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We introduce a novel matrix associated with molecular graphs, the
construction of which is related to the construction of the Hosoya Z topo-
logical index. The new matrix provides a source of novel invariants that
may be of interest in structure-property and structure-activity studies. Con-
struction of the novel matrices is outlined and a few novel invariants ex-
tracted. A comparison with closely related topological indices is illustrated
on regressions with the boiling points in octanes.

INTRODUCTION

Linear regression analysis remains one of the central tools for data reduction, in-
terpolation, extrapolation and prediction of data despite of the fact that such analysis
does not reveal causal relationships between the descriptors and the properties. An im-
portant recent development, a procedure for constructing orthogonal molecular de-
scriptors,! did not only significantly upgrade this old and veritable methodology but
made it the method of choice. The availability of orthogonal (i.e., linearly inde-
pendent and unrelated) descriptors did not only allow unambiguous interpretation
of the results of regression analysis and enable individual evaluation of the descrip-
tors.2 This is a procedure by which structural information from two and more de-
scriptors are concentrated into a single descriptor. In this way, one can reduce the
number of independent variables in multiple regression. With such novel capabilities
in regression analysis, attention has again been shifted to the design and construc-
tion of novel structural descriptors. The goal is to find descriptors that can produce
better regressions with fewer variables, but variable that have a direct structural
interpretation. Here, we will outline such a novel route to molecular descriptors that
may have a potential in structure-property and structure-activity studies.

* Dedicated to the memory of Professor Tibor Skerlak.
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CONSTRUCTION OF NOVEL DESCRIPTORS

There are many descriptors (topological indices) outlined in the literature® many of
which have been available through appropriate software. We can classify these as fol-
lows:

Ad hoc Descriptors

These descriptors were initially designed with a particular application in mind
but they have later found many additional applications. They include such well
known descriptors as the Wiener number W,° the Hosoya Z number,® and the con-
nectivity index y,” probably the three best known and most commonly used descrip-
tors.

Modifications

Many descriptors allow for some modifications, which will produce additional de-
scriptors. For example, from the connectivity indices, one can construct valence con-
nectivity indices® or kappa shape-indices.® Many such variations of the existing de-
scriptors are described in the literature, including the valence connectivity indices!®
and the recently introduced optimal weighted paths for molecules containing
heteroatoms.! Because of their generality, we will mention only two of such modi-
fications. First, it is possible to modify the existing algebraic form used in the defi-
nition of an index. For example, consider the algorithm used in the construction of
the connectivity index:” (m, n)’, where p is =1/2. We can change p to -1/3 (and other
values) in searching for alternative descriptors. The case p = —1/3 leads to a better
linear correlation for the boiling points in alkali (use of p = —1/2 shows a slight quad-
ratic departure of the correlation line).!2 The case p = —1 reduces the index to that
considered by Alterburg,'® while the case p = —1 generates the so called Zagreb in-
dex.! Second, one can modify »geometrical« considerations such as deleting bonds
(or larger fragments) and derive the same descriptors for the fragments so gener-
ated, which are subsequently combined into a novel index. In this way, indices P'/P,
Z'IZ, W/W and y'/y are derived from indices P, Z, W and y, respectively.1516

Structurally Related

The path numbers P; suggested by Platt already in the late 1940's!7 illustrate
well that here we deal with a family of structurally closely related descriptors. Ad-
ditional illustrations include the »higher« connectivity indices,!® the weighted path
numbers' and, generally, indices that can be constructed by some iterative proce-
dure or are extracted from matrices by counting paths or using the matrix powers.

Computationally Related

Matrix invariants such as eigenvalues (spectrum) coefficients of the charac-
teristic polynomial, determinant, and other matrix invariants offer a route to several
standard molecular descriptors. However, there are several (nonstandard) matrix
computational procedures that yield additional graph invariants. Multiplication of
a matrix by vectors generates new vectors, which can offer novel invariants, as out-
lined by Balaban and coworkers.?? While such well defined computational schemes
offer novel possibilities, the derived descriptors may not offer a simple and direct
structural interpretation.
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Infinite Matrices

Trivially, one can construct higher powers of any matrix but, due to the Cayley-
Hamilton theorem,?! such higher matrices beyond the power n (n being the number
of vertices in a graph) do not introduce novel structural information. However, we
can modify the procedure and construct invariant from such power matrices that are
not subject to the Cayley-Hamilton theorem. One of the simplest of such invariants
can be obtained as a bond-additive quantity from a matrix by adding all matrix ele-
ments corresponding to adjacent pairs of vertices.??

Novel Matrices

By associating a matrix with a graph, one can use selected matrix invariants as
novel molecular descriptors. This powerful approach has apparently been underutil-
ized. Until quite recently, except for the adjacency matrix A, and the distance matrix
D, there were hardly any other matrices of potential interest in chemistry available.
An illustration of such a novel matrix is the y matrix constructed by Kier and Hall.??
Matrix elements are simply contributions of each pair of vertices to the correspond-
ing connectivity index, i.e., the contributions are given by the product of weighted
vertices (using 1/Vd, d being the degree of a vertex) involved in the path from i to j.
For adjacent vertices, these are the contributions arising in construction of the con-
nectivity index. Although the y matrix is built from the contributions entering the
construction of the connectivity index and higher connectivity indices and offers no
novel structural elements, it offers additional matrix invariants as a matrix. One
can, for example, consider the spectrum of such matrices and view the index eigen-
value (the largest positive eigenvalue) as a novel index. A novel structural matrix
is that of Tratch and collaborators?* who introduced matrix elements that count
paths with an appropriate weight based on the distance between the vertices in-
volved. This author recently initiated an intensive search for additional graph ma-
trices. As a result of these recent efforts, we now have several additional graph ma-
trices. The most recent additions to this growing collection of graph matrices include:
the matrix in which uniform electric resistance associated with each edge governs
the distance function for the vertices;?® the matrix (named Wiener matrix because
of some relationship to the Wiener number and the procedure used by Wiener to cal-
culate W) that enumerates all paths that include a particular pair of vertices;%¢ the
matrix that enumerates restricted (qualified) random walks over a graph.?” The ele-
ments in this matrix, which incidentally is nonsymmetric, are determined by the
probability of a random walk of length D;; between vertices i and j. Finally, the novel
matrix introduced here, which we label as Z matrix as it bears a relationship to
Hosoya's Z topological index, is the latest addition to this growing class of matrices
to serve as invariant generators.

3-Dimensional Matrices

Besides using simple geometrical distances to construct a matrix associated with
a graph (structure),”?® we may mention idealized matrices associated with a graph
embedded on a regular 2-dimensional or 3-dimensional coordinate grid (such as
graphite or diamond lattice).? Invariants derived from such topographic matrices
differentiate various conformational isomers, such as cis-trans, boat-chair, gauche-
trans cases. However, one of the drawbacks of geometrical matrices is that they con-
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tain no information on bonding. In overcrowded molecules with several close con-
tacts, it may be difficult to distinguish between a caged structure and a structure
with fewer direct bonds. This will particularly be the case of idealized structures su-
perimposed on regular grids. However, one can combine graph distances and geo-
metrical distances, and arrive at matrices that discrimate open and closed rings (in-
volving vertices with the same set of coordinates).3

HOSOYA Z MATRIX

Consider a general problem: How to associate a matrix M(G) with a graph G?
To arrive at such a matrix, we have to assign to each pair (ij) some number in a
unique (well defined mathematical) way. A somewhat simpler task is assigning a
number to each pair of adjacent vertices, which would produce a sparse matrix that
can be viewed as a adjacency matrix. Many topological indices, e.g., the connectivity
index, are bond additive and, hence, permit constructing matrix elements associated
with such bond additive contributions for a novel matrix. If we can extend such an
algorithm for constructing adjacent elements in a matrix to those nonadjacent, we
may arrive at a novel matrix of potential interest in structure-property studies. This
has been our strategy in constructing novel matrices, such as the Wiener matrix, the
restricted random walk matrix, and in this way we derived the Z matrix.
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Figure 1. Calculation of the matrix elements in the Hosoya matrix for 2-methylheptane: Part
(a) the elements corresponding to bonds (adjacent vertices); Part (b) a few of the elements cor-
responding to nonadjacent vertices.
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Let us first be reminded of Hosoya's Z topological index and its construction. Z
index counts nonadjacent edges in a graph, first one edge at a time, then two edges,
ete. A Kekulé valence structure of a benzenoid hydrocarbon represents the last mem-
ber in such a count, the maximal number of disjoint edges (the so called perfect
matching). Observe that by definition Z is a global index, i.e., an index (like the Wie-
ner index) that cannot be partitioned into local contributions, such as various bond-
additive parts. In contrast, the modified index Z'/Z is based on a bond additive
scheme. The index Z'/Z is constructed by considering one bond (a pair of adjacent
vertices!) at a time and after this is erased considering the Z topological index for
the remaining fragment(s). The top part of Figure 1 illustrates the construction of
the Z' (to be later divided by Z) for 2-methylheptane. Under each diagram, we give
the number of edges, pairs of nonadjacent edges, and the number of three nonad-
jacent edges. Such partial contributions can be assigned to each pair of adjacent ver-
tices. Thus, for bonds (1,2), (2,3), (3,4), etc., we obtain respectively, 20, 23, 18, efc..
These same contributions can be now viewed as elements of the matrix Z: Z, » = 20,
Zy3 = 23, Z34 = 18, etc. When such contributions arising from adjacent vertices (i.e.,
bonds) are added, we obtain Z' = 139. However, by not adding bond contributions
and treating them as matrix elements, we arrive at corresponding sparse matrix ele-
ments shown in Table I.

TABLE I

Sparse and complete Z matrix for 2-methylheptane

2-methylheptane

Sparse Complete
0 20 0 0 0 0 0 0 0..20._ 15 0 5 3 a2
20" 0. 23 0 0 0 0 20 20 0 23 14 8 5 220
0 23 0 18 0 0 0 0 15 23 0 =18 =11 7 3 5
Q20218 0 20 0 0 0 9 14 18 0 20 13 6 9
0 O 0 20 QF21 0 0 52587 1l <20 0 =218 5210 5
0 O 0 0 21 Qe 17 0 3 5 i 134 21 0. AT 3
0 O 0 0 O A7 0 0 1222 3 62 10 17 0 il
0 20 0 0 0 0 0 0 12 20 5 9 5 3 1 0

This constructional procedure can be extended to include also nonadjacent ver-
tices by considering paths (ij), where ij are nonadjacent. By erasing such a path and
by enumerating the corresponding topological index for the remaining fragment(s)
(i.e., the number of nonadjacent bonds) we can assign a number to any pair of labels
(ij). The construction of several elements of the Z matrix of 2-methylheptane corre-
sponding to nonadjacent vertices is illustrated in the lower part of Figure 1. Here,
there is a minor departure from the standard definition of the topological index Z
in that we only count disjoint bonds and have not added 1 to the count (but this
distinction is not essential and the resulting numbers could be augmented if so de-
sired).

ILLUSTRATIONS

In Table II we list: Z matrices for normal alkanes having up to ten carbon atoms.
The examples show some general features of such matrices. The largest entries ap-
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TABLE I1

Hosoya matrices for normal alkanes from propane to decane

n-propane n-butane n-pentane n-hexane
03¢/ 13630 03 2= 415 30 Ot 4 212, selidin0 0f alcand s 2uaills 120
Lire0 55l 28200 =320 4350 135 1530l lone0.. 3025 5003
Qeazle . O 1o 3 0k =2 28 5% 0 5° D 4 o0k 0, 8 hE D
0 2 1.9 70 =3¢ 5 0" 2. bE =8 20 = Oi
Bepamibatlasiilc ) I S38Een L0 HOE SR
0 -slEe O Jdt S aTiIn0

n-heptane n-octane
0% 12 7 A4 D) it 0 0" 20512 it 4 2 1 0
125800 2515 R ) 3 1 2055 02 255 15 9 5 3 1
T A5 0 14 9 5 2 12295 0:£:23: 414 8 5 2
4 O fld 0414 :..9 4 T 41 23 0..24 14 9 4
2 5w 8 4" 0 15 7 4 9 14 24 0- 23 15 7,
1 3t bt geoh 012 2 5 8 14 23 Q725712
0 ik 2 4 Tl 0 1l 3 5" 20 S 5% 395 0= 320
0 1 2 4 735125420 0
n-nonane n-decane

0f =33 20012 70 4= %08 o1 < () 0 54 33 -20  128%L7% 54 awoks (80
33 - 0 41 28° 15 =95 3 64 0 67 #4028 15 =9 57 3 = ]
20041 -..0 38 2314 85 =D 33267 =0 25041 193" 14 8 - Hi O
12:28-:38 . 0. 39 24 14" 9 4 20540 =59 - 0 =64 =39 24 14 9 -4
T 15 23 39 0sdlei23i5% 7 125 284641 64, 50-571 39 23 15 7
9 14 24 41 0 -38 28 12 7 15232239 710 64 =41 28 12
8 14 23 38" 0-4i 20 9 14 24 39 64 0 59 40 20

pear for the adjacent vertices and, generally , the magnitudes of the entries fall off
as the distance between the vertices increases. In this respect, the Z matrix shows
some similarity to the Wiener matrix, both of which contrast with the distance ma-
trix D where the opposite is true, and as the path between vertices increases, the
corresponding entries in the distance matrix also increase. This increase of matrix
elements with separation in the D matrix is probably the main reason why such ma-
trices have played a less important role in structure-property studies. It is to be ex-
pected that, as the separation between vertices increases, their »interaction« will be
less and less important. W matrix and Z matrix simulate this behavior and satisfy
this general condition and may, therefore, be more important for describing struc-
ture-property relationships.

CONSTRUCTION OF Z MATRICES

Enumeration of graph invariants, even for relatively small graphs, may be time
consuming and error-prone. Hence, it is desirable to delegate such construction to
computers, providing a practical algorithm can be designed. To arrive at some useful
computational approach to such matrices, one should examine the properties of such
matrices in more detail. Regularities and patterns observed will serve as a check on
numerical work and may lead to recursive relations or an algorithmic solution. So
far, however, too few regularities have been observed to arrive at either recursions
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or an algorithm. In the case of n-alkanes, we observe that for the terminal vertices
the difference between successive elements (in the first and the last rows or the first
and the last columns) gives the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13,... One can
also observe that for n-alkanes, except for the »leading« entry in each row (corre-
sponding to adjacent vertices), the »tail« part is the same as in a molecule having one
carbon atom less.

This is, however, too little (and too special a case) to start designing Z matrices
for molecules of interest. Hence, in order to construct such matrices for all the iso-
mers of octanes (shown in the Appendix), we had to resort to the »brute force«. How-
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struction of the elements of Z matrix for iso-
c mers of octane.
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ever, instead of constructing some 500 subgraphs to build all eighteen 8 x 8 (sym-
metrical) matrices, it suffices to consider some 50 subgraphs (Figure 2), since many
of the subgraphs arising in the construction appear again and again in different iso-
mers. Once the count of nonadjacent edges in these 50 subgraphs (many of which
are disjoint) is made, the information is combined in different ways in different iso-
mers. In the Appendix, we list the 18 Z matrices for all isomers of octane, as they
may serve as a source for constructing additional matrix invariants (not considered
in this report).

NOVEL INVARIANTS

Here, we will consider only a few of the invariants of the novel Z matrices. The
standard matrix invariants include the eigenvalues and the coefficients of the char-
acteristic polynomial which will not be discussed here. Instead, we list the path se-
quences (Table III), and the total number of paths, viewing the weights as given by
the magnitude of the matrix elements. One obtains path sequences by first adding
all entries for the adjacent vertices, then all entries corresponding to vertices sepa-
rated by paths of length two, followed by the sum of contributions corresponding to
all pairs of vertices separated by length three, etc. The first member in the sequence
is the already mentioned descriptor Z' used in the construction of Z'/Z, here denoted
as 'Z. Half of the sum of all such path numbers corresponds to the sum of all paths
of all lengths, which is an additional graph invariant, analogous to the molecular
ID number.?! One may also consider the matrix row sums. From the row sums, one
can construct an index L, analogous to the Balaban index J3? and the corresponding
index K% derived from the Wiener matrix.

We will here use invariants 1Z and 2Z, the leading members in the path sequence
of Z matrices. In Figure 3 and 4, we illustrate the invariants of 'Z and 2Z on a (ps,p3)
coordinate grid, a convenient template for presenting isomeric variations in al-

TABLE III

Path numbers 1Z and 2Z for the 18 isomers of octane

Path sequences 1Z 2z
n-octane 160 82
2-methylheptane 140 90
3-methylheptane 146 97
4-methylheptane 144 95
3-ethylhexane 150 102
2,2-dimethylhexane 114 106
2,3-dimethylhexane 131 109
2,4-dimethylhexane 127 100
2,5-dimethylhexane 123 94
3,3-dimethylhexane 122 106
3,4-dimethylhexane 134 112
2-methyl-3-ethylpentane 135 106
3-methyl-3-ethylpentane 130 132
2,2,3-trimethylpentane 109 118
2,2,4-trimethylpentane 97 104
2,3,3-trimethylpentane 113 124
2,3,4-trimethylpentane 118 109

2,2,3,3-tetramethylbutane 87 114
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Figure 3. Regular behavior of 1Z on the (pg,p3) coordinate grid.
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Figure 4. Regular behavior of 2Z on the (py,p3) coordinate grid.

kanes.?*% As we can see from Figure 2 and 4, both novel descriptors show quite
regular variations in the (pg,ps) coordinate system, as we move along either of the
two axes. This immediately suggests that the novel invariants 'Z and 2Z may pro-
duce good regressions for selected physicochemical properties of alkanes, as the lat-
ter also show regular variations along the !Z and 2Z axes of the (ps,p3) coordinate
system, also referred to as the periodic table of isomers.3®

APPLICATIONS

To suggest a novel invariant, even one with a simple structural interpretation,
is not necessarily a difficult task, which is part of the problem of noncontrolled pro-
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liferation of topological indices. However, if one makes the restriction that the novel
indices should satisfy some additional criteria,!>3% and in particular that they should
show good correlation with some of the properties of the molecules, one finds that the
task of introducing novel descriptors is difficult and challenging. This is so even when
we relax somewhat the constraints on the novel indices and, for example, do not in-
sist that they should dominate one of the molecular properties. We may consider a
novel descriptor as an additional (auxiliary) descriptor in a multiple regression, but
one that improves a correlation beyond the capabilities of currently available de-
scriptors! Several recent studies have shown that over and over again the same lim-
ited number of molecular descriptors suffice to describe most of the molecular prop-
erties so far considered.?79

In order to test the new descriptors !Z and 2Z. we have examined the boiling
points in octanes and considered one and two variable regressions. Using !Z as the
independent variable, we obtain a linear regression:

BP = 0.2866 'Z + 77.416

with the coefficient of regression R = 0.871 and the standard error S = 2.10 °C. This
is comparable with a dozen best results, as it can be seen from Table IV. Regression
based on the use of the W/Z ratio, a novel descriptor, only recently recognized as po-
tentially useful,? gives a similar result: R = 0.871 and S = 3.09 ° Both of these cor-
relations are, however, somewhat worse than the best single variable regression (for
octane isomers) based on the Hosoya Z topological index (R = 0.888 and S = 2.90 °C).*

In Table V we summarized the results of multiple regression analysis based on
the use of two variables, including our novel indices 'Z and 2Z. The top rows in Table
V give the coefficient of regression R and the bottom rows give the standard error
S for the pair of variables indicated at the top and at the left-hand side of the table.

TABLE IV

The best dozen single descriptor regressions
for the boiling points in octanes (For
description of the descriptors see ref. 39)

D . Standard Regression
escriptor §
error coefficient
Z 2.90 °C 0.888
1/2y 291 °C 0.887
Ly /2y 2.93 °C 0.886
2y 2.98 oC 0.882
W/Z 3.09 °C 0.872
1y-2y 3.09 °C 0.872
1Z 3.10 °C 0.870
2y -3y 3.11 °C 0.870
x 1 3.25 °C 0.857
AZV 3.53 °C 0.823
1y 3.60 °C 0.821
x(W) 3.70 °C 0.809

17y 3.78 °C 0.801
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We see that by using variables !Z and 2Z, we achieve one of the better results (R = 0.912
and S = 2.659 °C):

BP = -0.3428 'Z + 0.1631 %Z + 53.074

This is almost the same as the two parameter regression based on the Wiener num-
ber W and the topological index Z (R = 0.913 and S = 2.658 °C):

BP = 0.3071 W + 1.5607 Z + 94.149

and slightly worse than the best combination that uses Z and 22!

TABLE V

The best two variable regressions for the boiling points
in octanes. Top row gives the standard error (°C)
and the bottom row the coefficient of regression

zZ W/Z 1z 2Z
W 2.658 2.745 2.719 4.535
0.913 0.906 0.908 0.718
7 - 2.665 2.835 2.642
- 0.912 0.900 0.914
- 2.703 2.860
Wiz - 0.909 0.898
- 2.659

1 .

- - 0.912

TABLE VI

Experimental boiling points, calculated boiling points and the
difference for the best two parameter regression (using Z and 2Z)

Isomer BP(exp) BP(cale) Diff.
n-octane 125.67 121.53 +4.14
2-methylheptane 117.65 115.63 +2.02
3-methylheptane 118.93 119.25 -0.32
4-methylheptane 117:7:1. 117.62 +0.09
3-ethylhexane 118.53 121.25 -2.72
2,2-dimethylhexane 106.84 109.32 -2.48
2,3-dimethylhexane 115.61 115.21 +0.40
2,4-dimethylhexane 109.43 112.72 -3.29
2,5-dimethylhexane 109.10 110.60 -1.50
3,3-dimethylhexane 111.97 112.08 -0.11
3,4-dimethylhexane 117.73 118.34 -0.61
2-methyl-3-ethylpentane 115.65 116.22 -0.57
3-methyl-3-ethylpentane 118.26 119.43 -1.17
2,2,3-trimethylpentane 109.84 109.43 +0.41
2,2,4-trimethylpentane 99.24 103.56 —4.32
2,3,3-trimethylpentane 114.76 111.55 +3.21
2,3,4-trimethylpentane 113.47 111.07 +2.40

2,2,3,3-tetramethylbutane 106.47 102.04 +4.43




426 M. RANDIC

BP = 1.3796 Z + 0.1235 2Z + 64.505

with R = 0.914 and S = 2.643 °C. In Table VI, we list the computed boiling points
and the residuals for this best two variable regression. If we try regressions using
three descriptors at a time, we do not improve the standard error, which increases
in the range of 2.72-2.84 for various combinations of three descriptors (the best
combination involves W, Z and 2Z with R = 0.915 and S = 2.719 °C).

CONCLUDING REMARKS

The novel graph invariants !Z and 2Z have passed the critical test mentioned
before and they have been found useful descriptors already when considering the
boiling points in octanes. Hence, the Z matrix, the matrix elements of which are
structurally related to the topological index Z of Hosoya and the descriptor Z'/Z, ap-
pears to be a promising source of novel graph invariants. Because of the close rela-
tionship to Hosoya's Z topological index, we propose to refer to this matrix as
Hosoya's matrix.

APPENDIX

The Hosoya matrices for the 18 isomers of octane (only the upper
triangular part is shown since the matrices are symmetrical).

n-octane 2-methylheptane
0 200 12 7 4 2 1 0 0% 208215 9 5 3 e 212
0 25 15 9 5 3 1 0 23 14 8 5 2 20
0 23 14 8 5 2 0: 219= 11 7/ 3 15
0 24 14 9 4 05220 13 6 9
02523215 7 021510 5
0r =25 19 0 157, 3
0 20 0 1
0 0
3-methylheptane 4-methylheptane
0= 1 12 9 5 3 1 7 0 1810 7 5 3 1 4
026 <18 211 7 S 15 021 5= 7 3 9
0 24 14 9 4 20 9= 23 =17 19 5 4
0= 20 13 6 14 0 23 15 q==320
0 22 11 8 0ia 205 10~ 14
0 18 5 0= 18 9
0 2 0 4
0 0
3-ethylhexane 2,3-dimethylhexane
0 1819 8 5 2 9 4 0 =gl 8 5 26 19¢ 1D
0 =25 -1 gl 5 18 9 W= el 7 She iyl
0 23 8415 Tee 250 12 0 14 9 4 14 14
0:.422: 1158317 8 (12 iy 8 5 5
0. 19%:44 5 0 13 5 5
0 5 2 0 2 2
0 18 0 12
0 0
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SAZETAK
Hosoyina matrica - izvor novih molekulnih deskriptora
Milan Randié

Uvedena je nova matrica za opis molekulnih grafova. Konstrukcija ove matrice povezana
je s ratunanjem Hosoyina Z indeksa. Nova matrica, nazvana Hosoyinom matricom zbog veze
sa njegovim topologijskim indeksom, sluzi kao izvor novih graf-teorijskih invarijanti, koje mogu
biti vaZne pri proudavanju odnosa strukture i svojstava molekula. Pokazano je kako se Hoso-
yina matrica konstruira i kako se iz nje mogu izvesti novi topologijski indeksi. Usporedba sa
srodnim topologijskim indeksima ilustrirana je na primjeru vreliSta oktana.
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