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The recently proposed pairon population analysis based on geminal ex-
pansion of pair densities is applied to the investigation of the molecular
structure of several simple molecules. It has been shown that the values
of pairon populations straightforwardly reproduce the classical structural
formula and, thus provide a new and surprisingly simple means of extract-
ing structural information form the wave function.

INTRODUCTION

It is one of the basic postulates of quantum mechanics that all the available in-
formation about the system is contained in its wave function. Applied to a molecular
system, this postulate requires the wave function to contain also information about
molecular structure. While for observable properties the extraction of the required
information is quite straightforward and reduces to the calculation of the expectation
value of the corresponding operators, the situation with structural information is
much more complex. This is due to the fact that the basic structural unit, the chemi-
cal bond, is not associated with any operator. As a consequence, the concept of chemi-
cal bond is extremely difficult to analyze and the best that can be done is to discuss
the nature of chemical bond from various points of view."X° In spite of numerous
attempts at such a discussion, the problem of the compatibility of the chemical bond
concept with quantum mechanics is still far from being completely exhausted.

This is especially true of the relation of this concept to the classical Lewis's
model of (covalent) chemical bond as a shared electron pair.!! The immense debt
which chemistry owes to this idea has stimulated the numerous attempts to substan-
tiate the postulated pair nature of chemical bond by theoretical arguments. The first
attempt in this respect is represented by the so-called loge theory.!>'¢ Closely re-
lated to this theory is also the more recent approach by Bader, Mel Levy and
Julg,’® 7 who proposed to simplify the procedure of finding the borderlines of indi-
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vidual loges from the condition of minimization of fluctuation of electron pairs. Un-
fortunately, these and other attempts!® to support the expected role of electron pair
in bonding were not entirely successful and the situation finally led Prof. Bader to
the rather pessimistic conclusion that atoms, rather than chemical bonds, are to be
regarded as the basic building block of the molecules.'®

In spite of these discouraging results, the intuitive faith in the deep physical
meaning of the Lewis electron pair idea is strong enough and attempts to prove the
pair nature of chemical bonds still continue. As an example, it is possible to mention
Salem's analysis of electron reorganization in allowed and forbidden pericyclic reac-
tions in terms of pair correlation functions.?’ The closely related analyses of pair
density matrices have also been performed by us in the past few years?’2* and our
experience in this field stimulated us to extend our efforts also towards investigation
of the role of electron pairing in chemical bonds. The procedure we have been using
is the population analysis of pair densities?® and, as it will be shown, this approach
is indeed able to throw some new light on the old problem of the nature of chemical
bond and, particularly, to revive the old Lewis idea of a bond as a shared electron
pair.

Our aim in this study is to summarize the results of our previous studies in this
field and to demonstrate that the formalism of pairon population analysis can pro-
vide the long sought but still missing link between the quantum and classical pic-
tures of chemical bond. The most important result of this approach is the precise
reproduction of structural formula, including not only molecular connectivity but
also the multiplicity of individual bonds, as well as detection of the possible presence
of free electron pairs.

THEORETICAL

According to quantum mechanics, the most complete source of information about
the microscopic system is contained in the corresponding wave function. This quan-
tity is, however, rather abstract and, in order to extract the information hidden in
it, the wave function is to be subjected to subsequent mathematical manipulations.
One of the very general treatments of this type consists of extracting information
about the behaviour of only a limited number of particles from the total many elec-
tron function. This is the philosophy of introducing the reduced density matrices. In
our case, where we are interested in analyzing the role of electron pairing in chemi-
cal bonds, the above philosophy allows us to concentrate only on the description of
two electrons contributing to the electron pair. The quantity providing just this re-
duced relevant information is the so-called pair density matrix n(1,2). This matrix
is generally defined by equation (1), where do;, dx; denote the integration over spin

N(I\;— 1) [

n(1,2) = (1,2,3-N) do, do, dxg dx,dxy (1)

and/or spin-space coordinates of electrons, i and j, respectively. This density is given
by the well-known formula (2),

w(1,2) = 20 22 Q516D 150 1,2 %:2) @
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which, in the case of Hartree-Fock approximation, can be further simplified to form
(3), expressing the matrix elements of the four index matrix £ terms of matrix ele-
ments of the usual charge density bond order matrix P.

1 1 :
Qaﬁy& = 5 [pu[}pyS = 5 pqyppiJ (3)

Although the above introduced pair density is much simpler to analyze than the
original wave function, it is still a rather complex quantity and the extraction of the
desired information about the behaviour of electron pairs still requires some addi-
tional mathematical processing. One such technique is the so-called population
analysis. Although attempts to introduce the population analysis of matrix 2 have
been reported,”*® such attempts have, in our opinion, one important conceptual dis-
advantage. This is due to the fact that the usual expansion of pair density in the
basis of atomic orbitals (2) leads to a four index matrix €, for which manipulations
with the individual elements is unnecessarily complicated. In this connection, it is
interesting to note that the form of the expansion matrix of the pair density can be
considerably simplified using the basis of true two-electron functions — geminals —
instead of the usual basis of one-electron orbitals. As demonstrated in the previous
study,” and also in,? if the geminal basis is chosen in form (4), the pair density
7(1,2) can be expressed by Eq. (5).

Soa = )’k(l’Z) = th(]‘) Xu(z)

1
S =412 = E 1D 1D + 2.2) 15(1)] )
1
=412 = = (%D 25(2) - 2@ 25(D)]
o(1,2) =D g,2(1,2)A(1,2) (5)

L

We can thus see that in this basis the pair density has the simple form of a nor-
mal two-index matrix similar to the form of the first order density matrix in the ba-
sis of orbitals. On the basis of this analogy, it is then possible to use the formalism
of the common Mulliken population analysis®® and to introduce the pairon popula-
tions. Prior to presenting the final expression for the pairon populations, some spe-
cific features of the above procedure are worth mentioning. First of all, it is neces-
sary to note that, in the case of orthogonal basis geminal function (6), only the
diagonal elements g;; of the pair density analogous to »net« quantities of the Mul-
liken population can be taken into account.

a2,0,9 ar, ar,=5, 6)

As a consequence, the natural normalization condition (7), expressing the conserva-
tion of the total number of electron pairs, is satisfied.
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In this connection it is, however, fair to say that the orthogonality constraint is not
at all necessary and the same population scheme can be generalized to nonorthogo-
nal geminal bases as well. Moreover, such a generalization is not restricted only to

the Hartree-Fock wave functions but correlated wave functions can be also ana-
lyzed.3!

Another important feature of the proposed population analysis stems from the
fact that individual basis functions (4) correspond to thé situation where either both
participating orbitals «, B are associated with one atom or shared between atoms.
As a consequence, the final populations can also be associated with mono- and bia-
tomic contributions. This is an important simplification since, in previous population
schemes,?® the contributions involving three- and four-atomic contributions ap-
peared. In addition to this simplification, there is yet another specific difference.
This difference arises from the fact that in constructing the geminal basis functions
it was necessary to take into account the existence of spin pure singlet and triplet
states of the electron pair. As a consequence, and because of the special block-diago-
nal form of the pair density expansion?»?°, it is possible to introduce the populations
corresponding to separate contributions of singlet and triplet states of electron pair.
The individual populations are then given by Eq. (8):

Iy, = i pr+-22 P 0. P

342 g
HA;=ZZZ(ppupvv_p12w)
p<v (8
1 A /B
T Zgg(pwpw 5
p 3 A B
HAB Zz‘:z(ppupvv puv)

Having introduced these final expressions, let us demonstrate, in the following
part, the practical application of the resulting population scheme. One of the main
goals will be the demonstration that properly defined pair quantities provide a new
simple means of extracting structural information, such as e.g. the connectivity be-
tween atoms, including the multiplicity of bonds as well as detection of the possible
presence of free electron pairs on some atoms.

In this connection it is perhaps fair to say that a certain visualization of struc-
tural formula is available also using various localization procedures®?-3¢ or the re-
cent definition of bond order by Cioslowski®” but these, in principle, one-electron ap-
proaches are inherently unable to say anything about the role of electron pair in
bonding. Thus, in this respect, our approach provides not only a duplication of what
is already known but, and this is new, also brings a clear theoretical evidence in fa-
vour of the Lewis electron pair model of chemical bond.
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The calculated values of pairon populations for a series of simple molecules are
summarized in Table I-III. Calculations were performed by the standard MNDO
method®® for optimized molecular geometries.

RESULTS AND DISCUSSION

In order to demonstrate the role of electron pairing in chemical bonds, it is first
necessary to introduce the so-called effective pairon populations [16] defined by Eq.

9).
1

mgﬂﬁyﬁnh
Jofi =HXB—%H£B ©)

Although introduction of these quantities may seem rather artificial at first sight,
is is via their values that the parallel between chemical bonds and electron pairs
becomes especially clear and transparent. One of the most important results, which
speaks in favour of these effective populations, is that by using their values it is pos-
sible to reproduce the classical structural formula, including the multiplicity of the
bonds, as well as detect the eventual presence of free electron pairs on some atoms.
While the reproduction of the structural formula is based on biatomic contributions,
detection of the presence of free electron pairs requires a knowledge of monoatomic
populations.

Let us start our analysis by examining the values of biatomic contributions. The
most surprising result that can be seen from the tables is that, despite the great
variety of atoms involved, the effective pairon populations display remarkable regu-
larity and their values can be roughly divided into only three or four basic groups.
For the first group, corresponding to single bonds,the values of effective populations
are, irrespective of the type of the bonded atoms, close to 0.5. Another group, char-
acterized by the populations close to 1, is then typical of the double bonds while for
the third group, corresponding to triple bonds, the contributions are closed to 1.5.
At the same time, the effective populations between formally nonbonded atoms are
practically negligible. This result is even more interesting if we look at pure singlet
and triplet populations whose values display much less regularity and nonnegligible
contributions are observed between all, even nonbonded, atoms. We can, thus, see
that the proposed population scheme is able not only to detect the presence of bonds
between the atoms but also to give more detailed information about the multiplicity
of individual bonds. This is the first, indirect, indication of the convenience of intro-
ducing effective pairon populations. Another, perhaps even more important, indica-
tion of the specific role of effective pairon populations arises from the following iden-
tity (10).

Zn§+2ng=% (10)
A A<B

The proof of this identity immediately follows from he definition of effective
populations (9). Using this equation, the individual terms in Eq. (10) can be replaced
by identities (11), from which it is evident that the left hand side of Eq. (10) is equal
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TABLE I

Calculated values of singlet, triplet and effective pairon populations for
a series of simple molecules with single bonds

molecule type I3 I, 1T Xg g ITig 17, gg

H H 0.250 0.0 0.250 - - -
2 H-H - - - 0.500 0.0 0.500

F F 7.750 13.500 3.250 - - —
2 F-F - - — 12.500 36.0 0.500

H 0.127 0.0 0.127 - - -

H-F F 8.345 14.792 3.414 - — -
H-F - - - 1.528 3.208 0.459

0.175 0.0 0.175 - - -

H.O (0] 6.341 10.988 2.678 - — —
2 O-H - - - 1.566 3.244 0.485
H--H - — - 0.176 0.523 0.002

H 0.213 0.0 0.213 - - -

NH 4.353 7.441 1.873 - - -
3 N-H - - - 1.455 2.882 0.494
H--H = - - 0.214 0.638 0.001

H 0.259 0.0 0.259 - - -

CH C 2.422 4.314 0.984 — - -
4 C-H = = - 1.245 2.264 0.490
H--H = - - 0.260 0.772 0.002

H 0.253 0.0 0.253 - - -

C 2.205 3.873 0.914 - - -

F 8.246 14.634 3.368 - - -
CH3F C-H - - - 1.179 2.101 0.479
C-F - - - 7.012 19.604 0.477
H--H - - - 0.255 0.749 0.005
H---F - - - 1.826 5.446 0.011

H (0) 0.168 0.0 0.168 - - -

H (C) 0.265 0.0 0.265 - - -

(0] 6.339 11.026 2.664 - - -

CH3;0H C 2.280 4.032 0.936 - - -
C-H - - - 1.218 2.228 0.475
c-0 - - - 6.275 17.320 0.501
O-H — - - 1.534 3.180 0.474

H®N) 0.204 0.0 0.204 - - -

H(C) 1205 2165 0483 = - =
& 2.363  4.197  0.964 = = =
CH;NH, N 4443 7631 1900

C-H - - - 1.205 2.165 0.484
N-H - - - 1.437 2.856  0.485
C-N - - - 5.377 14.628 0.501
H 0.253 0.0 0.253 - = —
C.H C 2.488 4.437 1.009 - - -
226 C-H - - - 1.245 2272  0.488

c-C - - - 4.214 11.157 0.495
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TABLE II

Calculated values of singlet, triplet and effective pairon populations for
a series of simple molecules with double bonds.

molecule  type I3 i, It I3y Iy g
H 0.230 0.0 0.230 - — -
C 2.609 4.657 1.056 - - -
ethene C-H = = = 1.220 2.214 0.482
C=C - - - 4.658 10.994 0.993
H--H - - - 0.232 0.684 0.004
H 0.251 0.0 0.251 - - -
C 2.170 3.799 0.903 - - -
O 6.254 10.909 2.618 - - -
CH,0 CH = = — £& 1158 W2.110- . D450
C=0 = = - 6.330 15.984 0.970
H--H == - - 0.262 0.717 0.023
O--H - - - 0.232 0.684 0.004
H (N) 0.205 0.0 0.205 - - -
H (C) 0.241 0.0 0.241 - - —
C 2.427 4.304 0.992 - - -
N 4.368 7.497 1.869 - - -
CH,NH C-H - - - 1.199 2.192 0.468
C=N - - - 5.651 13.944 1.003
N-H = = - 1.425 2.837 0.480
N.-H = - - 1.237 3.694 0.005
H--H - - - 0.237 0.676 0.011
0.201 0.0 0.201 - - -
4.157 7.061 1.803 - - -
N.H = - - - 7.019 18.007 1.016
2172 N-H = = = 1.382 2.717 0.476
H--H - - - 0.209 0.580 0.016
N--H - - - 1.145 3.428 0.002
H 0.236 0.0 0.236 - - -
cQ 2.615 4.696 1.050 - - -
il C (2) 2.423 4.354 0.972 - - -
C=C - - - 4.522 10.583 0.994
C-H = - - 1.229 2.270 0.472
C.-C — - - 4,181 12.538 0.004
H 0.213 0.0 0.213 - - —
C 1) 2.806 5.004 1.138 - - -
C (2) 2.128 3.779 0.868 - - -
kit (6] 6.159 10.735 2.581 - - -
C-H o= = - 1.209 2.236 0.463
C=C = = - 4373 10.238 0.960
C=0 — - - 6.226 15.782 0.965
C--0 = - - 6.634 19.701 0.067

61
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TABLE III

Calculated values of singlet, triplet and effective pairon populations of
a series of simple molecules with triple bonds

molecule  type I3 ITia s I3y ITfg g
H 0.179 0. 0.179 - - -
C 2.705 4.528 1.196 - - -
C-H — - - 1.115 1.925 0.473
gdrCH C=C - - - 5.054 10.727 1.478
H-H - - - 0.181 0.531 0.004
C--H - - - 0.884 2.618 0.011

H 0.164 0.0 0.164 - = =
C 2.626 4.662 1.072 - - =
N 4.153 7.055 1.801

HCN C-H = s = 1060 1.787  0.464
C=N - - = 5955 13423 1481
H-N = _ = 1.041 3073 0017
= N 4000206750 oB750
2 N=N a? = = 7.000 16500  1.500
C 2432 3458 1279 E = =
co O 6072 10737 2493 . = E
C=0 = = = 6.496 15805 1.227
NN + 2
5 i T 13- 100 - YD
A A<B
3N(N -2
ZH}‘A+ZHAB=N(‘)=% (1)
A A<B

to the total number of singlet minus one third of the total number of triplet pairs
that can be formed in a closed shell system with N electrons.As it can be verified
by direct calculation, the difference between the number of singlet and (one third)
triplet pairs is identically equal to N/2. This result is very interesting since N/2 just
gives the total number of bonds plus free electron pairs that can be formed in a
closed shell system with N valence electrons. We can thus see that, while there is no
simple correlation between the molecular structure and the number of pure singlet
and triplet pairs, such a parallel clearly exists for effective pairs.

While the straightforward interpretation of effective populations exactly paral-
lels what was already found in previous studies, it is perhaps interesting to give a
short remark on the values of individual singlet and triplet populations. The sim-
plest situation is the case of monoatomic populations /7§, and I1},, whose values can
be interpreted as the total number of singlet and triplet pairs on a given atom. For
the system of N electrons with zero net spin, the number of these pairs is given by
Eq. (11) and, as it can be easily verified by direct calculation, the values resulting
from the use of Eq. (11) for the values of N given by the Mulliken population analysis
are quite close to the actual values of IT§, and I1/,. In contrast to simple interpre-
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tation of the values of monoatomic contributions, the case of individual singlet and
triplet biatomic populations is much more complex and we can offer no explanation
for them except for a rough rule that triplet biatomic pair populations are usually
higher than the singlet ones simple because there are more triplet than singlet pairs.

Having demonstrated the reproduction of a molecular graph by biatomic (effec-
tive) pairon populations, let us turn our attention to another interesting feature of
the proposed population scheme, namely detection of the presence of free electron
pairs on atoms. For this purpose, monoatomic populations play the decisive role. In
order to demonstrate the above features, it is convenient to start with the simplest
case of the Hy molecule. As it can be seen from Table I, the pairon populations are
in this case distributed in such a way that half of the pair resides in covalent bia-
tomic contribution IT,5 while the remaining half is evenly distributed between two
atomic ionic populations.* In this connection it is perhaps interesting to mention
that, for this particular system, the same result can be obtained also from simple
VB analysis of the MO wave function and, as such an analysis has shown, the rela-
tively high contributions of ionic terms are a direct consequence of the inability of
the MO function to describe correctly the dissociation of the molecule. This specific
drawback of the MO wave function is not, however, important here since, for the
molecules close to ground state equilibrium geometries, the MO description is fairly
good.

After this short explicatory excursion, let us return to our examples of the H,
molecule and let us focus our attention on the values of monoatomic populations. As
expected, the symmetry of the molecules finds its reflection in the equality of the
corresponding contributions IT,, and ITzp. This result is quite general and the same
distribution of monoatomic terms is observed for any ideally nonpolar A—A bond (Ta-
ble I). On the other hand, the inherent polarity of bonds A-B will find its reflection
in the change of relative contributions of IT,, and ITg;. As an example, let us analyze
from this point of view the electron distribution in the H-Cl molecules. In this case,
the resulting values of effective pairon populations are the following (Eq. 12):

T = 0.167
e = 3.352
H?{f,fm = 0.483 (12)

What can be deduced from these values? Let us first imagine an hypothetical situ-
ation where the H-CI bond is ideally nonpolar. In this case, it is possible to expect
that the atomic population on hydrogen will again be 0.25 and the same value can
also be expected to contribute from the H-Cl bond to the atomic population of chlo-
rine. However, the chlorine atom also carries three electron pairs, the presence of
which should be taken into account. Due to the parallel between the total number
of effective pairs and the number of bonds plus free electron pairs (10), such a cor-
rection is extremely simple and the contribution is just 3. Thus, the total atomic
population on chlorine should be 3.25. Since, however, the H-CI bond is inherently
polar, deviations from this idealized limit can be expected. This is actually the case

* In the ground state of Hy, molecule, only one singlet and no triplet pairs can be formed so that in this
case the effective populations are identical to pure singlet populations.
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but, as seen from the actual values, the real electron distribution is not very far from
this idealized limit. Moreover, the differences clearly correspond to the differences
in electronegativity. Thus, e.g., due to greater electronegativity of chlorine, the cor-
responding atomic population exceeds the idealized limit 3.25 while the population
on the less electronegative hydrogen is correspondingly less. In a completely analo-
gous way, it would be possible to analyze any other molecule but, instead of present-
ing additional examples, we will only give the idealized values of atomic populations
for atoms with 2, 1 and 0 electron pairs e.g. (H,O, NH; and CH,). These values are
2.5 (2 free pairs + 2x0.25), 1.75 (1 free pair + 3 x0.25) and 1 (0 free pairs +
4 x 0.25), respectively. As evident from the Tables, these hypothetical values are
quite close to the actual values in real molecules and the differences correspond
again to the electronegativity of the atoms.

Although the reproduction of the classical structural formula by the values of
pairon populations is certainly the main goal of the new approach, there are, nev-
ertheless, also some other interesting features worth mentioning. First such example
concerns the possibility to interpret the physical meaning of the quantum chemical
definition of the concept of valence. Classically, the valence of a given atom is a
measure of its capacity to enter into bonding with its partners and, since the Lewis
interpretation connects each covalent bond with a shared electron pair, the valence
also gives the number of electron pairs that a given atom is able to share with its
neighbours. On the other hand, the quantum chemical definition of valence was pro-
posed by Jug and Gopinathan®*’ who defined it in terms of the so-called Wiberg
indices W*! (Eq. (13)).

A B
LD ey ) A (13)

BzA BZA—E=—¥

Although the numerical values of Jug's valencies are remarkably close to what can
be expected classically, the fact that both definitions are actually completely equiva-
lent was not clear until very recently, when a direct proof based on the use of effec-
tive populations was given.?> As it can be seen, the original Jug's definition can be
alternatively rewritten in the form of (14) from which the parallel with the classical
definition is immediately apparent.

Ve I (14)
BzA

Another example of the usefulness of introducing effective pairon populations
concerns their nearly perfect transferability. Thus, e.g., if we look at the Tables, it
is possible to see that, irrespective of the type of the molecule, the effective pairon
populations for the bonds of the same type (C—H or O-H bonds for instance) are very
close. This transferability of effective pairon populations is a very useful property
since it provides a direct theoretical justification for the empirically well known prin-
ciple of the additivity of bond energies.? This result, along with all the interesting
properties mentioned above, is very important since the ability of effective pairon
populations to mimic the properties usually attributed to chemical bonds could con-
siderably help to understand the nature of the chemical bond. Some investigations
in this direction are currently under way in our laboratory and their results will be
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reported elsewhere.*® This above all, concerns the analysis of the basis set depend-
ence since, like for other Mulliken-like population schemes, the values of pair popu-
lations can be expected to display sensitivity to the basis set chosen. This is not par-
ticularly important for the semiempirical approach described here but for the
interpretation of more accurate ab initio data this factor can be of crucial impor-
tance.
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SAZETAK
Od valne funkcije do strukturne formule
Robert Ponec

Nedavno predloZena paronska populacijska analiza, zasnovana na geminalnom razvoju gu-
stoée elektronskih parova, primijenjena je u istraZivanju molekulske strukture nekoliko jed-
nostavnih molekula. Pokazano je da paronske populacije izravno reproduciraju klasiéne struk-
turne formule, pa stoga predstavljaju novo i iznenadujuée jednostavno sredstvo za dobijanje
strukturne formule molekule iz pripadne joj valne funkcije.
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