638e+04}

1
c3=75 2. (Ag);; = 26820
i

() [(Cg);; = A3);; — (csD)i1,. 6=
{-2.202847524478994e+04, —2.466045227415340e+04,
-1.589105326231130e+04, —1.358350862371552e+e4, —9.130619727316220e+03,
4. 834109132286384e+03}
[(A4)u (A)” (C3)lt]l— 3o
{1.5451893707468496+05 1.433366572465972e+05, 1.726907765108247e+05,
8.252769451841983e+04, 2.162250075027603e+05, 4.127692714671288e+04}

cg= i D (A);; = 202644
i
(6) [(C4)u - (A4)u (C4I)]L 1,.
{—4. 812506292531502e+04 -5.930734275340284e+04, ’
—2.995322348917524e+04, —1.201163054815800e+05, 1.358100750276040e+04,
-1.613670728532870e+05}
[@5);; = @);; - (Coyilica,. 6=
{5.474457134653004e+05, 5.349498312117877e+05, 5.665163568112324e+05,
6.074652782591418e+05, 4.500048984465956e+05, 2.700979218059412e+05}

cg = % 2. (Ag);; = 595296
i
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TABLE I, continued.

() [(Cp)y = A5);; — (csDli-q,. 6=
{—4.785028653469921e+04, —6.034616878821229¢+04, —2.877964318876770e+04,
1.216927825914188e+04, —1.452911015534041e+05, —-3.251980781940584e+05}

[Ag);; = (A);; - (Cy);] = {544320, 544320, 544320, 544320, 544320, 544320}

1
06=gz (4¢);; =0

13
(8) The detour polynomial of G,
m(Gy; %) = x° —1293 x* — 26820 x° — 202644 x® — 595296 x — 544320

Acknowledgement. — This work was supported by the Ministry of Science and
Technology of the Republic of Croatia through grants No. 1-07-159 and 1-07-85. We
thank referees for their constructive comments.

REFERENCES

1. D. Ami¢ and N. Trinajstié, Croat. Chem. Acta 68 (1995) 53—62.
. F. Buckley and F. Harary, Distance Matrix in Graphs, Addison-Wesley, Redwood

City, CA, 1990, p. 213.

3. O. Ivanciuc and A. T. Balaban, Comm. Math. Chem. (Miilheim/Ruhr) 30 (1994)
141-152.

4. I. Lukovits, Croat. Chem. Acta, 69 (1996) 873-882.

5. 1. Lukovits, J. Chem. Inf. Comput. Sci. 36 (1996) 65—68.

6. QSPR is an acronym for quantitative structure-property relationships and it ap-
pears that this term has been first used in A. Sablji¢ and N. Trinajstié, Acta
Pharm. 31 (1981) 189-214.

7. M. Randié, J. Am. Chem. Soc. 97 (1975) 6609-6615.

8. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.

9. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Re-
search, Academic Press, New York, 1976, p. 48.

10. I. Lukovits, Reports Mol. Theory 1 (1990) 127-131.

11. N. Trinajsti¢, Chemical Graph Theory, 2nd revised edition, CRC Press, Boca Ra-
ton, FL, 1992, (a) pp. 35-36, (b) p. 10, (c) pp. 52-57, (d) pp. 76-79.

12. F. Harary, Graph Theory, 2nd printing, Addison-Wesley, Reading, MA, 1971, p.
203.

13. Z. Mihali¢, D. Veljan, D. Amié, S. Nikoli¢, D. Plavsié, and N. Trinajstié, J. Math.
Chem. 11 (1992) 223-258.

14. S. Nikoli¢, Z. Mihalié, and N. Trinajstié, in preparation.

15. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.

16. S. Nikolié, N. Trinajstié, and Z. Mihali¢, Croat. Chem. Acta 68 (1995) 105—129.

17. K. Balasubramanian, Theoret. Chim. Acta 65 (1984) 49-58.

[\



DETOUR MATRIX OF WEIGHTED GRAPHS 1591

18. P. K¥ivka, Z. Jeri¢evié, and N. Trinajstié, Int. J. Quantum Chem. Symp. 19 (1986)
129-147.

19. N. Trinajsti¢, JJ. Math. Chem. 2 (1988) 197-215.
20. T. Zivkovié, J. Comput. Chem. 11 (1990) 217-222.
21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Re-

cipes — The Art of Scientific Computing, Cambridge University Press, Cambridge,
1990.

SAZETAK
Matrica zaobilaznosti i indeks zaobilaznosti vaganih grafova
Sonja Nikolié, Nenad Trinajstié, Albin Jurié i Zlatko Mihalié

Razmatrana je matrica zaobilaznosti vaganih grafova i njezine invarijante (po-
linom zaobilaznosti, spektar zaobilaznosti, indeks zaobilaznosti). PredloZena je nova
metoda za sastavljanje matrice zaobilaznih udaljenosti.
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