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Pi-sextet resonance between Kekulé valence structures of ben-
zenoid hydrocarbons are depicted by benzenoid resonance graphs.
We outline the construction of the resonance graphs for families of
benzenoid compounds. For the compounds considered the reso-
nance graphs are built from fused n-dimensional cubes. We report
the leading eigenvalue of the resonance graphs (1) and two differ-
ent bounds to the leading eigenvalue. Correlation between 1 and
RE is examined.

INTRODUCTION

Direct ambitious quantum chemical calculations on large benzenoid hy-
drocarbons are limited by computational restrictions. Even approximate MO
calculations are often limited to systems of intermediate size. For example,
the largest systems for which the MINDO type calculations of Dewar! were
made have some half a dozen fused benzene rings.2 The HMO calculations
were routinely applied to benzenoid hydrocarbons having a dozen fused ben-
zene rings.? However, with the available software even rather modest com-
puters allow the treatement, via the HMO, of benzenoids up to 100 rings,
while more serious computers would go, one could guess, beyond 500 rings.

* Dedicated to the memory of Professor Stanko Boréié.

** Author to whom correspondence should be addressed.
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Nevertheless, if one is interested in more sophisticated approaches, or if one
is interested in systems that would approach properties of a bulk, alterna-
tive approaches have to be developed. It is estimated that the size of system
that will simulate bulk properties is around 10° carbon atoms.*

Graph theory, has made it possible to extend the quantitative examina-
tion of large benzenoid hydrocarbons. Moreover, with suitable parametriza-
tion graph theoretic computational schemes approach SCF MO methods in
their accuracy. The procedure of choice for large benzenoid hydrocarbons is
the Method of Conjugated Circuits.>!2 Conjugated circuits are defined
within individual Kekulé valence structures as those circuits in which there
is a regular alternation of CC single and CC double bonds. In the case of
benzenoid hydrocarbons the conjugated circuits that occur within the set of
Kekulé valence structures are all of the type4n + 2, withn =1, 2, 3, ... .57
The molecular resonance energy (RE) is given as the average weighted con-
tribution of the conjugated circuits per Kekulé valence structure:

RE = (aR; + bRy + cR; + ...)/K.

Here K is the number of Kekulé valence structures for the benzenoid con-
sidered and R;, Ry, Rj, are the empirical parameters that give the relative
contributions of the conjugated circuits of sizes 6, 10, and 14, respectively.
The parameters R;, Ry, R3, were selected to reproduce the RE for smaller
benzenoid hydrocarbons. The contributions from the larger conjugated cir-
cuits are neglected since they are very small. When the following parameters
are used:!°

R, = 0.869 eV
R, = 0.247 eV
R3 = 0.099 eV.

one obtains the molecular RE of benzenoids of satisfactorily quality. The coef-
ficients a, b, ¢ give the number of conjugated circuits of the size 6, 10, and 14,
respectively. In the above scheme the count of the conjugated circuits of size
14 is limited to the minimal set of linearly independent conjugated circuits.

Enumeration of Kekulé Valence Structures

To obtain the molecular RE we need to enumerate conjugated circuits.
For smaller benzenoids enumeration of Kekulé valence structures and the
enumeration of conjugated circuits is straightforward. One first constructs
all Kekulé valence structures and then by brute force finds K, a, b, and c.
An algorithm for a systematic construction of all Kekulé valence structures
has been outlined some time ago.!3
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For larger systems the enumeration of K, and the enumeration of con-
jugated circuits requires an efficient algorithm. Both problems have been
considered in the literature. For K some approaches are applicable to special
families of compounds,!14-16 some are more general.!” For benzenoids K can
also be obtain by computer,!® the number of Kekulé structures being given
as the square root of the determinant of the adjacency matrix. Hence, it can
be obtained from the constant term of the characteristic polynomial.l! Fi-
nally the enumeration of Kekulé valence structures has also been extended
to benzenoid tori.* Some work has also been reported on enumeration of the
so called higher energy Kekulé valence structures, the count of which is
given by the coefficients of the Wheland polynomial’® and the generalized
Wheland polynomial.20-22

Enumeration of Conjugated Circuits

Enumeration of conjugated circuits is more involved. In some cases it is
possible to obtain the count of conjugated circuits using the transfer-matrix
method.?3 The transfer-matrix method may be viewed as a repeated use of
recursions. This method often allows one to consider the limiting case of a
molecule (polymer) when the number of carbon atoms in a system increases
to infinity. Alternatively, it can be applied to a system with some periodicity,
as is the case with buckminsterfullerene. The brute force approach can also
be extended to large systems if they belong to a family of structurally re-
lated benzenoid hydrocarbons. One can then establish regularities in the
pattern of a, b, ¢ for smaller benzenoids, which extend to larger ben-
zenoids.?* Molecules of intermediate complexity (i.e., those having up to
dozen fused benzene rings and at most few hundreds of Kekulé valence
structures) can be generated and examined exhaustively.2*2’ For the very
large benzenoids one can also consider the statistical approach in which one
examines only a sample of Kekulé valence structures in greater detail 282
Rigorous enumerations of conjugated circuits are possible for structurally
related hydrocarbons of increasing size that have a regular repeating
unit.>2 The recursions arising in such calculations were carried out by
computer program that works with integers of any size, in order to avoid er-
rors that may arise by the iterative nature of the calculations.33

There is yet another powerful method for making conjugated-circuit com-
putations. The method is based on the inversion of an antisymmetrically
signed adjacency matrix.3* That the approach is efficient and applies to large
systems is witnessed by being used on a few thousand fullerenes, including
over 1800 fullerenes with 180 carbon atoms.353¢ Equally this approach has
been applied to numerous polymer chains®” as well as a larger number of
2-dimensional lattices®8.
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The enumeration of conjugated circuits in an arbitrary benzenoid of
large size may become computationally intensive, since the system may not
belong to a recognized family of structures. Consider, for example, the ben-
zenoid shown in Figure 1. To which family of benzenoids does it belong? Can

Figure 1. One of the benzenoid hydrocarbons considered in this article.

we derive the count of the conjugated circuits R,, R, and R for this benzenoid
from the information on smaller benzenoids? Which smaller benzenoids
should we consider? Is the exhaustive approach for enumeration of conju-
gated circuits the only available route for such molecules? It appears that
the mentioned technique involving the inversion of an antisymmetrically
signed adjacency matrix may give an answer for benzenoids of an arbitrary
form and size.

Resonance Energy for Large Benzenoids

As discussed recently from the number of Kekulé structures and the
number of the smallest conjugated circuits R;, we can estimate the molecu-
lar RE.32 In this paper we will show how using the benzenoid resonance
graphs we can derive the count of K, and enumerate the smallest R; conju-
gated circuits for large benzenoids. The conjugated circuits R, and R influ-
ence the regression equation of the first eigenvalue of the resonance graphs
against the RE and are therefore indirectly taken into consideration.

The advantage of the present approach which uses the first eigenvalue
of the resonance graph is that it avoids lengthy analysis of a large number
of Kekulé structures. Resonance graphs of large systems can often be de-
rived from the known forms for the resonance graphs of smaller benzenoids
as illustrated in the next section. Moreover, we will show that there is very
good correlation between the first eigenvalue of the resonance graphs and
selected lower bounds for the first eigenvalue that can be derived. The sim-
plest lower bound for the first eigenvalue is given by 2E/V, where E is the
number of edges in the resonance graph and V is the number of vertices.
Hence, one can derive REs of large benzenoid by simply counting the edges
and the vertices of its resonance graph.
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BENZENOID RESONANCE GRAPHS

The resonance graph depict pi-sextet couplings between Kekulé valence
structures. The vertices of the resonance graph represent the Kekulé valence
structures and the edges connect those Kekulé structures in which all CC
double bonds are at the same locations except for the bonds in a single ben-
zene ring. In Figure 2 we illustrate the resonance graph for the nine Kekulé
valence structures of benz[a]pyrene. We start with Kekulé structure 1 and
superimpose it on all the remaining structures as illustrated in Figure 3.
As we see only the combination 1,2 and 1,3 give a structure in which all CC
double bonds remain fixed except for a single benzene ring, a single n-sextet.
Hence vertex 1 belonging to Kekulé structure 1 is connected only to vertices
2 and 3 corresponding to the Kekulé valence structures 2 and 3. Next we re-
peat the process with valence structure 2 to find that it can be comined only
with structure 4 to produce a single n-sextet. We contiue with the rest of the
structures and thus obtain the resonance graph shown at the bottom part

A B
C D IE
F G H T

Figure 2. The nine Kekulé valence structures of benz[a]pyrene and the correspon-
ding resonance.
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Figure 3. The superposition of the first Kekulé valence structures of benz[a]pyrene
(of Figure 2) with the remaining eight valence structures to illustrate the resonance
relationship among Kekulé valence structures that generate the resonance graph.

While the count of the vertices of the resonance graph give K, the sum
of the valences of all the vertices, which equals 2E (E = the number of edges),
gives the count of the smallest conjugated circuits R;.

In Figure 4 we illustrate smaller benzenoids used to construct, via hexa-
gon-fusion, larger benzenoids studied in this report. Figure 5 illustrates their
resonance graphs drawn somewhat arbitrarily but so that the presence of
n-dimensional cubes (n = 1 line segment, n = 2 square,n = 3 cube, n = 4 hy-
per-cube, etc.) is apparent. The resonance graphs for individual families shows
common characteristics that allow construction of the resonance graphs for
still larger members of families of benzenoids. In the top part of Figure 6
we illustrate the construction of the resonance graphs for dibenz[a,clanthra-
cene from the resonance graph of triphenylene. When we augment triphen-
ylene by fusing a benzene ring linearly

0-500

the resonance graph for dibenz dibenz[a,clanthracene is obtained by first
doubling the edges of a square face of the cube. After we drew the copy of
the fragment we then connect the copy of the fragment (here a square face
of the cube) with the »original« fragment in the parent resonance graph. The
resulting graph is the resonance graph of the next member of the family.
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Figure 4. The parent benzenoid hydrocarbons considered in this article. Observe that
several structures apper in more than one family. Hence there is some cross-labeling,
eg.,B1=Ay F| = Az, Fy = Bs, Dy = Gy, ete.
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If we augment triphenylene by fusing a benzene ring angularly:

Bor0- 85
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Figure 5. The resonance graphs for the parent benzenoid hydrocarbons of Figure 3.

the resonance graph for the derived dibenzphenanthrene is constructed by first
doubling the edges of the periphery of the cube that involves the exocyclic edge.
After we drew the square with the pending edge we connect this fragment with
the corresponding vertices same fragment in the parent resonance graph (bot-
tom part of Figure 6). The resonance graphs for the higher members for each
family considered are obtained by repeating the outlined procedure.

One can determine the »face« of the parent resonance graph that has to
be duplicated in order to obtain the resonance graph of the larger benzenoid
without an inspection of the resonance graphs of the smaller benzenoids. We
need only know the parent resonance graph and its Kekulé valence struc-
tures. In order to decide which »face« of the parent graph will be duplicated
we need to know the Pauling bond orders for the parent benzenoid.*? Pauling
bond orders for smaller benzenoids can be obtained as the quotient K'/K,
where K is the number of Kekulé valence structures and K is the number
of the Kekulé valence structures for the subgraph G' obtained from the mo-
lecular graph G of the benzenoid considered by deleting the selected bond
and bonds next to it.** In the case of triphenylene we obtain for the two pe-
ripheral CC bonds of interest the following bond orders:

A
e
L 3
G G' G G'
K=9 K =4 K=9 K =5/9
Bond order 4/9 Bond order 5/9
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D_9

Figure 6. Construction of resonance graph for a larger benzenoid from that of the
parent structure.

If we fuse a benzene ring to the bond with K = 4 we should duplicate the
»face« having four vertices, and if we fuse a benzene ring to the bond with
K’ = 5 we should duplicate the »face« having five vertices. It is not difficult
to see the reason for such choices. All the nine Kekulé valence structures of
triphenylene upon fusion of an additional benzene ring will give rise to a
Kekulé structure for the augmented benzenoid whether the particular site
of fusion is C=C or C-C. However, in addition to these Kekulé structures,
the Kekulé structures which have CC double bonds at the site of fusion give
rise to additional valence structures for the augmented benzenoid. These
Kekulé valence structures are obtained by replacing C=C by a single C-C
bond and two exocyclic C=C bonds.

The Kekulé structure count for the augmented benzenoid is given by
K + 2K, with K + K’ Kekulé valence structures of the first type and K’
Kekulé valence structures of the second type. Hence, K’ new vertices have
to be introduced in the resonance graph of the parent benzenoid hydrocar-
bon to obtain the resonance graph of the augmented benzenoid. Such con-
siderations will often suffice to indicate the »face« of the resonance graph
of the parent benzenoid that need to be duplicated in order to derive the
resonance graphs for the larger system.

RESONANCE GRAPHS OF LARGE BENZENOIDS

In Figure 7 we depict the resonance graphs for the families of the ben-
zenoid hydrocarbons considered here. The resonance graphs are shown only
for the leading members of each family. The resonance graphs of benzenoid
hydrocarbons have very regular structural features. The resonance graphs
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Figure 7. The resonance graphs for families of benzenoid hydrocarbons considered
in this article. Only the graphs for few leading members of each family are shown.

x

are bipartite, and if cyclic their minimal cycles are 4-membered — indeed
every site in a cycle seems to be in at least one 4-cycle. We will refer to such
graphs as augmented n-cubes, since n-cubes arise as their subgraphs. Each
family is defined by a single parent structure and the CC bond selected for
fusion of an additional benzene ring. The higher members of each family are
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obtained by successive linear (i.e., polyacenic) fusion of additional benzene
rings to the last fused benzene of the preceding member in the family. Each
family is characterized by a constant AK, the increment in the number of
Kekulé valence structures. In Table I we list the first eigenvalue (1) of the
derived resonance graphs.

The Lower Bounds for the First Eigenvalue

The resonance graph G has a V x V adjacency matrix, and it is its maxi-
mum eigenvalue A which we seek. Since all its matrix elements are non-
negative so that the Frobenius-Perron theorem (see e.g. Ref. 45), applies to
imply that associated to A there is an eigenvector which is »nodeless«. In-
deed since the adjacency matrix A represents a connected graph G, A also
is irreducible (in the sense that there is no permutation of row and column
indices so as to bring A into reduced or block-diagonal form), and it follows
that A is non-degenerate and the associated eigenvectors are such that all
components may be chosen to be positive. Thence a reasonable ¢ is a column
vector all of whose elements are 1. Then ¢*A¢ = 2F and ¢*¢ = V, so that the
Raleigh quotient for ¢ is

¢$*A¢ _2E
p'¢ V

and 2E/V is a lower bound to A. This bound is essentially just that of the
conjugated 6-circuit count.4647

If one takes a trial vector 8 with i element Vd; with d; the degree of
the i** node of G, then one has

L0PA0_INdd; x
A E E
where the quantity y, = Z\Jdidj is some sort of »inverse« molecular connectiv-

ity index, the usual connectivity index 1y being defined the same*® but with
a summand that is inverse of that of y;.

Another bound is obtained with a columm vector ¥ whose i** element is d;,

2 ',U+A5U_2Edldj
TPy zd?

This bound is generally better than 2E/V, because ¥ = A¢ and application
of A to any trial vector increases the relative weights of the larger eigen-
value eigenvectors. Indeed one could continue with ever higher powers of A,
though for very large systems the evaluation of such bound is more involved.
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TABLE I

The resonance graph characteristics for families of benzenoids considered: The
lower bounds to the first eigenvalue 2E/V (where E is the number of edges and
V the number of vertices of the resonance graph) and 2EE/VV (see text for
symbols), and A (the first eigenvalue)

size 2E/V numerical 7] A

Ay 5x5 10/5 2.0000 2.0909 2.1889
Ay 7x7 16/7 2.2857 2.4500 2.4737
Ag 9x9 22/9 2.4444 2.6207 2.6491
Ay 11x11 28/11 2.5454 2.7105 2.7503
As 13 x 13 34/13 2.6154 2.7660 2.8135
Ag 15x 15 40/15 2.6667 2.8036 2.8556
limit 6/12 = 3.0000 54/8 = 3.0000

B; 7x17 16/7 2.2857 2.4500 2.4737
B, 10x 10 26/10 2.6000 2.8378 2.8536
B3 13 x 13 36/13 2.7692 3.0185 3.0452
B, 16 x 16 46/16 2.8750 3.1127 3.1538
Bs 19x 19 56/19 2.9474 3.1705 3.2209
Bg 22 x 22 66/22 3.0000 3.2095 3.2652
limit 10/3 = 3.3333 116/34 = 3.4118

C, 8x 8 20/8 2.5000 2.6667 2.6762
Cy 11x 11 30/11 2.7273 2.9318 2.9476
Cs 14 x 14 40/14 2.8571 3.0656 3.0957
Cq 17 x 17 50/17 2.9412 3.1410 3.1839
Cs 21 x 21 60/20 3.0000 3.1895 3.2403
Cg 24 x 24 70/23 3.0435 3.2232 3.2784
limit 10/3 = 3.3333 116/34 = 3.4118

D, 6x6 12/6 2.0000 2.1429 2.2361
Dy 9x 9 22/9 2.4444 2.6667 2.7058
Dy 12 x 12 32/12 2.6667 2.9149 2.9594
Dy 15 x 15 42/15 2.8000 3.0469 3.1017
D5 18 x 18 52/18 2.8889 3.1235 3.1873
Dg 21 x 21 62/21 2.9524 3.1735 3.2424
limit 10/3 = 3.3333 116/34 = 3.4118

E,; 9x9 26/9 2.8889 3.0250 3.0455
Eo 13 x 13 42/13 3.2308 3.2500 3.4343
E3 17 x 17 58/17 3.4118 3.4808 3.6285
Ey 21x 21 74/21 3.5238 3.6029 3.7382
Es 25 x 25 90/25 3.6000 3.6786 3.8058
Eg 29 x 29 106/29 3.6552 3.7300 3.8504

limit 16/4 = 4.0000 256/64 = 4.0000
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TABLE I, Cont.
size 2E/V numerical ] A

F, 9x9 22/9 2.4444 2.6207 2.6491
Fy 13 x 13 36/13 2.7692 3.0185 3.0452
Fg 17 x 17 50/17 2.9412 3.2025 3.2427
Fy 21x 21 64/21 3.0476 3.2981 3.3539
Fy 25 x 25 78/25 3.1200 3.3566 3.4224
Fg 29 x 29 92/29 3.1724 3.3961 3.4674
limit 14/4 = 3.5000 180/50 = 3.6000

G; 9x9 22/9 2.4444 2.6667 2.7058
Go 13 x 18 36/13 2.7692 3.0000 3.0333
Gg 17 x 17 50/17 2.9412 3.1772 3.2252
Gy 21 x 21 64/21 3.0476 3.2788 3.3401
Gy 25 x 25 78/25 3.1200 3.3411 3.4123
limit 14/4 = 3.5000 180/50 = 3.6000

H,; 6x6 12/6 2.0000 2.1429 2.2361
H, 11x 11 32/11 2.9091 3.1373 3.1690
Hs 16 x 16 52/16 3.2500 3.5326 3.5646
Hy 21x 21 72/21 3.4286 3.7143 3.7614
H; 26 x 26 92/26 3.5385 3.8103 3.8723
Hg 31x31 112/31 3.6129 3.8698 3.9405
limit 20/5 = 4.0000 338/82 = 4.1220

I; 10 x 10 26/10 2.6000 2.8378 2.8536
Iy 19x 19 68/19 3.5789 3.8140 3.8373
I3 28 x 28 110/28 3.9286 4.2096 4.2466
Iy 37 x 37 152/37 4.1081 4.3891 4.4485
Iy 46 x 46 194/46 42174 4.5271 4.5617
Ig 55 x 55 236/55 4.2909 4.5790 4.6311
limit 42/9 = 4.6667 480/200 = 4.8000

Ji 13 x 13 40/13 3.0769 3.1212 3.3175
Jy 22 x 22 82/22 3.7273 3.9689 3.9903
Js 31x 31 124/31 4.0000 4.0881 4.3136
Jdy 40 x40 166/40 4.1500 4.2853 4.4836
Js 49 x 49 208/49 4.2449 4.3970 4.5823
Jg 58 x 58 250/58 4.3103 4.4688 4.6442
limit 42/9 = 4.6667 480/200 = 4.8000

K; 9x9 22/9 2.4444 2.6667 2.7028
K, 17 x 17 58/17 3.4118 3.6604 3.6864
K3 25 x 25 94/25 3.7600 4.0635 4.0949
Ky 33 x 33 130/33 3.9394 4.2426 4.2966
Ky 41 x 41 166/41 4.0488 4.3380 4.4097
Kg 49 x 49 202/49 4.1224 4.3973 4.4791
limit 36/8 = 4.5000 386/166 = 4.6506
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TABLE I, Cont.
size 2E/V numerical 0 A
L 14 x 14 42/14 3.0000 3.1387 3.3237
Lo 27 x 27 108/27 4.0000 4.2795 4.3198
L3 40 x 40 174/40 4.3500 4.6384 4.7327
Ly 53 x 53 240/53 4.5283 4.8727 4.9361
Ls 66 x 66 306/66 4.6364 4.9289 5.0499
Lg 79x 79 372/79 4.7089 4.9924 5.1196
limit 66/13 = 5.0769 906/344 = 5.2647

In Table I we list for all the 65 benzenoids considered the lower bound
2E/V and the bound 2 2 dd; / £ d? which we will abbreviate as 2EE/VV.
The latter bound, as we see from Table I is considerably better than 2E/V,
even though in a few cases the two bounds have the same limit. For such
cases as N increases the distinction between the two bounds becomes less
important.

Since the vector whose elements are given by d; can be obtained by mul-
tiplying A with a vector with all entries equal one, we can view this bound
as derived from the matrix A2 applied to the vector with all entries equal
one. Still better bounds would follow if we consider higher powers of the ad-
jacency matrix A" applied to the vector with all entries equal one. However,
as we will see, the two bounds here considered, 2E/V and 2EE /VV, respec-
tively, correlate equally well with A and RE, so there is no incentive to search
for better bounds for the first eigenvalue. A justification for the use of the
simple bounds instead of 1 in regressions for RE is that they elminate the
need to diagonalize large matrices.

For special cases, like polyphenanthrenes (angularly fused benzene
rings) there is some analytic work on the maximum eigenvalue 1 of such
resonance graphs.*® Indeed, the »graph« there (represented as an adjacency
matrix, identified as a Hamiltonian matrix) is allowed to have a second set
of edges corresponding to changes around conjugated 10-circuits. The two
type of edges are given different weights (R, and R,), and exact analytic re-
sults are obtained for R,/ R, = 1/+8, though approximate but very good (size-
consistent) bounds for A are obtained otherwise.

Correlations of A and Its Lower Bounds

A good correlation between 1 and 2E/V would allow one to obtain RE
without knowing A. In Figure 8 we show the linear regression between A and
2E/Vand in Figure 9 we show the linear regression between A and 2EE/VV.
The regression coefficients and the standard errors for the two regressions
arer = 0.9984, r = 0.9975 and s = 0.0406, s = 0.0503, respectively. The cor-
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Figure 8. The correlation between the first eigenvalue A and 2E/V for the

65 compounds of Table I.
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Figure 9. The correlation between the first eigenvalue A and 2EE/VV for the

65 compounds of Table I.

responding Fisher ratios are: F = 19,112 and F = 12,404 respectively. Hence,
both regressions are of very high quality with the regression involving 2E/V
being slightly superior. This is somewhat surprising, even paradoxical, since
2EE/VV is a considerably better lower bound for 1. The reason for this un-
expected behaviour is not quite clear. In Figure 10 in which we depicted the
residuals for the two regressions we can discern different behavior of differ-
ent families of the benzenoids. What will happen when individual families
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Figure 10. The residuals of the correlations in Figure 8 and Figure 9. One can dis-
cern different behaviors of the residuals for different families of the benzenoids.

of benzenoids are considered separately? Will the residuals then better re-
flect the distinction between different lower bounds?

In Table II we re-examined the benzenoids of the first family. We con-
sidered higher members of this family of benzenoids involving molecules
having up to 15 fused benzene rings. Again, however, we see the paradoxical
situation in which the better lower bound 2EE /VV has somewhat worse cor-
relation statistics than the bound 2E/V, which is not as close to A.

BENZENOID RESONANCE ENERGIES

In Table III we list the expressions for the resonance energies of the 72
benzenoids listed in Table I (There are only 65 different molecules among
the 12 families listed). The calculated resonance energies are given in eV,
and are based on somewhat revised values for R;, R, and R;. We decided to
include in the enumeration of conjugated circuits all conjugated circuits of
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TABLE II

Tllustration of the convergence of the lower bounds 2E/V and 2EE/VV for the
first family of the benzenoids (phenanthrene, benzanthracene, ...)

2E/V numerical 0 A

Ay 10/5 2.0000 2.0909 2.1358
Ag 16/7 2.2857 2.4500 2.4737
Ag 22/9 2.4444 2.6207 2.6491
Ay 28/11 2.5454 2.7105 2.7503
Aj 34/13 2.6154 2.7660 2.8135
Ag 40/15 2.6667 2.8036 2.8556
Aq 46/17 2.7059 2.8308 2.8849
Ag 52/19 2.7368 2.8514 2.9061
Ag 58/21 2.7619 2.8675 2.9220
Ao 64/23 2.7826 2.8804 2.9342
Apy 70/25 2.8000 2.8911 2.9437
Aq9 76/27 2.8148 2.9000 2.9513
Aqs 82/29 2.8276 2.9076 2.9575
Ay 88/31 2.8387 2.9141 2.9626
Ais 94/33 2.8485 2.9198 2.9668
limit 6/2 = 3.0000 54/18 = 3.0000 ?

size 14. As mentioned earlier in most applications of the Conjugated Circuit
Method only linearly independent conjugated circuits were considered. How-
ever, as recently discussed,*! a more consistent procedure requires use of all
conjugated circuits. In large benzenoids the number of linearly dependent
conjugated circuits of size 14, that are usually ignored, can be large. For ex-
ample, in benzo[s]picene (the compound J, in Figure 4.) there are only nine
linearly independent conjugated circuits R but the number of all conjugated
circuits of size 14 is twice that number.

We used the following values for the parameters required to evaluate RE:

R, =0.822 eV
R, = 0.3355 eV
Ry =0.058 eV

These values were based on the best linear fit of RE for selected twenty
smaller benzenoids.’® The values can be compared to the values usually
adopted in the calculation of RE: R; = 0.869 eV; Ry = 0.247 eV; and B3 = 0.099
eV recommended in the literature.l® As we see when all conjugated circuits
of size 14 are included their individual contributuion was reduced almost to
half of the previous value, but that should not be surprising because in many
molecules the number of R, conjugated circuits doubles. We also see slightly



1656 M. RANDIG ET AL.

TABLE III
The expressions for the resonance energy and calculated RE for the benzenoids
of Table I

Resonance Energy RE/eV REPE
Ay (10 Ry +4 Ry + 2 Ry)/5 1.936 0.1383
Ay (16 Ry + 8 Ry + 4 R3)/7 2.295 0.1275
Ag (22 Ry + 12 Ry + 8 Rg)9 2.508 0.1140
Ay (28 R; + 16 Ry + 12 Rg)/11 2.644 0.1017
Ay (34 R; + 20 Ry + 16 Rg)/13 2.737 0.0912
Ag (40 Ry + 24 Ry + 20 Ry)/15 2.806 0.0825
B, (16 Ry + 8 Ry + 4 Ry)/7 2.295 0.1275
By (26 R; + 16 Ry + 6 Ry)/10 2.709 0.1231
B3 (36 Ry + 24 Ry + 12 Rg)/13 2.949 0.113
By (46 R; + 32 Ry + 18 R3)/16 3.100 0.1033
Bs (56 Ry + 40 Ry + 24 R3)/19 3.202 0.094
Bg (66 R; + 48 Ry + 30 Rg)/22 3.277 0.0862
Cq (20 R; + 10 Ry + 4 R3)/8 2.503 0.1391
Cy (30 R; + 18 Ry + 8 Ry)/11 2.833 0.1288
Cs (40 Ry + 26 Ry + 14 R3)/14 3.030 0.1165
Cy (50 Ry + 34 Ry + 20 Ry)/17 3.157 0.1052
Cs (60 Ry + 42 Ry + 26 R3)/20 3.246 0.0955
Cg (70 Ry + 50 Ry + 32 R3)/23 3.312 0.0872
D, (12 R; + 8 Ry + 4 R3)/6 2.130 0.1331
Dy " (22R; + 14 Ry + 8 Rg)/9 2.583 0.1291
Dg (32 Ry + 22 Ry + 12 Rg)/12 2.865 0.1194
D, (42 R; + 30 Ry + 18 Rg)/15 3.042 0.1087
Ds (52 R; + 38 Ry + 24 R3)/18 3.160 0.9876
Dg (62 Ry + 46 Ry + 30 R3)/21 3.245 0.0901
E; (26 Ry + 6 Ry + 6 R3)/9 2.637 0.1465
E, (42 R; + 14 Ry + 8 Rg)/13 3.053 0.1388
E3 (58 Ry + 22 Ry + 16 Rg)/17 3.293 0.1267
Ey (174 Ry + 30 Ry + 24 Ry)/21 3.442 0.1147
Ej (90 R; + 38 Ry + 32 Rg)/25 3.543 0.1042
Eg (106 R; + 46 Ry + 40 R3)/29 3.617 0.0952
F, (22 R; + 12 Ry + 8 Rg)/9 2.508 0.1140
Fy (36 Ry + 24 Ry + 12 Ry)/13 2.949 0.1134
Fy (50 R; + 36 Ry + 22 R3)/17 3.203 0.1068
Fy (64 R; + 48 Ry + 32 Rg)/21 3.360 0.0988
F5 (78 R; + 60 Ry + 42 R3)/25 3.467 0.0912
Fg (92 R; + 72 Ry + 52 R3)/29 3.545 0.0844
G (22 R; + 14 Ry + 8 Rg)/9 2.583 0.1291
Gy (36 Ry + 24 Ry + 12 Rg)/13 2.949 0.1229
Gg (50 Ry + 34 Ry + 24 R3)/17 3.171 0.1132

Gy (64 R; + 44 Ry + 34 Ry)/21 3.302 0.1032
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Resonance Energy RE/eV REPE
Gs (78 R; + 54 Ry + 44 Ry)/25 3.391 0.0942
Gg (92 R; + 64 Ry + 54 R3)/29 3.456 0.0864
H, (12 R; + 8 Ry + 4 R3)/6 2.130 0.1331
H, (32 R; + 14 Ry + 12 Ry)/11 2.882 0.1441
Hj (62 Ry + 28 Ry + 14 Ry)/16 3.309 0.1379
H, (72 R; + 42 Ry + 26 Ry)/21 3.561 0.1272
H; (92 R; + 56 Ry + 38 R3)/26 3.716 0.1161
Hg (112 Ry + 70 Ry + 50 Rg)/31 3.821 0.1061
I; (26 R; + 16 Ry + 6 R3)/10 2.709 0.1231
Ip (68 R; + 30 Ry + 10 R3)/19 3.502 0.1347
I3 (110 Ry + 60 Ry + 12 R3)/28 3.973 0.1324
I, (152 Ry + 90 Ry + 30 R3)/37 4.240 0.1247
I5 (194 Ry + 120 Ry + 48 R3)/46 4.402 0.1159
Ig (236 Ry + 150 Ry + 66 R3)/55 4.512 0.1074
Jy (40 R; + 20 Ry + 10 R3)/13 3.090 0.1405
Jy (82 R; + 40 Ry + 18 Ry)/22 3.721 0.1431
J3 (124 Ry + 70 Ry + 26 R3)/31 4.094 0.1365
Jy (166 Ry + 100 Ry + 34 R3)/40 4.299 0.1265
Js (208 Ry + 130 Ry + 42 R3)/49 4.429 0.1166
Jg (250 R; + 160 Ry + 50 Rg)/58 4.519 0.1076
K; (22 R; + 14 Ry + 8 R3)/9 2.583 0.1291
Ko (58 R; + 26 Ry + 16 Ry)/17 3.372 0.1405
Kg (94 R; + 52 Ry + 22 Ry)/25 3.840 0.1371
Ky (130 R; + 78 Ry + 42 R3)/33 4.105 0.1283
Ks (166 Ry + 104 Ry + 62 Rg)/41 4.267 0.1185
Kg (202 Ry + 130 Ry + 82 Ry)/49 4.376 0.1094
L, (42 R; + 24 Ry + 16 Ry)/14 3.107 0.1295
L, (108 Ry + 46 Ry + 430 R3)/27 3.924 0.1401
L (174 Ry + 92 Ry + 42 R3)/40 4.408 0.1378
Ly (1240 R; + 138 Ry + 78 Rg)/53 4.681 0.1300
Ls (306 R; + 184 Ry + 114 R3)/66 4.847 0.1212
Lg (372 Ry + 230 Ry + 150 Ry)/79 4.958 0.1127

reduced contributions of R, and somewhat increased contributions of R,. Al-
though numerically the two sets of parameters differ for most molecules the
numerical values for the resonance energies have changed very little. For ex-
ample, in the case of benzo[g]picene instead of 3.854 eV we now have the
value 3.721 eV, the difference being within the standard error of the regres-

sion used to derive the parameters for R, R, and R,.
In Figure 11. we show the regression of RE against 1. The linear regres-

sion is given by:

RE = 0.9471 1 + 0.0388
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with r (coefficient of correlation) = 0.9865; s (standard error of estimate) =
0.1113 and F (Fisher ratio) = 2288. Again one can discern the presence of
separate clusters on points belonging to different families suggesting that a
better regression can be developed when individual families are considered
separately.

The corresponding regression using instead of A the descriptors 2E/V
and 2EE /VV, respectively, gives the following:

RE = 1.0078 (2E/V) + 0.1057
with r = 0.9804; s = 0.1338 and F = 1563 and

RE = 0.9700 (2EE/VV) + 0.0266

with r = 0.9852; s = 0.1165 and F = 2080. We see that both regressions are
quite satisfactory, with the one using 2EE/VV being slightly better.

~
w -
>
o
(-]

eig

Figure 11. Linear regression of the resonance energy against the first eigenvalue of
the resonance graph for the 65 structures considered.

CONCLUDING REMARKS

We have shown that the molecular resonance graphs, which only reflect
the relationship between the smallest conjugated circuits (R;), allow one to
derive the RE for large graphs either through using the first eigenvalue of
such graphs or alternatively by using information on lower bounds of A, such
as the number of vertices and edges. So derived RE provides very good es-
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timate of the molecular stability as it indirectly (through the correlation of
A with RE for selected smaller benzenoids) also includes contributions of the
higher conjugated circuits R, and Rg.
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SAZETAK
Rezonancija u velikim benzenoidnim ugljikovodicima

Milan Randié, Douglas J. Klein, Sherif El-Basil i Patricia Calkins

Rezonancija pi-seksteta izmedu Kekuléovih valentnih struktura benzenoidnih

ugljikovodika prikazana je benzenoidnim rezonantnim grafom. Opisana je izrada re-
zonantnog grafa za skupinu benzenoidnih spojeva. Za razmatrane spojeve rezonan-
tni grafovi izgradeni su iz spojenih n-dimenzijskih kocki. Prikazana je glavna vla-
stita vrijednost grafa (1) i dvije granice za glavnu vlastitu vrijednost. Prou¢avana je
korelacija izmedu A i RE.
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