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A novel approach is proposed to determining and constructing en-
dospectral bipartite graphs. More than fifty new species and families of
hexagonal lattice with endospectral pairs are listed and principles of their
generation are outlined.

INTRODUCTION

Isospectral graphs are nonisomorphic graphs having the same sequence of eigen-
values. The importance of isospectrality is relevant to the inverse problem! emerging
in science and technology which also plays a vital role in some special fields.2? In
studying the normal vibration of a membrane, Kac* raised the question: »Can one
hear the shape of a drum?«, that is, can one determine the shape of a vibrating mem-
brane or »drum skin« from the spectrum of its characteristic frequencies?® The an-
swer was found to be negative for the high-dimensional torus.®® Recently, Cipra®
pointed out that »everyone marches to the beat of a different drummer, but all the
drums sound the same«. Quite similar in chemistry, different molecules can have
identical spectral®-2?! for the Hiickel Hamiltonian, thus the characteristic polynomial
would not uniquely characterize a structure.??2% Nevertheless, the study of isospec-
trality of graphs may renew the contents of characteristic polynomials,19-2¢ giving
an insight into the »inverse problem« from the spectra to the molecular structures.

The endospectral graphs are characterized by the presence of a pair of endospec-
tral points, that is, the linking of a fragment to one of the two points will result in
a pair of isospectral graphs. A well-known example is the styrene graph displayed
in Figure 1, where endospectral points are marked with small circles. When radical
R attaches to either of the two endospectral points, the isospectral pair, 1a and 1b,
is produced.2?6:28

There hase been a continuous interest in investigating this kind of graphs,26-41
and much progress on endospectral trees has been made by Knop and coworkers.38
They tabulated such graphs exhaustively up to sixteen vertices with the valency of
four or less. More recently, Randi¢ and coworkers?® revisited this topic with the em-
phasis on cyclic graphs. They exhibited new species of polyhex with pending bonds
that are endospectral and pointed out that not much was known about the construc-
tion of such graphs.
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5 ¢

1 la 1b
Figure 1. Endospectral graph 1: styrene and the derived isospectral pair la and 1b.

As polyhexes are bipartite and exist widely, they are worth dealing with again
in this paper. We have used the partition technique to transform the characteristic
polynomial of the graph into the following product?

Pe(x) = Py(x) Polx) (1)

where G symbolizes the graph, B and C represent subgraphs of G obtained by eras-
ing all edges connecting B and C. Graph C' is derived from C by adjusting some
weights of vertices and edges in accordance to Ref. 34. Since C' is smaller than G,
but offers as much information as G, it can be called the contracted graph of G. The
following statement is true:3* if endospectral graph G is contracted without elimi-
nating its endospectral points, then C' is also endospectral with endospectral points
invariant. The inverse of this statement is also valid, i.e. C' can couple with B to
give G with endospectral points unchanged.

If G is bipartite, B can be a collection of vertices of equal parity, then C' consists
of all the remaining vertices of opposite parity and Eq. (1) behaves similarly to the
'wrapping' procedure,3:32 which we will employ in this paper to treat such polyhex
graphs with endospectral points of equal or different parity. Starting from some
known results,?640 we will proceed to present numerous novel species. Various fami-
lies of hexagonal lattice with endospectral pairs are listed and principles of their
generation are outlined.

THEORETICAL BACKGROUND

As it is known, the vertices of a bipartite graph can be classified acording to
their parity so that the first neighbors of each vertex are all of the opposite parity.
Let G have N vertices, n be the number of the odd-parity vertices, and m (= N-n)
be the number of even-parity ones and satisfy n < m. One can label the odd vertices
from 1 to n and the even ones from n+1 to N thus, the two collections of vertices
are

Vi(G) = {u} l<ps<n
(2)
VHG) = {v} n+l<v<N

Obviously, in bipartite graphs, all edges are incident to a pair of vertices of different
parity, so the adjacency matrix of G is reduced into the following form

L
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N A=[g, g] 3)

where 0~ and 0* are null-blocks of the order n and m, respectively, and B (whose
entry b;; equals 1 if there is an edge between the vertices ; and J, and 0 otherwise)
is a submatrix of n x m while B’ is the transpose of B. The sequence of eigenvalues
and the components (coefficients) of eigenvectors can be denoted as

X(@) = {x;} 1<i<N

4
C(G, x) = {c,(G, x))} 1<6<N

According ot Eq. (3), the square of the adjacency matrix of G will be
s _|BB 0
A _li 0) B’ (5)

where BB’ and B’B are square blocks of the order n and m, 0 and 0’ representing
null matrices. Eq. (5) means that, if one regards A? as the adjacency matrix of graph
L, then L will be a disconnected graph with two components, i.e..

L=L"uUL* (6)

where L~ (L*) is the component contructed solely of vertices of odd-parity (even-par-
ity) and is defined by matrices BB’ (B’B). Obivously, their characteristic polynomials
satisfy the following relation

Pi(y)=Pr- ) P+ () (7

with

Y PP-() =P (y) (8

and y is the argument. Eq. (7), which looks like Eq. (1), reveals that the spectrum
of L is the union of the spectra of L~ and L*, whereas Eq. (8) indicates the isospec-
trality between L~ and L* up to m — n zeros belonging to L*.

It is known that endospectral points share absolutely equal coefficients for the
nondegenerate eigenvectors,? i.e. if G is endospectral with % and %’ being endospec-
tral points, then

(G, x)]2=[ck,(G, x)]2 ©)

As we know, eigenvectors are solved from the homogeneous linear equations formu-
lated in the matrix form below.
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xI-A)C=0 (10)

where I denotes the identity matrix, C = C(G,x) is the column set of ¢'s referring to
eigenvalue x, as shown in Eq. (4); therefore, one can derive various formulae for c's
with x as a variable. One of the formulae is listed below®542

(G, x)]2 =P, () (11

where the right-hand side denotes the characteristic polynomial of graph G — o pro-
duced by erasing the o-vertex from graph G. Eq. (11) makes Eq. (9) transform to

P _,(x)=Pg_,(x) (12)

giving a criterion for determining endospectral points, i.e. by inspecting whether G - &
and G - k' are explicitly identical. But we may fail in other cases where G — k and
G - k' look different.

It has been pointed out that the endospectral pair of G can be detected from its
contracted graph C' as equivalent points if new symmetry elements occur in C'3435
so we concentrate in Egs. (7) and (8). As we know, the characteristic polynomial of
bipartite graph G is defined as follows

P(x) = Det (xI - A(G)) = Det (I + A(G)) (13)

regardless of the sign preceding the adjacency matrix in the determinant. For graph
L, derived from G by the wrapping procedure, one has A(L) = (A(®))? and, if y = x?,
then

2 2 ’
Puo®) =Det - (A@) )= (Pow) (14)

Based on Eq. (14), the following lemma is readily verified.

Lemma. If graphs @ and H are bipartite, L(Q) and L(H) are derived from @ and H
by taking (A(Q))? and (A(H))? as adjacency matrices, respectively, then L(Q), L(H)
are isospectral as long as @ and H are isospectral or vice versa, namely

Po(x) = Pyx) & Ppo®)=Pra® (15)

Since G is bipartite, G — k and G — k' will be bipartite, too. On putting @ = G -k,
H = G - k' and combining Eq. (12) and Eq. (15), one arrives at the following theorem
about endospectrality.

Theorem. If k and k' represent endospectral points of a bipartite graph G, then
they are also endospectral points of L(G), namely

P -+0) =Prg_»©) (16)
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where the fact that L(G - &) is identical to L(G) — k has been used. The inverse state-
ment is true too, that is, if Eq. (16) is satisfied, £ and %' are endospectral points for G.

Endospectral points can be vertices of homo-parity or heteroparity. In the first
case, we may suppose that both of them are odd, namely % and k' belong to V-(G),
so L*(G - k) = L*(G - k') = L*(G). When combining Eqgs. (16) and (7) so as to eliminate
the common factor L*(G), the following equality results

Py 10) =Pr G-+ ®) amn

On the other hand, if & and &' are of odd- and even-parity, respectively, one may join
Eqgs. (16) and (7) and (8) together to derive another equality, as follows

Y™ Py - 1) = Prgy ) (18)

These two equalities are fundamental to determining endospectral points that
cannot be recognized simply by inspecting G — k£ 2 G — k'. They can be formulated
as corollaries.

Corollary 1. For the bipartite graph G, its endospectral points can be simply de-
termined if L<(G) — k = L(G) — k', where k, k' represent the endospectral pair of
homo-parity and L~(G) is the component of L(G) derived from G by the wrapping pro-
cedure.

Corollary 2. For the even bipartite graph, i.e. m = n, its endospectral points can
be determined if L(G) — k£ = L*(G) - k', where k, k' denote the endospectral pair of
hetero-parity with k € V(G) and k' € V*(G), L*(G) is another component of L(G) de-
fined by B'B (see Eq. (5)).

Corollary 3. If L=(G) (or L*(G) is a symmetric graph, k and %' are equivalent ver-
tices so that L7(G) - £ = L(G) - k', k and k' are sure to be endospectral points for
graph G.

Based on the principles presented above as a theorem and corollaries, we can
now deal with the endospectrality for hexagonal graphs and other bipartite graphs
in terms of how to recognize them and how to construct new species. In the follow-
ing, we discuss endospectral points of homo-parity in detail and briefly account for
hetero-parity species. Numerous novel endospectral graphs are tabulated.

ENDOSPECTRAL POINTS OF HOMO-PARITY

As early as in 1975, Herndon and Ellzey listed a dozen hexagonal graphs involv-
ing endospectral points.?® More recently, Randi¢ and coworkers?® reported two addi-
tional examples: 1-methene-2-vinylphenanthrene and 6-methene benzo[cd]pyrene,
displayed in Figure 2 under numbers 6, and 7, respectively. The graphs numbered
1 to 5 in Figure 2 are taken from Ref. 28. L«(G) and L*(G) for these graphs are dis-
played in the middle column of Figure 2, where open and solid circles signify the
mono- and tri-valent vertices from the remaining di-valent vertices in graph G. In
Figure 2, new symmetry elements occur in L~(G), so that L~(G) has higher symmetry
than its parent graph G. Conventionally, these unmoved vertices under the new sym-
metry operations are called unrestricted points,?® while the equivalent vertices un-
der the new symmetry operations are endospectral points of G.
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Figure 2. L™ and L* of seven endospectral graphs

In Figure 2, L(G) for 1, 2, 5 and 7 belong to point group C,, or Dy, having two
or more reflection planes, the numbers of endospectral pairs are equal to 1, 2, 3, and
less than n/2 due to the existence of unrestricted points, whereas L(G) for 3, 4, and 6
belonging to C,, have exactly n/2 pairs of endospectral points because there is no
unrestricted point. These results are shown schematically in the last column of Fig-
ure 2, where small rectangles represent unrestricted points and endospectral pairs
are denoted by squares, triangles and circles in the open or solid style.
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CONSTRUCTION OF ENDOSPECTRAL HEXAGONAL GRAPHS

From the discussions in the last section, we arrive at an important conclusion:
the new symmetry elements occurring in L~(G) (or L*(G)) are the source of endospec-
trality of the bipartite graph G. Some more examples are given in Figure 3. The ben-
zyl graph can be transformed into L with component L, a triangle exhibits the same
symmetry as its parent; L~ of the styrene graph possesses higher symmetry than its
parent; the component L~ for naphthalene, which is a triply fused triangular graph
(see Figure 3c) and belongs to C,,, is less symmetric than naphthalene, whereas 1-vinyl-
naphthalene has lower symmetry than its derived component L-. In consequence, sty-
rene and 1-vinylnaphthalene are endospectral whereas benzyl and naphthalene are
not, i.e. without endospectral points. This analysis sheds a valuable insight into the
problem of how to construct endospectral bipartite graphs with pending bonds.

T —v -

Figure 3. Influence of pending chains on L~

If we consider anthracene in succession and draw its L~ (Figure 4), their sym-
metry are D,, and C,,, respectively, in analogy to naphthalene. On introducing three
pending chains, new species 8, i.e. 1,9-dimethene-2-vinylanthracene, is formed. The
derived component L(8) of Cy, symmetry indicates that 8 bears four pairs of en-
dospectral points. This procedure can be continued by introducing pending chains
onto tetracene and pentacene to derive graphs 9 and 10 involving five and six pairs
of endospectral points, respectively (see Figure 4). In this way, a general graph 11
representing the endospectral member derived from ¢-polyacene by joining up one
ethene and ¢ — 1 methenes as pending chains is deduced. The ¢ + 1 pairs of endospec-
tral points can be specified by the number set (s, 2¢ + 1 —s) with 1 <s <t defined by
the coordinate along the line below 11 in Figure 4.

Furthermore, one may find two different endospectral series from zigzag
polyacenes. The first series is characterized by the occurrence of a pending ethene
and can be regarded as homologues of styrene in which the chain of hexagon propa-
gates zigzagly where the small members with . < 3 (A means the number of hexagons)
have appeared in Figure 2 as graphs 1, 2 and 4, medium ones with A = 4, 5 are given
in Figure 5, as 12 and 13. Among them, odd-membered species ( = 1, 3, 5,...) contain
h + 1 (or n/2) pairs of endospectral points and two unrestricted points in relation to
the symmetry of L~. The second series is an extension of graphs 3 (h =2) and 6 (h = 4)
in Figure 2, so one can easily draw the other members of the series, such as 14 (4 = 3)
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L (8)

1 2 3 4 -.- S PN 2t-1 2t

Figure 4. The endospectral series derived from polyacenes

and 15 (k = 5) given in Figure 5. In contrast to the first series, the even-membered
graphs 3 and 6 involve 4 + 1 pairs or endospectral points due to the C,, symmetry
of L=(3) and L~ (6), but the odd-membered species 14 and 15 have two unrestricted
points besides & pairs of endospectral points because the corresponding Ls are of C,,

symmetry.
9g2e’ e3eSe]
12 - 13
Y 15

Figure 5. Lower members of the endospectral homologous series derived from zigzag polyace-
nes.
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Figure 6. Some endospectral graphs derived from benzenoids with 4 < 5.

By the same procedure, we can examine various systems of cata- and pericon-
densed benzenoids in order to find more endospectral graphs still unknown. Results
of A <5 are displayed in Figure 6.
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PERICONDENSED HEXAGONAL GRAPHS

Two pericondensed graphs 5 and 7 have been displayed in Figure 2, where the
resemblance between diagrams L~(5) and L~(7) is quite clear. Actually, graph 7 can
be regarded as the entity generated from 5. Another perifused member is graph 33
with L~ (33) quite similar to L~(7); their distribution of endospectral pairs and un-

g% L (33)
34 L7(34)
35 L7(35)

> X

01 2 3 /2 r-1r

Figure 7. Endospectral graphs of hexagonal lattice derived from graphs 5 and 7.
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39 40
41 42
Figure 8. Homologues of endospectral graphs derived from graphs 16 and 32.

restricted points are shown in Figure 2 and Figure 7. Surely, huger members of this
homologous series can be readily deduced. Graphs 34, 35 are species produced by
another propagation pattern from graph 5. They are endospectral due to the D,,
symmetry of L7(34) and L<(35). A similar process starting from graph 7 leads to
graphs 36, 37 and even larger analogues which are endospectral in consistence with
the common symmetry of their L-s (see Figure 7). In general, both ways of propa-
gation can take place simultaneously, resulting in a planar lattice, graph 38 of length
r and width w with w — 2 pending methenes along the width. A coordinate system is
introduced aside graph 38 where a and B characterize the vertex set V-(38); then, (a,8)
specifies a definite vertex of ood-parity with 0 <a <r and 0 <8 <w. Graph 38 is en-
dospectral as long as r is an even number, and it can be represented by the pair [r, w],
so graph 7 and graphs 34 to 37 can be denoted by [2, 3], [4, 2], [6, 2], [4, 3] and [6, 3],
respectively. In graph 38, each pair of endospectral points is in the position of (a, B)
and (r — a, B), and the w unrestricted points are located on the line with a = r/2.

It is worth noting that there are endospectral species (such as 84 and 85) with-
out pending chains, revealing that pending chains occur frequently but not neces-
sarily in the endospectral cyclic bipartite graphs.

In the same way, one may discern the analogy between graphs 16 and 32, and
then derive another homologous series of endospectral graphs displayed in Figure 8.

The one-dimensional hexagonal graph 11 can propagate vertically in zigzag man-
ner, resulting in another endospectral lattice (with one pending ethene and w — 1
pending methene on the top border) where the horizontal and vertical lengths of the
lattice are w and r, respectively. Thus, one can use the number pair [r, w] to specify
each member of this homologous series. Due to the C,;, or D,, symmetry of L(1; w),
members with even r (such as graphs 43 and 47) contain unrestricted points along
the midst horizontal, but others with odd r (graphs 48 to 50) involve only endospec-
tral points. They are displayed in Figure 9.

We have discussed three families of hexagonal lattice that are endospectral with
the zigzag boundary along the direction of length. Is it a necessary condition? The
answer is 'no’. Let us consider the fourth example, a parallelogram-like lattice graph
of lengths r and w with a similar distribution of pending chains along two sides as
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43, [2,3] 44,

48, [3,2] 49, [3,3] 50, [3.41

Figure 9. The endospectral series of lattice type derived from graph 11.

in graph 10. In this homologous series, L-(nw) has symmetry C,, if r # w and D,,
if r = w, all of them are endospectral with unrestricted points occurring in members
with r = w. In Figure 10, three species with r = 3 and w = 2, 3, 4 are displayed.

s

51, [3,2} 52, 53, [3.4]

#
it

Figure 10. The parallelogram-like polycyclic endospectral homologues.

ENDOSPECTRAL POINTS OF HETERO-PARITY

There are also endospectral points of hetero-parity for bipartite graphs, most of
which are trees,?® and so far only one cyclic species, 54, is available.?83% In Figure 11,
we draw L (54) and L*(54) where squares signify the endospectral points 2 and &'
It can easily be seen that L(54) — k = L(54) — k', so that Eq. (17) is satisfied. Of course,
more graphs of such type can be found by our methods. Thus, graphs 55, 1,2-divinyl-
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Figure 11. Derivatives of zigzag polyacene with a pair of endospectral points of hetero-parity.

naphthalene and graph 56 are endospectral under the same constraints, i.e. L(55) —

= L*(55) - k' and L~(56) — k = L*(56) — k'. By deduction, a homologous series, which
is derived from zigzag polyacene joining up with pending chains and involving en-
dospectral points of hetero-parity, can be constructed. Typical members consisting of
even and odd hexagons, 57 and 58, are given in Figure 11.

M%DM

L7(59) L (59)

O-0-0-0-0

60

Figure 12. Derivatives of poly-p-phenyls with a pair of endospectral points of hetero-parity.
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Another homologous series can be constructed from graph 54, and graph 59 is
the second member satisfying L~(59) — & = L*(59) — &’ with k£ and &’ represented by
squares in the diagram of Figure 12, so graph 59 involves a pair of endospectral
points of hetero-parity. Graph 60 can be taken as a typical member of this homolo-
gous series.
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SAZETAK
O endospektralnim bipartitnim grafovima

Yuansheng Jiang i Chenzhi Liang

PredloZen je novi pristup detektiranju i konstrukeiji endospektralnih bipartitnih grafova.

Navedeno je viSe od 50 novih vrsta i obitelji endospektralnih parova sastavljenih od Sesterokutnih
reSetaka. Takoder su opisana i pravila na koji su naéin ti endospektralni grafovi konstruirani.
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