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Knowledge of the structure and functionality of chemical systems does
not only allow verification of physical and chemical mechanisms of model
hypothesis but it also offers the possibility of designing new materials with
improved properties. Quantum mechanical methods are the appropriate
tool for performing theoretical investigations on the molecular level. Reli-
able calculations on complex chemical molecules and macromolecules re-
quire the usage of high-performance computers. The most promising devel-
opment in the modern computer technology — the massive parallel multi-
processor systems — can be efficiently used to investigate the structure of
large and complex chemical systems.

INTRODUCTION

Analysis, modeling, prediction and optimization of molecular and macromolecu-
lar structures using supercomputers is one of the »challenging classes« of scientific
high-performance computing. Therefore, new approaches to scaling, that is adjusting
problems to the architecture of computers, as well as further development of extreme
capacity computer systems are necessary.

Application of the quantum mechanical methods to investigate physical and
chemical problems at the molecular level mainly serves two tasks:

a) mechanisms of physical and chemical experimental findings can be enlight-
ened and hypothetical interpretations can be verified. At present, it seems most
probable that several important questions, e.g. high—T, superconductivity of ceramic
materials or the primary steps of chemical carcinogenesis, can be only solved with
the help of theoretical investigations at the microscopic level.

b) Application of the theoretical quantum mechanical methods can be of great
value in material sciences to predict new chemical systems with a selected combi-
nation of improved properties. In this way, expensive and time-consuming experi-
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ments can be avoided. Furthermore, theoretical structure-activity relations can be
used to design e.g. enzymes and pharmaceuticals of very specific action.

To obtain reliable results from theoretical investigations of complex chemical
systems, one has to perform highly accurate calculations using ab initio methods.
This means that the requirements are very high with respect to the CPU-time, core
memory and disk space.

In the last few years, the development of computer technology has followed
mainly two ways: vector computers and multiprocessor systems and, their combina-
tions. Cost/efficiency considerations turned out to be in favour of parallel computers,
which can be realized in the simplest way by a loosely coupled array of work sta-
tions. As it can be expected at this stage of development and experiments, the com-
mercially available systems do not only have different processor architectures, in-
terprocessor communication systems and disk storage managements, but there is no
common software supporting parallelization of programs, either.

Therefore, today the users have to adjust and implement their programs on vari-
ous types of multiprocessor systems and discuss their experience with the teams in-
volved in the design of hardware, software and operating systems. Most of the quan-
tum chemical algorithms are optimally appropriate for parallelization and, in
addition, for vectorization, and these properties can be used for the development of
highly efficient program codes to perform large numerical applications.

In the next paragraph, we will briefly review the basic equations of the ab initio
Hartree-Fock crystal orbital method.!® Then, a brief summary follows on how vec-
torization has been accounted for. The strategy of integral programs parallelization
is described and the results are given of the speed-up and efficiency measurements
on different multiprocessor systems.

Finally, we present the more complex parallelization scheme of the SCF-pro-
gram, including also a proposal on how to distribute the diagonalization of hermitian
matrices on a multiprocessor system.

BASIC EQUATIONS OF THE AB INITIO HARTREE-FOCK CRYSTAL
ORBITAL (HF-CO) METHOD

In the HF-CO theory,!® the generalized hermitian eigenvalue problem
F(k,) cn(ki) = Sn(ki) S(kl) cn(ki) (1)

has to be solved for i = 1, ..., NKP points in the Brillouin zone and n = 1, ..., NBF
bands. The Fock and overlap matrices, F(k) and S(k), respectively, are obtained as
the Fourier transforms of the corresponding matrices in direct space

NEIG

MkE)= Y. exp(RE)MY @)
J =-NEIG

Matrices FO/ describe the interaction of electrons in the reference cell (denoted by
0) and the neighboring cells J, and NEIG is the number of repeating units that is
taken explicitly into account in the calculation.*
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The most time-consuming step consists of the calculation of the large number
of two-electron integrals, which describe the Coulomb repulsion between two elec-
trons. The general form is

[ x00 X,y 12 X,(ry) X,(ry) dr, dr, 3)

ry

where the subscripts r, s, z and v run over all basis functions and the superscripts
can take the values —NEIG,...,+NEIG. Ngroup cell combinations are possible with
respect to the location of the four Gaussian type atomic orbitals which, in turn, are
linear combinations of the so-called primitive Gaussian function (m = 2 — 10). The
value of Ngroup increases rapidly with the increasing number of interacting cells
NEIG (e.g. NEIG = 1, 2, 3; Ngroup = 5, 15, 35). The total number of two-electron
integrals to be computed (without taking into account symmetry restriction with re-
spect to basis function indices) is given by

Ngroup x NBF* x m?*

Since Gaussian lobe functions™® have been used as basis functions, each integral
requires the same number of arithmetic operations:

— 22 additions

— 0 subtractions

— 20 multiplications

— 2 divisions

— 2 square roots

Since it is mandatory to introduce an integral threshold value, two words are
needed to store the integral (one word for the indices and the other for the integral
value; of course, packing of both informations into a single word is also possible).

It is obvious that the calculation of integrals involves a high degree of paralleli-
zation, because they can be calculated independently from each other. The require-
ments on the communication system are low and the principal difficulty consists of
the load balancing of all processors. But, before going into more detail on how we
have solved this problem, we would like to make some remarks on the vectorization
of the code.

VECTORIZATION OF THE TWO-ELECTRON INTEGRAL PROGRAM

It has already been mentioned above that we use Gaussian lobe functions®® in
our new crystal orbital program,* which means that the Cartesian Gaussian p- and
d-functions are approximated (up to any accuracy) by linear combinations of s-type
orbitals. This has the advantage that integrals between all different types of atomic
orbitals are calculated with the same algorithm. So the innermost loop in the pro-
gram can be formulated (choosing high values for the loop variables) in an efficient
vectorizable form.

Furthermore, to avoid redundant calculations of intermediate quantities, we pre-
calculate one-electron terms (between two atomic orbitals) and: even two-electron
terms, including all four basis functions, and store them in vectors.
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Calculation of the final integral value in the innermost loop in a vectorized form
is prevented by the necessary evaluation of the Incomplete Gamma Function. Usu-
ally, one applies a different algorithm, depending on the value of the argument (e.g.
a Taylor series expansion for medium size and an asymptotic expansion for large
values.”® We have developed two new algorithms, one is based on a polynomial di-
vision® and the other uses a sophisticated storage mode of a Table of values for an
extrapolation technique:!° both can be evaluated in an unconditional vectorized
form.

PARALLELIZATION STRATEGY FOR THE TWO-ELECTRON
INTEGRAL PROGRAM

Figure 1 shows the loop structure of the two-electron integral program.*!! Task
distribution to individual processor nodes has not been done like in former investi-
gations in the loop running over the i group!®!? (a sufficiently uniform load balanc-
ing could only be achieved with large values of Ngroup). A finer granularity is ob-
tained by partitioning the two loops over the basis functions i and j (NBF x NBF
pairs). Since the tasks are distributed using the farming-concept, as depicted in Fig-
ure 2, load balancing is almost unaffected by the different sizes of the total task.
One processor, the »masterx, first precalculates the data, which are necessary for all
integrals, and then divides the i j-pairs for each group into as many parts as »slave«-
processors available. As soon as one of the »slaves« sends the message to the »mas-
ter«, that he has finished his task, the »master« will send a new task to him, which
contains all the necessary information on the ij-range and the precalculated data
for the new group.

Loop-Structure

master slave
igroup = 1 .. Ngroup (Cell Indices)
i=1.NBF precalculations
ji=1..NBF I
k=1 .. NBF s e [receive ]
I=1..NBF
ic=1.n; \ read data

for one group

je=1.m Soens )
ke=1l.my artition indices ask for
new task
le=1.m

- send data :
Integral and indices receive
over

primitive = all
Functions == groups

calculate
integrals

terminiate

—— earlier attempts

—— new level of Parallelization

Figure 1. Loop-structure of the crystal Figure 2. Flow chart of the master-slave
orbital two electron integral program. concept of the integral program.
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PARALLELIZATION RESULTS AND ANALYSES

The degree of parallelization can be best measured by the speed-up s and effi-
ciency e, which are defined by the following relations with respect to t, the time
needed by the sequential program, and t,, the time of parallel performance:

s=t/t,
e =s/nproc = ¢,/ t, x nproc

Speed-up and efficiency measurements, as well as an analysis of communication,
were carried out for different multiprocessor systems with distributed memory:

e SUPRENUM, with up to 256 processors and vector co-processors (maximum num-
ber was 32): 20 Mflops peak performance per node.

¢ Intel iPSC/860 with 32 processors (hypercube architecture); 16 MBytes memory;
peak performance of 60 Mflops per node.

The results are given for the model system (NBF=14, Ngroup=5) in Figures 3a
and 3b for both multiprocessor systems. Though the actual SUPRENUM CPU-time
used is larger by a factor of 3.5, as compared to Intel, nearly identical speed-up and
efficiency curves are obtained. Maximum efficiency for this polymer is reached with
about ten processors. Increasing the number of processors, one observes a slow de-
crease of the efficiency below 0.8, which means that about 20 per cent of the CPU-
time is used up for additional efforts related to parallelization.

Increasing the number of integral groups (Ngroup=15) the efficiency is more
than 80 per cent, also by using more than ten processors. A corresponding improve-
ment is observed when the number of basis functions (NBF) is increased, as it can
be seen from Figures 4a and 4b. We can conclude that a sufficiently high speed-up,
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Figure 3. Speed-up and efficiency for the model system with NBF = 14, Ngroup = 5, for (a,
left) SUPRENUM and (b, right) Intel iPSC/860.
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Figure 4. Speed-up and efficiency of SUPRENUM with the model system (a, left) NBF = 14,
Ngroup = 15, and (b, right) NBF = 28, Ngroup = 5.

using a number of processors, can be achieved by performing the calculation of poly-
mers with complex chemical structures.

The analysis of computation time loss (see Figures 5a and 5b) reveals that, in
the case of a large number of integral groups, i.e. when more tasks have to be dis-
tributed, the communication time is dominant, while in the case of fewer groups and
larger elementary cells (resulting in coarse granularity), the waiting time of the
processors is the overwhelming overhead in time.

In the meantime, we have transferred our program also to a loosely coupled ar-
ray of IBM-RISC-6000 work stations, using the message-passage system. So far, we
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Figure 5. Analysis of parallelization overhead for (a, left) NBF = 14, Ngroup = 15, and (b, right)
NBF = 28, Ngroup = 5 for the multiprocessor system SUPRENUM.
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could not obtain results for the speed-up and efficiency comparable with those of SU-
PRENUM or Intel.

Furthermore, completely new version of the integral program has recently been
developed'*'® for the multiprocessor system MEMSY (modular expandable multi-
processor system), which is under development in the Computer Science Department
of our University. The architecture of this parallel system has a pyramidal structure
and consists of three levels of processors having, besides a global disk (which can
serve as a device to exchange data), local communication storage devices that can
be used for nearest neighbor data transfer. This multiprocessor system differs from
other systems in having highly complex and complicated communication structure
signals, short messages semaphores etc. First applications, however, show that we
can obtain results as good as those for the other parallel computers investigated. De-
tails of this work can be found elsewhere.!41%

AN OUTLINE OF THE SCF-PROGRAM PARALLEL STRUCTURE

The generalized hermitian eigenvalue problem defined by Eq. (1) has to be
solved iteratively because the matrix elements are a function of the solution. NKP
matrix diagonalizations have to be performed in each iteration step.

Simultaneously with the development of the SCF-program, we developed paral-
lelization of the QR-diagonalization algorithm.'6!” We succeeded in working out an
optimal distribution of tasks starting with the matrix in its tridiagonal form!®° (the
Householder transformation has not yet been worked out in parallel). We first de-
veloped a concept without performing the diagonalization in parallel. In the next sec-
tion, we will point out how the program structure has to be organized, taking this
additional parallelization into account.2’

Figure 6 gives the flow chart for the first approach. Again, the »master-slave«
strategy has been adopted. In the first step, the »master« sends the charge-bond or-
der matrices to all »slaves«, building up matrices F% for all values of <J. Since each
processor can only access a part of integrals (those which have been calculated using
the »farming« concept), incomplete matrices are stored in the core memory of each
processor. These partial matrices are sent to the »master« where they are added up.
Having obtained a complete set of matrices, F% each »slave« can build up matrix
F(k) for a given value of k, which will be separately diagonalized on each node. From
the eigenvectors of a certain k-point, a partial charge-bond order matrix can be cal-
culated. To be able to calculate the Fock matrices in direct space, first the »slaves«
have to send the partial density matrices back to the »master«, where they are added
up, and then they receive them again. This mutual intercommunication has to be
repeated in each iteration cycle.

In the case of diagonalization performed also in parallel, the structure is some-
what more complicated, as seen from Figure 7. The first steps remain the same as
in the previous case but the NKP diagonalizations per iteration cycle are now dis-
tributed to the nodes as follows: first, one groups the nslav »slave« processors into
NKP clusters, each having nslav/NKP nodes, and defines one processor as the »clus-
termaster«, responsible for coordination tasks. Within each cluster, complete F% ma-
trices are distributed columnwise to the individual nodes, where the Fourier trans-
form F(k,) for the respective k-value is constructed. The summation is then done by
the »clustermaster«. The number of data to be sent is NBF2 x (NEIG+1). The »clus-
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osend P to SLAVES MASTER
(quess)

obuildu F SLAVE

(partial)

send F to MASTER

0

oadduw F MASTER
osend F to SLAVES
(complete)

o calculate F(k ) SLAVE
0 diagonalize
i = nkp/nproc
o calculate P
(partial)
0 send P to MASTER

0add up P MASTER
osend P to SLAVES
(complete)

Figure 6. Parallel concept of the SCF program without performing diagonalization in parallel.

termaster« then performs a Lowdin orthogonalization to transform the task into a
special eigenvalue problem. Again, the step can be distributed to the processors of
the cluster as well as the following tridiagonalization with the help of the House-
holder- or Block-Householder-method.

The diagonalization of the tridiagonal matrix is done iteratively using the QR-
algorithm. Its parallel structure in the »slave«cluster is illustrated in Figure 8.161°
Two steps are necessary, calculation of the matrices @ and R (factorization H = QR)
and multiplication H' = RQ. Calculation of the new columns of @ can be performed
without information on the neighboring rows. Therefore, the rows of @ can be dis-
tributed without additional communication. A corresponding statement can be made
with respect to the columns of R. In addition, to calculate the elements of the prod-
uct matrix H; only the information on the involved columns and rows is necessary.
Therefore, it can be performed also in parallel. To avoid load balancing problems,
caused by the structure of the matrices (R and @ are of triangular and Hessenberg
form, respectively), the distribution to the processors is not done blockwise but with
the help of the »team mapping« concept, corresponding to an alteration ascending
and descending distribution of rows (respectively columns). When the diagonaliza-
tion is finished, each »clustermaster« calculates the incomplete charge-bond order
matrices from its eigenvectors. These will be sent to the »master«, where they are
added up.

In contrast to the calculation of integrals, additional communication and syn-
chronization problems arise in the SCF-program. Communication is of the type »all-
to-one« and »one-to-all«. Implementation of individual steps depends strongly on the
architecture of the computer and communication system. Especially the architecture
of the MEMSY-processors with local communication storage turns out to be very ap-
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Figure 7. Communication structure of the SCF program, including parallelization of the matrix
diagonalization.
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Figure 8. Parallelization of the QR-algorithm. Calculation of matrices @ (distributed by rows)
and R (distributed by columns) and matrix multiplication RQ.
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propriate for this problem (the first results of parallelization of matrices in the order
400 x 400 indicate that about 4 processors are the optimal number). In this case,
the summation of partial matrices will not be performed by the »clustermaster« but
is done already on the way to him.
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SAZETAK

Implementacija kvantno-mehanickih programa iz fizike évrstog stanja na
paralelnim i vektorskim radunalima

P. Otto

Poznavanje strukture i svojstava kemijskih sustava omoguéuje ne samo provjeru pretpo-
stavljenih fizikalnih i kemijskih modela nego i nacrte novih materijala pobolj$anih svojstava.
Kvatno-mehani¢ke metode prikladno su sredstvo za toerijska istraZivanja na molekulskoj ra-
zini. Pouzdani racuni za sloZene molekule i makromolekule zahtijevaju primjenu vrlo moénih
ratunala. Masivni paralelni multiprocesorski sustavi, koji najvife obeéavaju u suvremenom
razvoju raéunala, mogu se efikasno upotrijebiti za istraZivnje strukture velikih i sloZenih ke-
mijskih sustava.
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