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The concept of topological chirality is traced from its historic ori-
gins to its present-day connection to chemistry. In contrast to geo-
metrical chirality, the topological chirality of molecules depends on
models of bonding and is not directly tied to experimentally observ-
able chirality phenomena. Nevertheless, studies dealing with the
topological chirality and achirality of molecular graphs have played
a significant role in an area where chemistry and topology intersect.

»Insofern sich die Sitze der Mathematik
auf die Wirklichkeit beziehen, sind sie
nicht sicher, und insofern sie sicher
sind, beziehen sie sich nicht auf die
Wirklichkeit«.

Albert Einstein (1921)!

~ Nearly four decades ago I spent a sabbatical year in Vlado Prelog's labo-
ratory at the ETH. It was a memorable period for me, thanks in no small
measure to the many hours of lively discussions with my host, whose
thought-provoking disquisitions were invariably embellished by witty and
pointedly apposite anecdotes. On the occasion of his 80th birthday, when I
was honored as the first Prelog Medalist, I had the pleasure of dedicating
a paper to my old friend and mentor. Now, ten years later, it is once again
my privilege to dedicate a paper to a distinguished scientist and an inspiring
teacher.

* Dedicated to Professor Vladimir Prelog on the occasion of his 90th birthday.
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TOPOLOGICAL CHIRALITY AND ACHIRALITY

Herschel's finding, in 18222 that there exists a causal relationship be-
tween the handedness of hemihedral quartz crystals and their sense of op-
tical rotation, together with concurrent studies by Biot and Fresnel, had pre-
pared the ground for Pasteur's momentous discovery, in 1848,% that
crystalline hemihedry and optical rotation are similarly correlated in the
tartrates. This discovery, which led to Pasteur's insight that the optical ac-
tivity of tartaric acid is a manifestation of »dissymétrie moléculaire«,* marks
the beginning of modern stereochemistry.

That same year, 1848, also saw the publication of a groundbreaking pa-
per by Listing,? a contemporary of Gauss at Gottingen. In this paper, Listing
laid the basis for a new branch of mathematics that he called »Topologie«:

Unter der Topologie soll also die Lehre von den modalen Verhiltnissen
raumlicher Gebilde verstanden werden, oder von den Gesetzen des
Zusammenhangs, der gegenseitigen Lage und der Aufeinanderfolge von
Punkten, Linien, Flachen, Kérpern und ihren Theilen oder ihren Ag-
gregaten im Raume, abgesehen von den Mass- und Grissenverhiiltnissen.

The knottings and linkings of threads come under the heading of this
new subject, and in that connection Listing pointed out that trefoil knots ex-
ist in two and only two distinct types, individual presentations of which
(Figure 1) are related by a »Perversion«, the term that he used for reflection
through a plane. Listing further noted that these two knot types cannot be
transformed into one another by continuous deformations. It was not until
66 years later, after further developments in combinatorial topology, that
this empirical observation could be backed by a rigorous mathematical
proof.’

The property described above for the trefoil knot is now called topological
chirality. A construction, such as a knot, link (catenane), or graph, is said
to be topologically chiral if and only if it cannot be converted into its mirror
image by a continuous deformation in 3-space; otherwise it is topologically
achiral. Proof of an object's topological chirality is generally hard to come
by. Thus, »there is no known [general] algorithm for deciding whether or not
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Figure 1.
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a given graph is topologically chiral«,” even though this is possible in some
particular cases. In the case of knots and links, what is required for proof
of topological chirality is a knot (or link) »invariant«, i.e., a mathematical
object that can be unambiguously associated with individual knot or link
types, independent of any particular presentation or diagram. The first in-
variant capable of distinguishing between enantiomorphs, a »skein polyno-
mial«, was discovered only as recently as 1985,° and more powerful skein
polynomials have subsequently been developed by others.”!? Nevertheless,
even though these polynomials are normally capable of detecting topological
chirality, none of them is infallible. The cause for their failure, as in the case
of the classic chiral knot 9, and of numerous chiral 10- and 12-crossing
knots,™ is still unknown.

By the same token, skein polynomials cannot be totally relied upon for
proofs of topological achirality. Fortunately, however, there is a way out: by
definition, all that is required to prove that an object such as a knot, link,
or graph is topologically achiral is a demonstration that the object can be
converted into its own mirror image by continuous deformation. An empiri-
cal proof of achirality can therefore be achieved simply by, say, manipulating
a piece of string or wire in the form of a knot. No mathematical skill what-
ever is required, only patience, the ability to recognize mirror-image rela-
tionships, and a fair amount of luck. Of course, failure to convert a chiral
presentation into its mirror image by this trial-and-error method is inadmis-
sible as evidence for topological chirality, since it can never be proven that
all possible conversion paths have been explored.

As an example of this method of proof, consider the figure-eight knot
(Figure 2). A chiral presentation of this knot can be converted into its mirror
Image in two ways: either by reflection through the plane of projection, a
physically impossible but mathematically realizable transformation that
switches all over- and undercrossings in the enantiomorphous diagrams, or
by the physically feasible transformation of continuous deformation, as il-
lustrated in Figure 2a. It follows that the figure-eight knot must be topologi-
cally achiral.

The figure-eight knot belongs to a class of knots that can attain presen-
tations with S,, symmetry.!? Presentations with achiral symmetries are
called »rigidly achiral«'® Rigid achirality is synonymous with geometrical
achirality, and suffices as proof of topological achirality in knots, links, and
graphs. The S, presentation of the figure-eight knot can be converted into
its mirror image in two ways: either by reflection through the plane of pro-
Jection, which switches all over- and undercrossings in the diagram, or by
a 90° rotation about the C, axis, as illustrated in Figure 2b. A rotation is
merely a special type of continuous deformation, one that corresponds to an
isometry. Isometries are transformations on rigid bodies in which the dis-
tances that separate any two points within the body remain invariant. They



488 K. MISLOW

(b)

Figure 2.

are of two kinds: translation and rotation (the first kind), and reflection, or
reflection combined with translation or rotation (the second kind). Two ob-
jects are isometric if they can be rendered congruent by an isometry. We saw
that congruence of the S, presentation and its mirror image can be achieved
by either kind of isometry, but only the rotation in Figure 2b, which is an
isometry of the first kind, qualifies as a continuous deformation.

There are also topologically achiral knots, links, and graphs that cannot
attain rigidly achiral presentations. For objects in this class, interconversion
of enantiomorphous presentations by continuous deformation, as exempli-
fied for the knot 8,; in Figure 3, cannot proceed by way of a rigidly achiral
state.!® Consequently, failure to convert a chiral presentation of such an ob-
ject into its mirror image by the manipulation of strings and the like means,
given the fallibility of skein polynomials, that it may be impossible in cer-
tain cases to determine with complete certainty whether an object is
topologically chiral or not.
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GEOMETRICAL CHIRALITY AND ACHIRALITY

The definition of »chiral« made its first appearance in a footnote of a lec-
ture entitled »The Molecular Tactics of a Crystal« that Sir William Thomson,
who had become Lord Kelvin the year before, delivered to the Oxford Uni-
versity Junior Scientific Club on May 16, 1893.1* Later reprinted verbatim
as Appendix H of Kelvin's »Baltimore Lectures«,'® the famous footnote reads:

I call any geometrical figure, or group of points, chiral, and say that
it has chirality, if its image in a plane mirror, ideally realized, cannot
be brought to coincide with itself. Two equal and similar right hands
are homochirally similar. Equal and similar right and left hands are
heterochirally similar or »allochirally« similar (but heterochirally is
better). These are also called »enantiomorphs«, after a usage intro-
duced, I believe, by German writers. Any chiral object and its image
in a plane mirror are heterochirally similar.

The »Baltimore Lectures« were delivered at Johns Hopkins University
in October of 1884, well before the lecture to the Oxford University Junior
Scientific Club. A careful examination of the record shows, however, that the
term »chiral« was not used in any of them at the time.1®
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From the context of the above quotation, »similar« may be taken to have
the same meaning as »congruent«. Kelvin's words thus imply that the only
allowed transformations are isometries. In accord with this definition of geo-
metrical chirality, Prelog, in his Nobel Lecture,'” provided the following defi-
nition:

An object is chiral if it cannot be brought into congruence with its mir-
ror image by translation and rotation. Such objects are devoid of sym-
metry elements which include reflection: mirror planes, inversion cen-
ters, or improper rotational axes.

Geometrical chirality (also called »Euclidean chirality«)'® may thus be
defined in group-theoretical terms: an object is chiral or achiral depending
on whether its full symmetry group is chiral or achiral.l®

The relationship between geometrical and topological chirality and achi-
rality may be illustrated with reference to the knots in Figures 1-3. All the
presentations of a topologically chiral object, such as the trefoil knot in Fig-
ure 1, are necessarily also geometrically chiral. The presentations of a
topologically achiral object are either all geometrically chiral (e.g. the knot
817 in Figure 3) or some are geometrically chiral while others are geomet-
rically achiral (e.g. the figure-eight knot in Figure 2). Geometrically chiral
objects are either topologically chiral (e.g. the trefoil knot) or achiral (e.g. the
figure-eight and 8,; knots). Geometrically achiral objects are necessarily also
topologically achiral. Similar relationships obtain for links and graphs.

In the course of studying some symmetry properties of topologically achi-
ral knots,'® we discovered that the definitions of geometrical and topological
chirality (or of their conceptual equivalents) were, by a curious coincidence,
enunciated at approximately the same time and place! The story is as fol-
lows.

On February 17, 1873, twenty years before his lecture to the Oxford Uni-
versity Junior Scientific Club in which he defined »chiral« and »chirality«,
Thomson read a lecture to the Royal Society of Edinburgh entitled »Note on
Homocheiral and Heterocheiral Similarity«2° Unfortunately, because the
text of the lecture was never published, all that we are left with is the title.
Evidently, after an interval of two decades, Thomson/Kelvin had decided to
streamline these terms by dropping the »e« in »cheiral«, even though the
original spelling was a more faithful transliteration of yzip. As it happens,
however, a related term, »amphicheirals, is still current in the mathematical
literature, its original spelling intact. This term, which is synonymous with
»topologically achiral in 3-space«, was introduced and defined in 1877 by the
Scottish physicist Peter Guthrie Tait.?! Tait, the Professor of Natural Phi-
losophy in the University of Edinburgh, was the foremost pioneer of what
we might call empirical knot theory, to distinguish it from the mathemati-
cally rigorous discipline that it is today. Significantly, Thomson, who was the
Professor of Natural Philosophy in the neighboring University of Glasgow,
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was a close colleague of Tait, whose work on knots was stimulated by Thom-
son's theory of vortex atoms.?” »Homocheiral« and »heterocheiral«, which
Kelvin later defined (after purging the »e«) with reference to geometrical chi-
rality, and »amphicheiral«, which Tait defined with reference to topological
chirality, are therefore contemporaneous coinages of Scottish provenance, all
dating from the same period, around 1872-77.

In light of these findings, there is little doubt that »cheiral« and »chei-
rality« were the original spellings of these terms.

SYMMETRY OF STATIC AND DYNAMIC MOLECULAR MODELS

The abstract mathematical objects discussed above may be used as mod-
els of molecular structures. The former are intangible constructs that exist
entirely within our imagination, whereas molecules or their ensembles are
concrete entities that exist entirely within the realm of our experience. Nev-
ertheless, a connection can be made. The classic example is the conjunction
of axiomatic (mathematical) and practical (physical) geometry, which Ein-
stein formulated as follows:!

Feste Korper verhalten sich beziiglich ihrer Lagerungsmaéglichkeiten
wie Kérper der euklidischen Geometrie von drei Dimensionen; dann er-
halten die Satze der euklidischen Geometrie Aussagen iiber das Ver-
halten praktisch starrer Kdrper.

The construction of a model requires a process of abstraction and ideali-
zation in which nonessential features are deliberately discarded; as a result,
the model summarizes selected aspects of the system and suppresses, or
even falsifies, others.?? To exemplify this process of idealization, it may be
useful to recall that although no two hands are strictly enantiomorphous or
congruent (as any fingerprint expert will attest), one can still classify hands
by their gross, inexact, but intuitively obvious symmetry-related properties:
right hands are »alike« in the sense that they can shake each other, while
left hands fail this test with right hands. A model of handshaking that at-
tributes congruence, i.e., homochirality,* to all right hands is thus a faithful
one for this particular purpose, even though false to fact.

Because the concept of symmetry and chirality in chemistry has a well-
defined meaning only in relation to experiment,'® each structural model
must be chosen appropriately to match a particular set of observations. In
many types of observations, for example in the determination of X-ray struc-
tures, the molecule is approximated as a rigid body and is represented by
a geometrical figure, the static model. Most commonly this takes flesh as
an iconic model®® of the familiar ball-and-stick or space-filling variety. Of
course, even supposedly rigid molecules are far from that: their atoms vi-
brate about time-averaged positions. Nevertheless, the choice of a static
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model under the rigid-body approximation is reasonable because a rigid
molecule occupies only a single minimum on the potential-energy hypersur-
face.

The symmetry of a static model (and, by implication, of the molecule that
it represents) is given by its point group. Well before the advent of structural
theory and the asymmetric carbon atom of van't Hoff, Pasteur?! first dis-
cussed a static molecular model with reference to its chirality :

Les atomes de l'acide [tartrique] droit sont-ils groupés suivant les
spires d'une hélice dextrorsum, ou placés aux sommets d'un tétraédre
irrégulier, ou disposés suivant tel ou tel assemblage dissymétrique
déterminé? Nous ne saurions répondre a ces questions. Mais ce qui ne
peut étre l'objet d'un doute, c'est qu'il y a groupement des atomes sui-
vant un ordre dissymétrique a image non superposable. Ce qui n'est
pas moins certain, c'est que les atomes de l'acide gauche réalisent
précisément le groupement dissymétrique inverse de celui-ci.

More recent examples of static models in which chirality plays a central
role are Prelog's stereomodel, on which the Cahn-Ingold-Prelog (CIP) system
of stereochemical nomenclature is based,?® and Ruch's model, developed in
connection with his general theory of chirality products,'®?% in which n li-
gands are partitioned among the n sites of an achiral permutation skeleton.

The rigid-body approximation becomes inappropriate in dealing with
nonrigid, i.e., flexible or fluxional, molecules because a nonrigid molecule oc-
cupies more than one minimum, with the various minima separated by low-
energy barriers. Under these conditions a dynamic model is required.?® As
an example, consider the proton-decoupled "F-NMR spectrum of cis-1,2-di-
fluorocyclohexane. At room temperature, only a single resonance line is ob-
served, and the molecule behaves as if it had a plane of symmetry. It is
therefore faithfully represented by a model with achiral (C,) symmetry. One
may, if one chooses, refer to a time-averaged structure at the fast inversion
limit that results from the rapid interconversion of enantiomeric structures,
but all one really needs to know is that the observation (in the absence of
accidental isochrony) does not demand a model of lower symmetry. Because
cyclohexane behaves at room temperature as if it had Dy, instead of Dy,
symmetry,?” what is actually observed is the physical manifestation of a
symmetry higher than the »true« (i.e., static) one. To the objection that
knowledge of structural chemistry demands an asymmetric model for cis-
1,2-difluorocyclohexane, in which one fluorine atom is axial while the other
1s equatorial, the response is that the failure to observe more than a single
resonance line is merely the result of the particular conditions of observa-
tion: lower the temperature sufficiently, and the multiplet predicted by the
static (i.e., asymmetric) model at the slow exchange limit will be observed.
We thus have two faithful representations for the same chemical system,
one chiral and the other achiral, and which one applies depends on the par-
ticular conditions of measurement.
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In the preceding example, one can at least conceive of a C -symmetric
structure for cis-1,2-difluorocyclohexane and of a Dg,-symmetric structure
for cyclohexane within the conformational spaces of these two molecules. Yet
there are cases in which the symmetry of a nonrigid molecule on the fast-
exchange time scale cannot be portrayed by the point-group formalism. The
classic example is that of freely rotating ethane, whose dynamic symmetry
is given by a permutation-inversion group® of order 36 that is isomorphic
to the direct-product group D3 x Dy but not isomorphic to the point group
of any conceivable conformation of ethane, or indeed to any point group at
all! In such a case, establishment of chirality or achirality of the model is
far from straightforward. As an example, consider a compound of the type
4-[(R)-Cabc]-4-[(S)-Cabc]-2,2',6,6'-tetra-R-biphenyl, such as (=)-menthyl (+)-men-
thyl 2,2',6,6'-tetranitro-4,4'-diphenate, in which conformational racemization
cannot proceed via an achiral intermediate (Figure 4).2° If the four blocking
groups (R) in the 2,2',6,6-positions are large enough, so that the two ben-
zene rings cannot become coplanar, the molecule is asymmetric in all real-
izable conformations and the compound exists as a mixture of transient dI-
pairs. However, these dl-pairs can interconvert by torsion around the bonds
to -Cabe; for example, either one of the two enantiomorphous conformations
in Figure 4 (related by the mirror line m ) can convert into the other by a
90° twist of the biphenyl moiety (or, equivalently, of the two -Cabc end
groups) in either direction. Like cis-1,2-difluorocyclohexane, this molecule is
»chemically achiral«®® because each momentary geometry of the molecule
can be superposed on its mirror image by a combination of the rotations,
translations, and intramolecular motions that can occur under the given

NO,

Figure 4.
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conditions of observation. In contrast to cis-1,2-difluorocyclohexane, how-
ever, there is no realizable achiral structure within the conformational space
of the biphenyl, whose dynamic symmetry cannot be expressed by any point
group but only by supergroups patterned after the molecular symmetry
group of Longuet Higgins,?® such as Ugi's »chemical identity group«®° or
Giinthard's »isometric group«.®' Although the dynamic symmetry of the
biphenyl is isomorphic to the point group S,, which expresses the chemical
achirality of the molecule, no conceivable conformation of the molecule be-
longs to this point group.

In short, regardless of whether the model is static or dynamic, chemical
chirality or achirality is determined by geometrical transformations
(isometries) combined with intramolecular motions (if any). The symmetry
of the system is then given by a point group or by a supergroup.

TOPOLOGICAL MODELS OF MOLECULES

The models discussed in the preceding section all adhere to what might
be called »essential shape conservation«. That is, bond distances and angles
in such models remain within reasonable limits, while intramolecular defor-
mations (mainly of torsion angles) are limited to those that are energetically
feasible. Thus, a molecule is chemically achiral if its geometrical structure
can be deformed to that of its mirror image by way of realizable molecular
motions; otherwise it is chemically chiral.

None of these constraints on shape and energy apply to topological mod-
els of molecules. The most common of these is the molecular graph. The
graph of a molecule represents and is a visualization of the molecule's con-
stitution, with vertices representing atoms and edges representing chemical
bonds. As a topological object, a molecular graph is infinitely deformable,
provided only that the vertices remain connected in the same way and that
no edges are broken and reformed or passed through one another. The vari-
ous images that can thus be obtained are topologically equivalent. For ex-
ample, the molecular graph of CHFCIBr can be represented in a stereo-
chemically realistic fashion, with four differently labeled vertices at the
corners of a tetrahedron and a fifth at its center, or it can be represented
with all five vertices in a plane. The last image, though stereochemically un-
realistic, is topologically equivalent to the first.

A graph is said to be nonplanar if and only if it cannot be embedded in
the plane without crossing of edges; otherwise it is planar. The great ma-
jority of molecular graphs, like that of CHFCIBr, are planar, no matter how
unreasonable or even bizarre the embedding in the plane may appear from
a chemical perspective. The molecular graphs of tetrahedrane, cubane, do-
decahedrane, and buckminsterfullerene, for example, are all planar. A pla-



TOPOLOGICAL CHIRALITY 495

L X E
£ @)

() (b) (©)

Figure 5.

nar graph cannot be topologically chiral. It follows that, with few exceptions,
the constitutions of geometrically chiral molecules, such as CHFCIBr, are
represented by topologically achiral graphs. We say that such molecules are
topologically achiral. For example, the top row in Figure 5 depicts the struc-
tures of (a) twistane,? (b) tritwistane,?® and (c) [6]chochin,?* while the bot-
tom row depicts the planar images of the corresponding molecular graphs.
The three molecules, all of which are geometrically chiral and have been ob-
tained in optically active form, are therefore topologically achiral.

One obvious way of achieving topological chirality is by knotting or cate-
nating a molecular graph. Such a graph is topologically nonplanar, though
not necessarily topologically chiral. When Wasserman reported the first syn-
thesis of a molecule with two interlocked rings (a [2]-catenane) in 1960, he
provided »the first demonstrated example of a compound in which the to-
pology of the system must be considered in describing its structure«?® At
about the same time, in a classic paper with Frisch,*® Wasserman intro-
duced the concept of topological isomerism, as between knotted and unknot-
ted rings, and thus launched the subject of »chemical topology«. It is note-
worthy that, according to Prelog, catenanes had already been mentioned by
Willstitter in a seminar at Ziirich, almost half a century earlier.?¢
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Numerous organic catenanes have subsequently been prepared, thanks
largely to the implementation of ingenious synthetic strategies devised by
Sauvage, Schill, Stoddart, Vigtle, and their coworkers, but these are almost
all topologically achiral. There are a few exceptions. Sauvage and coworkers
prepared two different types of topologically chiral [2]catenanes: a two-cross-
ing link,®” whose enantiomers are abstractly represented by enantiomor-
phous oriented Hopf links (Figure 6), and a four-crossing non-oriented link>®
(Figure 7). Seeman and coworkers designed and carried out the synthesis
of complex topologically chiral structures made up of interlocked rings of
single-stranded DNA; the most spectacular examples are polyhedra (a
[6]catenane in the form of a cube®®%? and a [14]catenane in the form of a
truncated octahedron®!) whose faces are made up of cyclic DNA's interlinked
with their nearest neighbors.

Trefoil knots are classic examples of topologically chiral structures. The
rational synthesis of molecular trefoil knots, suggested as long ago as
1953, was finally achieved by Dietrich-Buchecker and Sauvage in 19894
(Figure 8). This milestone in chemical topology®®%* and topological stereo-
chemistry*®% was followed in 1991 by the first rational synthesis of trefoil
knots made from single-stranded DNA. 4047

Catenated molecules in Nature were first discovered in the mitochon-
drial DNA of human cells by Vinograd and coworkers in 1967,*8 while single-
and double-stranded DNA knots were first observed in 1976.%° A great va-
riety of catenated and knotted circular DNA's have subsequently been ob-
served in diverse biological systems,®® and by now have become a common-

O

Figure 6.
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Figure 7.

place in »biochemical topology«.°! A number of catenated and knotted struc-
tures have also been recently observed among proteins.?? All of these natu-
ral products are topologically chiral.

The catalogue of topologically chiral molecular graphs is not restricted
to knots and links.’® Graphs of the latter, though nonplanar, all have at

Figure 8.
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least one planar, and hence achiral, embedding. For example, the trefoil
knot can be embedded as a circle or a polygon (the »unknot«) and the ori-
ented Hopf link as a pair of unlinked circles or polygons (the »unlink«). We
say that all knots are homeomorphic to the unknot and all links to the un-
link. There are, however, other nonplanar graphs that do not have any pla-
nar embeddings. Graphs in this class are said to be intrinsically nonplanar.

T W

Figure 10.
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The necessary and sufficient condition for intrinsic nonplanarity is the ex-
istence of a subgraph that is homeomorphic or contractible either to Kj 5, the
complete bipartite graph on two sets of three vertices, or to K, the complete
graph on five vertices.”* What this means is that such a graph is reducible
either to K; 5 or to K5 by suitable deletions of one or more edges or vertices,
or by contractions of two adjacent vertices (by deletion of the edge(s) be-
tween them and then fusing the two vertices into a single one). The classic
examples of topologically chiral molecular graphs in this class are Walba's
3-rung Mabius ladder molecule® and the Simmons-Paquette molecule.5¢ As
originally conjectured by Walba*® and later proven by Simon,”? both of
these molecules are topologically chiral. Figure 9 depicts the enantiomers of
Walba's molecule, along with the corresponing K; 3 subgraphs, obtained by
contraction, in which three edges corresponding to the three rungs (i.e. dou-
ble bonds) in the Mobius ladder are colored, while Figure 10 depicts the
enantiomers of the Simmons-Paquette molecule, along with the correspond-
ing K; subgraphs, obtained by contraction, in which three edges are colored
and three others are oriented.

Enantiomers of topologically chiral molecules are examples of topological
stereoisomers.?®4® Topological enantiomers are necessarily also geometrical
enantiomers. The converse is rarely the case because most geometrically chi-
ral molecules are topologically achiral. The distinction between geometrical
and topological stereoisomers can be further illuminated with reference to
geometrical and topological diastereomers. Although chemists write differ-
ent planar projections for geometrical diastereomers, e.g. of cis- and trans-
1,2-dichloroethene, or of glucose and mannose, the molecular graphs of these
diastereomers are topologically equivalent. This is not the case for topologi-
cal diastereomers. For example, a macrocyclic hydrocarbon such as (CH,)s,
can, in principle, exist in knotted and in unknotted forms.?® The constitu-
tions of these two topological diastereomers are exactly the same, as are
their adjacency matrices, but their molecular graphs are distinct: one is pla-
nar and topologically achiral, whereas the other is nonplanar and topologi-
cally chiral. Similarly, the constitutions and adjacency matrices of topologi-
cally diastereomeric links are exactly the same, but their molecular graphs
are distinct. For example, the molecular graph of the topologically chiral
four-crossing link in Figure 7 is distinct from that of the corresponding
topologically achiral two-crossing link.

ON THE CHOICE OF TOPOLOGICALLY SIGNIFICANT BONDS

There is no problem in identifying the vertex set in a molecular graph
that represents the constitutional formula of a molecule because each vertex
bears a one-to-one correspondence to an appropriately labeled atom in the
molecule. The relationship of edges in the graph to bonds in the molecule
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is, however, far less well defined. This point warrants an elaboration of some
earlier remarks on this theme’®?535% because it has an important bearing on
the subject of topological chirality in molecules.

The crucial question is: which bonds in the molecule are regarded as
»topologically significant«?%® Different authors differ in their answers to this
question.’® As Prelog and Helmchen pointed out, the concept of a chemical
bond is »nicht scharf definierbar«?*® the root of the difficulty »lies in the his-
torical sanction of localized valence bond formulas, which, for all their vir-
tues of convenience, imply a sharpness of definition which is physically un-
sound: for the sake of simplicity, degrees of atomic interaction in a molecule
are ignored, and pairs of atoms are regarded as either bonded or not«.?® In-
evitably, therefore, considerable arbitrariness is built into the definition of
a molecular graph, specifically with regard to membership in the edge set.
According to Walba, only covalent bonds are to be so regarded, while »H-
bonds, ion-ion bonds, ion-dipole bonds, or dipole-dipole bonds are not con-
sidered edges of a molecular graph«.'® While this definition has the advan-
tage of being consistent with common usage in organic chemistry, where
»molecular graph« carries the same meaning as »constitutional formula« or
»localized valence bond diagrame, there is no good reason to limit the edge
set to covalent bonds. Thus, Chambron et al.!® included metal-ligand and
metal-metal bonds in their edge set, along with »purely covalent« bonds, al-
though, following Walba, they also excluded »H-bonds, ion-ion, ion-dipole
and dipole-dipole bonds«. Nevertheless, as Walba remarked, »even the term
covalent bond is arbitrary«,*® since there is, in the general case, a continuum
between covalent and ionic bonds. In the words of Cotton and Wilkinson:®"

As soon as one changes from elements, where the adjacent atoms are
identical and the bonds are necessarily nonpolar, to compounds, there
enters the vexatious question of when to describe a substance as ionic
and when to describe it as covalent .... Suffice it to say that bonds be-
tween unlike atoms all have some degree of polarity and (1) when the
polarity is relatively small it is practical to describe the bonds as polar
covalent ones, and (2) when the polarity is very high it makes more
sense to consider that the substance consists of an array of ions.

An element of uncertainty is thus introduced, and whether or not a given
geometrically chiral molecular model is considered to be also topologically
chiral depends on which subset of bonds in the molecule is considered to be
topologically significant. As an extreme example of the sort of quandary that
one may have to face, consider the hypothetical derivative of [1.1.1]propel-
lane shown in Figure 11. The bridgehead atoms of this derivative are dif-
ferent isotopes of carbon, and the remaining carbons are bridged by three
polymethylene chains of different lengths. There is no question whatsoever
that this molecule is geometrically chiral, regardless of whether or not there
is a bond between the isotopic bridgehead carbons. The topological chirality
of this molecule, however, depends crucially on the existence of this bond.
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If the bond exists, the molecule is topologically chiral because the molecular
graph, shown at the top of Figure 11, is nonplanar (it is contractible to K;)
and all of its vertices are nonequivalent (the molecular constitution is asym-
metric). If the bond does not exist, the molecule is topologically achiral be-
cause the molecular graph is planar, as shown in the structure at the bottom
of Figure 11. The question of whether or not there is a central bond in
[1.1.1]propellane has been studied at length,®® but there is no universal con-
sensus since »all of the arguments put forward for the existence of a central
bond in [1.1.1]propellane can be matched with a counterargument except for
the heat of formation«.% On the one hand, the charge density distribution
points to the existence of a bond between the bridgehead carbons.®® On the
other hand, this electron density makes no contribution to holding the
bridgehead carbons together.®° Hence, whether this molecule is considered
to be topologically chiral or not depends entirely on what criteria are used
to define the central bond.

N

'2C (CH )
(CHz)k (CH ) i
= (CHE)k '1C

(CH

(2)
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TOPOLOGICAL CHIRALITY AND ACHIRALITY IN CHEMISTRY

As we saw, uncertainties in defining membership in the edge set are vir-
tually unavoidable. Attribution of topological chirality to a molecule thus
rests on shaky grounds because it is utterly dependent on an inherently ar-
bitrary selection of »topologically significant« bonds. Nevertheless, for most
organic compounds »chemists have no trouble at all constructing a molecular
graph«, 4% and, once the members of the edge set are selected, all uncertainty
vanishes. The molecular graph is then treated exactly as a topological ob-
ject” in which consideration of metrics and internal energy play no role. For
example, whereas it is physically impossible to flatten the molecules in Fig-
ure 5 so that all the atoms lie in a plane while all the bonds remain intact,
planarization of the corresponding molecular graphs is a perfectly unexcep-
tionable topological operation.

Thus, the topological chirality or achirality of a molecule refers exclu-
sively to its molecular graph, and not necessarily to a physically realistic
model. Yet, as noted above, the concept of chirality in chemistry has a well-
defined meaning only in relation to experiment, and it is the molecular ge-
ometry, i.e. the spatial distribution of nuclei and electrons, and not the sym-
metry of the molecular graph, that is responsible for all observed chirality
properties. As Prelog remarked with reference to the world of observables,
»chirality is a geometrical property«,!” and, as we pointed out, this property
is »in no way dependent on models of bonding«.®! This is in contrast to topo-
logical chirality, which, as we saw above, is critically dependent on a descrip-
tion of bonding connectivity. Pasteur's »dissymétrie moléculaire«, or molecu-
lar chirality, is thus a geometrical and not a topological property. For
example, the molecules in Figure 5 are topologically achiral but exhibit
properties (enantiomerism and optical activity) that are manifestations of
their geometrical chirality. In analogy to cis-1,2-difluorocyclohexane, the chi-
rality properties of a topologically achiral molecule structured like a figure-
eight knot are expected to depend on the conditions of measurement: under
dynamic conditions (modeled by the S, structure in Figure 2) they are mani-
festations of geometrical achirality, and under static conditions (modeled by
the C, structure in Figure 2) of geometrical chirality. Finally, recall that a
supergroup is required to describe the chemical (i.e. dynamic) achirality of
(=)-menthyl (+)-menthyl 2,2',6,6'-tetranitro-4,4'-diphenate (Figure 4), which
has no achiral conformations; analogously, a supergroup is required to de-
scribe the dynamic achirality of a molecule structured like the topologically
achiral knot 8;; in Figure 3, for which there are no geometrically achiral
presentations. The analogy finds vivid expression in Walba's description*® of
the biphenyl as a »Euclidean rubber glove« and of the knot 8;,; as a »topo-
logical rubber glove«.

In short, chirality properties are tied exclusively to the geometric model.
This being the case, what is the relevance of topological chirality or achi-
rality to chemistry?
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The answer, in brief, is that molecules with nonplanar graphs represent
a novel, not to say exotic, structural type, that this topological perspective
has sparked fruitful investigations in a previously unexplored area where
chemistry and topology intersect, and that studies dealing with the topologi-
cal chirality and achirality of such graphs have played a significant role in
these investigations.

The last two decades witnessed a dramatic acceleration in the growth
of topological chemistry and stereochemistry, due to a combination of fac-
tors. Continuing developments in biochemical topology played an important
role, as did the pioneering groundwork laid by Wasserman,®¢ Schill,®2 and
Walba,® which suggested a variety of novel synthetic targets. The sub-
sequent development of appropriate methodologies made possible the syn-
thesis of molecular trefoil knots and of many different types of catenated
molecules; a recent example is the topologically achiral [5]catenane »olym-
piadane«.%® Aside from the challenge to devise novel synthetic strategies,
motivation for this work derived no doubt also from the intellectual and aes-
thetic delight afforded to chemists, as much as to artists and mathemati-
cians, by knotted or linked objects: their universal appeal lies in their ap-
parently limitless capacity to adopt convoluted structures, and in the
intricate beauty of some these structures. We are reminded of the intellec-
tual and aesthetic allure of the regular (Platonic) solids, which served as the
principal motivation for the synthesis of cubane and dodecahedrane and de-
rivatives of tetrahedrane. Similar considerations undoubtedly played a part
in the enormous effort invested in the study of buckminsterfullerene, a
beautiful structure with the symmetry of a semiregular truncated icosahe-
dron.

Another factor responsible for the recent spurt of studies in chemical to-
pology was the synthesis of the Simmons-Paquette molecule and of Walba's
3-rung Moébius ladder molecule. Neither of these molecules qualifies as a
knot or a link, yet both of their graphs are topologically chiral. Walba re-
cently pointed out®® that the synthesis of the 3-rung Mobius ladder mole-
cule »inspired the invention of new mathematics, which then suggested new
targets for synthesis, and the cycle is continuing«, and went on to suggest
several new targets for chemical synthesis that were inspired by topology.
One of these, a molecular version of the topological rubber glove, has re-
cently been realized in single-stranded DNA tied into a figure-eight knot.%*
Another target is a molecular version of the Borromean link, which is among
the most fascinating of topological constructions: three mutually disjoint
simple closed curves form a link, yet no two curves are linked (Figure 12).
Thus, if any one curve is cut, the other two are free to separate. Given its
unique construction, it comes as no surprise that realization of the Bor-
romean link in molecular form is considered a synthetic goal well worth
achieving.®® As Martin Gardner put it,° »Who can guess what outlandish
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Figure 12.

properties a carbon compound might have...if its molecules were joined into
triplets, each triplet interlocked like a set of Borromean rings?« Although
more than 30 years have passed since Wasserman expressed the view that
molecular Borromean links »require a minimum string of 30 carbons« in
each of the three rings,*® and since van Gulick discussed the 3-braid ap-
proach to the synthesis of such a link,%” the synthetic goal remains elusive.
Nevertheless, Walba has predicted that »certainly one day molecular Bor-
romean rings will be created by a directed approach«.5%

As is evident from these examples, the process of mutual stimulation
and crossfertilization between chemistry and topology may result in unfore-
seen conceptual (or at least methodological) advances in both fields. Some
results from our own work on topological chirality, detailed below, further
illustrate this interplay between chemistry and mathematics.

From Chemistry to Mathematics

The CIP system of stereochemical nomenclature allows the assignment
of configurational descriptors (R and S) to a broad variety of organic mole-
cules. Its successful use in chemistry prompted the thought that it might
be possible to design a scheme to partition knots into mutually heterochiral
classes. The challenge was to discover a way of assigning a knot to one of
two homochirality classes, so that any two presentations of a given knot are
homochirally similar. The homochirality concept is strictly applicable to
knots because topological enantiomorphs cannot, by definition, be intercon-
verted by continuous deformation; enantiomorphous knots are therefore not
chirally connected. Topologically chiral knots vastly outnumber achiral ones:
of the 12965 prime knots with a minimal crossing number of 13 or less, only
78 are topologically achiral.’*> We succeeded in developing a method that is
applicable to all of these as well as to composite knots.!! There are possible
applications to biology: among DNA molecules, at least 13 different types of



TOPOLOGICAL CHIRALITY 505

\

Figure 13.

topologically chiral prime knots (the trefoil knot, 3,, and 12 others with up
to nine crossings) have been identified, along with three topologically chiral
composite knots (the granny knot, 3,#3,, and two others).®®

The recent development of methods for detecting the topological chirality
and achirality of links® %9 furnished another instance in which concern with
a chemical problem led to a novel development in mathematics. As noted
above, numerous catenated molecules have been synthesized, and we were
able to provide the first rigorous proof for the topological chirality of the
four-crossing link (Figure 7), the abstract model of the only topologically chi-
ral, non-oriented catenane synthesized so far.?® In the course of this and re-
lated investigations we discovered the existence of a topologically achiral
two-component link with an odd minimal crossing number.*® No example
had previously been known of a topologically achiral link, whether oriented
or not, whose minimal crossing number is odd. Figure 13 shows a diagram
of this unique link (left) and a geometrically achiral presentation of the
same link with S, symmetry (right). Note that the S, presentation is equiva-
lent to an array composed of the interlocked edges of two enantiomorphous
Moébius strips! The serendipidous discovery of this link provided the opening
for a more extensive investigation that led to the recognition of two unprece-
dented classes of topologically achiral links, one oriented and the other non-
oriented, and both with odd crossing numbers,5%7

From Mathematics to Chemistry

We recently showed®® that graphs are partitioned into six classes from
the perspective of chirality, depending on whether they are topologically
achiral, whether there is at least one topologically achiral embedding,
whether there is at least one rigidly achiral embedding, and whether there
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is at least one geometrically achiral presentation. Three of the six classes
cover topologically chiral graphs, and molecular graphs are represented in
two of them. One of these two classes (topologically chiral molecular graphs
with at least one geometrically achiral embedding) is represented by syn-
thetic and naturally occurring knots and links. The other class (topologically
chiral molecular graphs with no topologically achiral embeddings) is repre-
sented by the Simmons-Paquette molecule, Walba's 3-rung Mobius ladder
molecule, a few metallorganic clusters, and several protein molecules. A few
examples had previously been uncovered in which conformational restriction
on polypeptide folding patterns by disulfide crosslinks results in topological
chirality.”* We showed that, once the role played by covalently bound cofac-
tors (prosthetic groups) in conjugated proteins is taken into account, topo-
logical chirality in proteins is in fact more common than had previously re-
alized; for example, in native iron-sulfur proteins, covalently bound Fe,S,
clusters induce topological chirality even in the absence of disulfide
crosslinks.* In the course of this work we discovered that quinoproteins
with covalently bound cofactors contain catenated substructures, the first
example of topological complexity found in a native protein. Motivated by
this result we undertook a systematic survey of the Brookhaven Protein
Data Bank. This search revealed the presence of catenated substructures in
human chorionic gonadotropin, and of knotted and catenated substructures
in ascorbate oxidase and human lactoferrin.5?® All of these structures are
topologically chiral. Though few in number, these are the first, and so far
the only, examples of topologically non-trivial motifs in protein structures.
Given the roughly exponential growth in new high-resolution protein struc-
tures that are solved every year,’ it seems likely that additional examples
will be uncovered in future years.

Of the six classes mentioned above, the three remaining ones cover
topologically achiral graphs. Molecular graphs are represented in only one
of these (topologically achiral graphs with at least one geometrically achiral
presentation) because all known topologically achiral molecular graphs can
assume geometrically achiral presentations. The vast majority of these
graphs are planar, and hence are geometrically achiral when embedded in
the plane. Far less common are topologically achiral molecular graphs with
subgraphs that are either homeomorphic or contractible to K; 5 or K;. The
presentations of such graphs are necessarily nonplanar.®* A search for ex-
amples in this class revealed that, with rare exceptions, the graphs of these
molecules are reducible both to K3 and to K; by suitable deletions or con-
tractions. The few exceptions are therefore of special interest. One of the
earliest examples is basic beryllium acetate, Be;OAc,.”® This molecule,
whose graph is reducible only to Kj, is chiral in the crystal (T symmetry)
but has attainable 7y symmetry. Kuck and Schuster reported the synthesis
of the first geometrically achiral organic molecule whose graph is reducible
only to K;, the hydrocarbon centrohexaindane. The T, conformation of this
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molecule is depicted in Figure 14 (left).” Related molecules have been re-

por

ted more recently.” Molecules with attainable geometrically achiral

structures whose graphs are reducible only to Kj 3 are harder to find. Figure

14

(right) shows the Dy, conformation of a cobalt complex” that belongs to

this class.
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SAZETAK
Komentar topoloske kiralnosti i akiralnosti molekula
Kurt Mislow

Skiciran je koncept topoloske kiralnosti, od njegovih povijesnih poéetaka do nje-
gove danasnje veze s kemijom. Za razliku od geometrijske kiralnosti, topoloska ki-
ralnost molekula ovisi 0 modelima vezivanja i nije direktno povezana s eksperimentalno
vidljivim fenomenima kiralnosti. Ipak, studije koje se bave topoloskom kiralnosti 1 aki-
ralnosti molekulskih grafova igraju znacajnu ulogu u podruéju gdje se kemija i topolo-
gija krizaju.
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