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»...the Fact is the basis, the foundation;
Imagination the building material; the
Hypothesis the ground plan to be tested;
the Truth or Reality is the building...«
J. H. van’t Hoff!

Structure-property correlations and use of various auxiliary modes of
representing them are critically examined. Several rules are suggested for
the evaluation of alternative schemes and their potential application. Dis-
tinction is made hetween empirical, theoretical and structural correlations,

which helps settle the question of whether graph-theoretical correlations are
artifacts or facts.
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INTRODUCTION

The search for empirical correlations, bond additivities and regularities in isomeric
variation has been a subject of continuous interest in chemistry for a long time.? Such
efforts represent an attempt to reduce data, which is, and remains, one of the central
problems in science: »For every science« — wrote Max Planck® — »not even excluding
mathematics, is to some extent the result of observation, whether the subject be natural
or intellectual. The chief problem in every science is that of endeavoring to arrange and
collate the numerous individual observations and details which present themselves, in
order that they may become part of one comprehensive picture.« Interest in correlations,
additivities and isomeric variations originates, one may say, in the inherent challenge of
developing an adequate model for the chemical structure that would reproduce available
data to a satisfactory accuracy. There are, however, no rules to follow how to construct
a model, what components are preferable and how the models are to be evaluated. In
the case of the Schrédinger equation, the variational principle allows one to compare
and select a better solution, but in the case of molecular additivities no similar proce-
dure exists. As discussed by Smolenskii* and elaborated by Gordon and Kennedy,® if a suf-
ficiently large pool of components is selected, any physical property can be reproduced
accurately. On the other hand, even when one refrains from proliferating empirical
or structural parameters and arrives at a model with a limited number of parameters
(say a dozen) for a particular molecular property which produces acceptable predic-
tions, this does not necessarily mean that the model is optimal. Perhaps, another
model with half as many parameters and somewhat reduced accuracy might much bet-
ter represent the molecular structure because it also applies to other qualified proper-
ties. To paraphrase Albert Einstein: »The model should be as simple as possible, but
not simplerl« The problem is in identifying such models — the topic that we address
here. The accuracy of the prediction cannot be the only and ultimate criterion for judg-
ing models. Elaborate models can frequently produce accurate predictions, but this
does not mean that a simpler model cannot do the same or that, since they predict
the considered property accurately, they necessarily represent real objects faithfully.
For example, the geocentric planetary model was capable of accurate predictions of
eclipses (based on the complicated systems of epicycles) but it was devoid of reality.

PROPERTY-PROPERTY CORRELATIONS

Construction of a property-property correlation (and extension of such considera-
tions to a collection of properties) is the most elementary data reduction because it
does not presume any model for the structure. In Figure 1, we illustrate such a cor-
relation: plot of the liquid densities against the refraction indices for octanes.

We intuitively consider both properties as volume-dependent, i.e., capable of being
reduced to the same structural element(s). However, strictly speaking, all that we can
deduce from Figure 1 is that both properties depend on the same structural factors, if
indeed they can be shown to be »structural« properties. A structural property by
definition is a property that can be expressed in terms of well-defined structural con-
cepts, such as atoms, valencies, bonds, bond types, number of the nearest neighbors,
number of the next-nearest neighbors, rings, vertices, edges, paths, walks, etc.

In Figure 2, we illustrate another property-property correlation: a plot of the boil-
ing points against enthalpies of atomization for octanes.

Again a valid correlation is demonstrated, but the somewhat larger scatter of points
suggests that, besides the common dominant structural factor(s), the two properties
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Fig. 1. A plot of the liquid densities (p) vs. the refraction indices (n) of octanes.
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Fig. 2. A plot of the boiling points (bp in °C) vs. the enthalpies of atomization (EA in kecal/mol)
of octanes.

may also depend on (an)other factor(s). Finally, in Figure 3 we show a plot of two
properties without any apparent correlation, that is, molar volumes against heats of
vaporization for octanes. However, if we plot molar volumes against heats of vaporiza-
tion for alkanes from pentanes to nonanes (see Figure 4), then some limited correla-
tion between these two properties emerges.
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Fig. 3. A plot of the molar volumes (MV in cm?®/mol at 20 °C) vs. the heats of vaporization (HV

in keal/mol at 25 °C) for octanes.
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Fig. 4. A plot of the molar volumes (MV in ecm?®/mol at 20 °C) vs. the heats of vaporization (HV
in kcal/mol at 25 °C) for alkanes from pentanes to nonanes.

It is clear from Figure 4 that two properties considered depend on two or more
structural parameters. Usually, the minimum number of parameters that would suffice
can be determined using discriminant analysis. In fact, a generalization of property-
property correlation is a multivariate technique®” applied to a collection of properties.
For example, some years ago Cramer® considered the following properties for a diverse
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collection of compounds: aqueous solvation, octanol-water partition, molar refractivity,
boiling points, molar volumes and heats of vaporization. Compounds studied are found
to correlate their properties among themselves as a collection, but not so well on a
pairwise basis. A factor analysis approach,’ to speak figuratively, represents a »blind«
man’s approach to the correlation problem, introducing no bias whatsoever. This is a
good side of the method, which, when combined in a study of clustering of similar com-
pounds (which can be accomplished, as it has been recognized,!® at various levels of
classification), offers a powerful tool for molecular studies, But all that can be correctly
deduced from the work of Cramer is that the six molecular properties mentioned
depend on the same structural factors. What these factors may be remains unknown
and speculations on the possible role of various structural factors have no basis in the
obtained results. The situation is analogous to the case of a simple property-property
correlation, such as the one shown in Figure 1 which, strictly speaking, only shows
that the two properties considered have a common structural basis. It is outside the
domain of empirical schemes (a correlation or a factor analysis) to reach conclusion
on structural relations when such schemes do not use structural concepts. If some
structural concepts have been employed or implied, the approach no longer represents
a purely empirical method.

The step from a correlation to an additivity (or some generalized expressions) re-
quires development of an adequate partitioning of the properties which, in turn, is as-
sisted by an appropriate model for a structure. Hence, the study of empirical correla-
tions may result in evolution of valuable structural models. We will later review a few
of such successful schemes, but some caution is in place even at this first step in data
reduction. The fact that two properties lead to a good correlation (Figure 1 would be
an example) and that all ;points are on (or very close to) the correlation line does not
mean that the related molecules will lead to equally valid and simple additivity. It may
happen that, for a few molecules, both properties show a similar deviation from an ad-
ditivity. Such contributions would »cancel« each other in the correlation, and the point
representing a molecule will be »in line« with others, yet its structure may involve ad-
ditional contributions (e.g. close non-bonded interactions in overcrowded regions of
the molecule). Similarly, if in such a property-property correlation a single molecule
shows marked deviation for one property only, the corresponding point in the correla-
tion diagram will be visibly displaced (see Figure 1 for illustration). Without further
study it is, however, not possible to speculate which of the two properties has
anomalous behavior. Of importance and interest in all such correlations is the order
(along the correlation line) in which molecules occur, but this aspect of the correla-
tions has hardly been considered. We will return to this later when discussing struc-
ture-property correlations.

STRUCTURE-STRUCTURE CORRELATIONS

Counterpart to empirical property-property correlation is theoretical structure-
structure correlation, in which one set of structural parameters is compared and
plotted against another set. If two models are equivalent, a simple equality of the type
¥ = X should result, but theoretical models frequently employ different approximations
and the corresponding correlation is not usually such a simple line. The shape of the
correlation, the dispersion of the points and other details can then be instructive in
an analogous way in that such observations resulted in useful deductions when ex-
amining property-property correlations. As an illustration of structure-structure cor-
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relation (i.e. theoretical property vs. theoretical property), we show in Figure 5 a plot
of Hiickel molecular orbital (HMO) bond orders against valence-bond (VB) resonance-
theoretical bond orders for a selection of benzenoid hydrocarbons. The HMO bond orders
are taken from Coulson,'! and Coulson and Streitwieser,'? while the VB resonance-the-
oretical bond orders from Pauling et al.'* and Herndon.!4

We have selected this particular example since both concepts are well-known and
not because these simple theoretical models are of great use today. Observe the scatter
of points (corresponding to the CC bonds in selected benzenoid hydrocarbons) which
indicate limited overlapping (conceptual and computational) of the Pauling bond or-
ders and the Coulson bond orders. We know that, if the two theoretical models are
further improved, the differences should reduce and eventually a respectable correla-
tion may result. What Figure 5 confirms is that the two simple quantum chemical
models disagree, at least in their prediction of bond lengths. It appears that both
models are more or less equally limited in predicting the both lengths, but such an
evaluation is beyond the scope of the present discussion. It is of interest to compare
the HMO bond orders with the bond weights (ij)-/2, where i and j are valences of carb-
on atoms making up bond i-j in the bare carbon skeleton of a benzenoid hydrocarbon.
The sum of all bond weights in a molecule gives the connectivity index y:'®

Ty e (1

bonds

Thus, the connectivity index is based on the differentiation of bond types. This was
recognized as important already in 1947 by Hartmann. '
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Fig. 5. A plot of the HMO bond orders vs. VB hond orders for selected benzenoid hydrocarbons.
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The bond weights (ij)~}/? can also be viewed as primitive bond orders. Since the
total zz-electronic energy (E,) in the normalized form of the HMO model (=0, f=1)
can be expressed in terms of bond orders py:

En=AE Prs + B’ (2)

bonds

where A'=2 and B'=0, one can replace z Pws by 2 (j)~'/2 and express E, in terms

bonds bonds
of the connectivity indices:
E,=A {2 + B (3)
hg[:is

A plot of E, against the connectivity index for 30 randomly selected benzenoid
hydrocarbons is shown in Figure 6.
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Fig. 6. A plot of the HMO x-electronic energies (E,) vs. the connectivity indices (x) for 30 ran-
domly selected benzenoid hydrocarbons.

Surprisingly, we observe a much improved correlation. Why should suddenly such
a simple ad hoc structural concept as the bond weight, devoid of any »quantum chemi-
cal« peerage, produce an impressive correlation with approximate quantum chemical
quantity? This question may not be easy to answer. However, if we consider the HMO
7-electronic energy as a theoretical »property« of molecules, the correlation in Figure
6 represents in fact a structure-property, not a structure-structure correlation. It allows
interpretation of the HMO z-electronic energy in terms of bond types and connectivity
indices. Ultimately, theoretical models and concepts are judged on how well they
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reproduce experimental quantities. Structure-structure correlations may iliustrate, if
not illuminate, similarities and differences between different models more clearly than
tabular data or complex algebraic expressions.

STRUCTURE-PROPERTY CORRELATIONS

In order to proceed to structure-property correlations or even to the discussion of
properties in terms of structure, one must have a model for the structure and such a
model should be based on well-defined structural concepts. Hence, no discussion of an
empirical approach devoid of structural components can produce an insight in struc-
ture-property correlations. In discussing the results of factor analysis (which is a purely
empirical scheme), Cramer® speculates (citing no evidence) on a possible relation of his
findings and available graph-theoretical correlations that were known for most of the
considered properties, expressing the following opinion: »...it seems reasonable to sup-
pose that the molecular connectivity correlaiions are artifacts, perhaps representing al-
ternative axes for compound subset...« In view of what has been said, such an opinion
is at best an incorrect surmise that perpetuates the confusion between empirical and
structural approaches. If anything, it seems reasonable to suppose that in relating
molecular connectivity to factor analysis it is conceivable that some results of the fac.
tor analysis can he inferpreted in structural terms, ie. some of the empirical
parameters may be found to have structural interpretation. But, for this to be possible,
one has to use structural concepts (such as exemplified by the connectivity index).
Hence, if there is any substance in the claims of Cramer on the parallelism of the two
»..alternative axes for compound subset..«, it only means that non-structural
parameters of the factor analysis can possibly be given some structural interpretation.
So, the argument should be reversed and structural concepts should be used for the
interpretation of mathematically derived parameters, not the other way round. Since
the quality of graph-theoretical correlations has not been challenged, only their inter-
pretation, and we have seen that the particular claim is not valid, we may confirm the
graph-theoretical approach as factual. Let us add to that, if the relation between the
empirical results of the factor analysis and some graph-theoretical results is verified,
the reaffirmation of the graph-theoretical approach will strengthen the significance of
the results of factor analysis. By the same token, if indeed the speculation of the
molecular connectivity correlations were believable, and they represented artifacts,
then because of the parallelism, on which the above speculation has been based, this
would mean that also BCDEFG axes used for the compound set are artifacts. The situa-
tion is, however, very simple: graph-theoretical correlations employ well-defined struc-
tural invariants and are reproducible, e.g.!” The quality of such correlations is impres-
sive!® and this is probably the main cause for various speculations. How can a single
(or a few simple) parameter(s) produce such high correlations? And then, in addition,
a parameter (the connectivity index) is used that appears to be constructed in an ad
hoc manner! Perhaps we should admit that the success of simple graph-theoretical cor-
relations (those involving the connectivity indices,’®-2! but also other graph-theoretical
indices**%) may appear somewhat mysterious. We will now try to give some explana-
tions and show that with proper background information available the »surprise« is
not so great.

Many early approaches to bond additivities of thermodynamic properties used
structural concepts without emphasizing them.?* Such approaches are typically based
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on expressions involving from two to twenty parameters.’ As time progressed, a call
for higher accuracy of the additivities was justified. However, the desire for an ever-
increasing capability of a model to reproduce data more accurately, may have at the
same time caused neglect of a more careful analysis of simple models with very few
parameters. The question to consider is why such simple models with a few parameters
can perform so well — but the question has usually been overlooked.

The first simple successful model of this kind was due to Wiener,? who introduced
only two parameters as variables in the study of isomeric variations of alkane ther-
modynamic properties. Wiener’s parameters were: the total number of paths in a struc-
ture (denoted by W) and the total number of paths of length three (denote by p). In
his own words:* »The path number W is defined as the sum of the distances between
any two carbon atoms in the molecule, in terms of carbon-carbon bonds.«... »The polarity
number p is defined as the number of pairs of carbon atoms which are separated by
three carbon-carbon bonds.« The reader is reminded that metrics is defined for graphs,
although graphs are mathematical objects. To the uninitiated in graph theory, the no-
tion of »topological distance« may appear confusing. However, the concept of »dis-
tance« is more general than its common geometrical illustration. It requires the fol-
lowing conditions to be satisfied: (1) For any pair (x,y) of elements one associates a
positive number D (usually called distance); (2) The direction of measurement of the
distance is not important, i.e. D(xy) = D(y,x); (3) D(x,x) = 0; and (4) The so-called
triangle condition: D(xy) < D(x,z) + D(zy), signifying that the direct route is the
shortest route between x and y. When »the number of intervening bonds« is taken as
a measure of the »distance« between the atoms in a molecule, one speaks of »topologi-
cal distance« (the concept introduced over a hundred years ago by Cayley?). It is easy
to verify that the number of intervening bonds is a graph invariant?® and that the
above axioms of metrics are satisfied.

The Wiener model is truly a remarkable model, the significance of which Platt im-
mediately recognized,” tried to justify and advertise, but apparently without much suc-
cess. The work of Wiener and Platt has not been forgotten, it has been frequently cited
during the past 46 years, but it did not have the impact it ought to have had in in-
fluencing subsequent research towards close examination of the virtues of such
topological schemes, A new phase in structure-property correlation originates in the
revival of interest in the chemical graph theory.?*-3 These more recent interests are
centered on the design of a single parameter approach which would be based on some
structural characteristics of molecules. The effort is to capture much of pertinent
structural features in a single quantity. The first such approach is due Hosoya,*® who
designed an index (he called it the topological index, but it became known in the litera-
ture as the Z-index or the Hosoya index, e.g.*") as a sorting tool for classifying struc-
tures and immediately recognized that the same index is useful for the study of struc-
ture-property correlations.

The Wiener index, the Hosoya index, the connectivity index, etc. are generally
referred to as topological indices, e.g.,*® because they do not depend on details of
molecular geometry, but only on molecular connectivity. More correctly, they should
be referred to as graph-theoretical indices, but the term topological index is also ac-
ceptable.

The particular index of Hosoya, the Z-index, is based on the Z-polynomial (which

is related to the acyclic polynomial®®) of a molecular graph (molecule). It is defined
as:®®
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Z=% p(G; k) 4)
k=0

where p(G,k) represents a selection of k mutually independent edges in a graph G, N/2
in the Gauss square brackets is the nearest integer not exceeding the real number in
them and N is the total number of vertices in G. It should be noted that p(G;0) = 1
by definition and p(G;1) = the number of edges in G.

Just as some veil of mystery accompanied Wiener’s topological approach and the
origin of Wiener’s parameters W and p, so similarly in the case of Hosoya’s topological
index Z, one is perhaps uncomfortable with the astonishing success of such an ad hoc
procedure. Apparently, the connectivity index!® is yet another ad hoc topological index,
which has been shown to lead to amazingly successful correlations of diverse molecular
properties.*” Before attempting to explain some of the reasons for achievements of
these topological approaches, a comment pertaining to their ad hoc character is in
place. It appears that, in some circles, exploring an area in an ad hoc manner is viewed
as contemptuous. But, many important insights in science in general and in chemistry
in particular followed some of such ad hoc considerations. Bohr's model of the atom
is an ad hoc construction and so is Schrédinger’s »derivation« of the wave equation
based on analogy with waves in continuous media. It was only subsequently found that
such ad hoc procedures have a much wider applicability. In fact, by virtue of its not
being related to previously known schemes, and ad hoc method is likely to bring novel
insights and relationships to light, and may prove to be a more desirable scheme in
areas where general principles are not known. The situation is perhaps well illustrated by
a quote from Van Vleck’s Nobel Prize lecture?! concernig the outstanding early attempts
to understand magnetism at the atomic level: »...T'o account for paramagnetism, Lan-
gevin in 1905 assumed in a purely ad hoc fashion that an atomic or molecular magnet
carried a permanent moment u, whose spatial distribution was determined by the Boltzmann
factor. It seems today almost incredible that this elegantly simple idea had not occurred
earlier to some other physicist inasmuch as Boltzmann had developed his celebrated
statistics over a quarter of a century earlier...« In fact, one could make almost the same
remark concerning the Z-index, the connectivity index y, acyclic polynomials, con-
jugated circuits*” or isomerisation graphs,” that it seems almost incredible today that
these elegantly simple ideas did not occur earlier to some other chemists inasmuch as
Hiickel had developed his celebrated model,* Pauling advanced the concepts of quan-
tum mechanics for chemistry*® and Polyd formulated his counting theorem,*® all more
than half a century earlier!

The connectivity index is a bond additive quantity, which makes it suitable for
bond additivities. It is based on a scheme of preweighted contributions. The weighting
factors, which are fixed, have been determined in such a way that the resulting indices
for isomers produce an ordering of structures that has been observed to hold for many
thermodynamical properties. Formally, the conditions for a relative ordering of struc-
tures lead to a system of inequalities and the »ad hoc« recipe for the construction of
bond contributions presents a particular solution to the system of inequalities. The
whole approach is clearly based on a number of assumptions, including selection of a
particular form for the solution of inequalities (which may generally have many alter-
native solutions), and hence the approach should be judged by its performance. As al-
ready mentioned, the connectivity index passed the test exceptionally well. The index
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has been generalized?” to include larger fragments as contributing elements, extended
to incorporate heteroatoms* and applied to a large number of structure-property and
structure-activity problems. This includes the topic of drug design,*® the use of the con-
nectivity index as an auxiliary structural descriptor in computer-assisted studies of
chemical structure and biological function® and in the classification of drugs by dis-
criminant analysis.?! Review of many such graph-theoretical correlations can be found
in, for example, books by Kier and Hall*’*2 and a number of review articles, e.g.>* Per-
haps, the success of the connectivity index is in part responsible for the continuing
interest in topological indices and their proliferation. At the same time, many have
been surprised by the success of an index that is apparently based on some arbitrary
concepts, so that a fuller justification of its performance appears desirable. We will ad-
dress both of these aspects with some remarks on the evaluation of alternatives and
will try to develop some guiding rules that topological indices ought to satisfy in order
to qualify as useful and novel, not simply being a reformulation of the known. How-
ever, at this point we emphasize that the best approach to calculating physico-chemical
properties depends on the property and that at present no approach is adequate to cal-
culate all the physical and chemical properties of a molecule.

RULES FOR THE SELECTION OF TOPOLOGICAL INDICES

Some structural components, such as atoms and bonds, are so natural a choice and
so clear that there is hardly any dispute on their role and significance in molecular
additivities. On the other hand, it is far from clear why the total number of paths,
the parameter W of Wiener, the sum of the coefficients of acyclic polynomial, the
parameter Z of Hosoya or factors (ij)-!/2 for bond types (i,j) in the case of the connec-
tivity index, should be important or even relevant to molecular additivities. We are
going to clarify the situation. Clearly, atoms and bonds are nof enough when one is
interested in details of isomeric variations of numerous molecular properties and going
beyond atoms and bonds is not unique. First, difficulties arise here concerning the
number of such additional parameters and their choice. Whilst many have recognized
the particular choice of parameters W and p in the Wiener approach as arbitrary, the
prescription for Z-index as arbitrary or the construction of the connectivity index as
arbitrary, few realize that already the selection of atoms and bonds, and then, what
appears as a »natural« extension, selection of next-nearest neighbors etc. is equally ar-
bitrary. Selection of any component is an arbitrary act and should be viewed as analogous
to the selection of a coordinate system for the computational problem considered. Fre-
quently, very different coordinates serve well specific problems, so in analogy one may
expect a widely different collection of graph invariants to suit specific applications. The
coordinates, like structural invariants, serve the purpose of comparing observable gquan-
tities, they do not constitute the results but help express the results. In analogy to a
choice of coordinates, graph invariants can, therefore, simplify the resulting expres-
sions or reduce the amount of computations involved.

The first step in devising structure-property correlations should concern the num-
ber of parameters to be used. Once the correlation or an additivity is established, the
adopted parameters are assigned numerical values and the large number of parameters
generally require a large sample of structures if one wishes to maintain some
prescribed statistical significance for the parameters.’* Occam’s dictum: »Essentia non
sunt multiplicanda praeter necessitatem« should be here interpreted as »parameters
should not be multiplied without necessity« or one should use as few parameters as
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possible. The problem is how to arrive at a useful qualification of the »necessity«. One
way of arriving at some practical modus operandi is to require that the search for the
structural correlations be conducted in a manner that reports the best correlation when
a single parameter is used, followed by the best correlation based on two parameters,
and so forth. In this way, for a collection of structures and a selected property, a mean-
ingful comparison between different models is possible, If a claim is made on supe-
riority of one model over another, all that one has to ensure is that the compounds
selected are the same and that no deliberate omissions of any structures belonging to
the class considered are made. The latter request is important because two models may
differ significantly precisely in the few selected structures. By accepting such a course
of action, one would be able to speak of the best 1-parameter correlation, best 2-
parameter correlation, etc. For many well-established correlations we do not know
today what would be the best 1-parameter approach, the best 2-parameter approach,
efc. For instance, does the use of the connectivity index in the structure-property-ac-
tivity relationships lead to the best 1-parameter scheme?, is the Wiener's use of W and
p the best 2-parameter scheme? efc. Very few such studies have appeared, a recent one
was concerned with the comparison of several 4-parameter bond energy schemes.®
Models that give the same or similar results for the same collection of compounds and
the same number of parameters can then be considered equivalent, even if the relation-
ship between the two sets of invariants is not apparent. Such models can be further
Jjudged by extending the pool of properties and by increasing the pool of structures, if
appropriate.

One anticipates that for a different property, a different structural scheme may be
preferred. Availability of a few successful indices does not automatically preclude the
need for other indices. But, new indices have to show novel features in order to rep-
resent a valuable addition. Hall®® appears to be the first to consider a condition for
topological indices in order to discriminate among many available alternatives. As he
indicated, there is ample evidence that many of numerous thermodynamical properties
depend on the role of the next-nearest neighbors. Accordingly, indices which do not
incorporate some dependence on the next-nearest neighbors are bound to be deficient
for describing such properties, although they may have other uses outside the con-
sidered field. This approach seems prudent and worth expanding. In other words, in-
dices which do not take into account influences of the next-nearest neighbors will not
qualify as best 1-parameters and appear not to present a good start for building more
elaborate additivity schemes.

RULES ON THE ORDERING OF STRUCTURES

The next requirement that can be imposed is that the scheme (e.g., a single parameter
model) reproduces the same order for structures as the order determined by the property
considered. Small numerical differences need not be recognized and such structures
can be grouped. This requirement appears to be a trivial one, yet in applications a number
of indices are found that do not satisfy it. Consider various thermodynamical proper-
ties of alkanes (boiling points, heats of vaporization, and so on) for n-alkanes, 2-methyl
and 3-methyl derivatives. One finds that the relative order for the three isomers is as
follows: n-alkane, 3-methyl, and 2-methyl derivative; 3-methyl substituted isomers are
invariably always more similar (numerically) to the value of n-alkane. A request for
the ordering of structures requires the structural parameters for the same isomers to
define the same order. One finds that the Hosoya Z-index and the connectivity index,5’
which provide a better discrimination among isomers, do not predict correct relative
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TABLE I

Isospectral nonanes (that is, nonanes having the same eigenvalue spectra) and their selected
properties: (a) boiling points (in °C); (b) heats of vaporization (kcal/mol); (c) indices of refraction;
(d) liquid densities (g/cm3); (e) constants A in the Anloine equation and (f) the Z-indices.
The last two rows give the range of values for the above properties in all nonanes.

Isospectral pair Properties

(a) (h) (c) (d) (e) ()
2,3-dimethylheptane (1) 140.5 132.21 1.409 0.726 6.889 44
4-ethyl-2-methylhexane (2) 133.8 148.95 1.407 0.723 6.869 44
2,3,56-trimethylhexane (3) 131.3 145.60 1.406 0.722 6.856 37
2,2-dimethylheptane (4)) 132.7 145.60 1.402 0.711 6.856 37
2,3,4-trimethylhexane (5) 139.0 149.37 1.414 0.739 6.877 41
3,3-dimethylheptane (6) 137.2 148.53 1.409 0.725 6.867 41
2,4-dimethyl-3-ethylpentane (7) 136.7 148.11 1.414 0.738 6.866 39
4,4-dimethylheptane (8) 135.2 148.11 1.408 0.725 6.856 39
2,2-dimethyl-3-ethylpentane (9)  133.8 14560 1412  0.735  6.855 36
2,3,3-trimethyhexane (10) 137.7 146.44 1.414 0.738 6.866 36
Maximal value 150.8 158.16 1.424 0.757 6.912 55
Minimal value 122.3 137.24 1.400 0.707 6.811 24

ordering for the selected properties. We ought to stress the selected, because there are
other properties (including thermodynamical properties) which dictate different order-
ing of isomers. For example, the octane numbers ** and mean squared radius®® of
alkanes follow the order: n-alkane, 2-methyl, and 3-methyl derivatives, and for these
properties information-theoretic indices®” and centric indices®® are clearly more suited
than Z or y.

A new problem arises with the use of more than one parameter: comparison of
structures needs to be defined. A situation may arise that the structures are not com-
parable. This problem has been considered in physics®® and chemistry®! and has been
discussed®” on the basis of the early rules proposed by Muirhead at the beginning of
this century.-% Ordering of sequences (which may represent structures) may be
based on alternative ordering rules. One may view the parameters as coordinates of a
structure in the corresponding »structure space«. An illustration is given by the use
of path numbers p, and p3, which produces a two-dimensional ordering of isomers and
results in a grid or periodic table for isomers.?® Finally, we may mention yet another
rule for the ordering of structures, based on a comparison of atomic environments,
which »induces« a partial order among structures.®” The choice of the ordering rule
will depend on the problem and the property. If a regularity is found in a property,
one concludes that the particular rule adequately reflects the ordering of structures.
If the same regularity is found for selected structural parameters, one may be on a
valid track to establishing a structure-property correlation. Ordering as an operation
was overlooked in the past although quantitative structure-property and structure-ac-
tivity studies should consider the ordering of structures as one of the first steps in their
efforts to derive a correlation or an additivity. Let us mention several advantages of
the ordering of structures, which will illustrate the importance of this step in struc-
ture-property-activity studies:
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(1) The validity of a model can be tested on isocodal structures. Isocodal structures
are those having all the selected parameters equal and, consequently, predict the same
(or similar) property. If such isocodal structures shows appreciable variation, the
model (the selected invariants) cannot provide an adequate basis for structure-property
correlation;

(2) Deviations of some points from the correlation can be attributed to the incom-
patibility of structures. Hence, an apparent limited correlation may have a valid struc-
tural cause, and can even be anticipated;

(3) Ordering of structures may lead to unsuspected correlations;?®

(4) »Unrelated« data can be recognized as having a common trait.

To further illustrate some of the mentioned points, let us consider Hosoya’s Z
index. We have the same index for isospectral molecules®"’? (see Table I) and, there-
fore, predict the same magnitudes in a structure-property correlation using Z index.
(Isospectral structures are non-isomorphic structures that have identical eigenvalue
spectra.”) In Figure 7, we have illustrated the carbon skeletons for the isospectral non-
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Fig. 7. Carbon skeletons of isospectral nonanes.
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anes CgHy, considered in Table I, from which one sees that the paired structures in-
deed have limited apparent similarity.

In a number of cases, already vertex valencies for two structures are different, and
even when the same, the molecules differ in bond types. Hence, there are no »visible«
reasons why such molecules should show similar properties, but they do. In a few in-
stances boiling points show somewhat larger deviations, which are still not excessive
in view of the fact that boiling points cover a range of 28.5 °C in nonanes. Moreover,
coincidences are here more significant than some disagreements because there are
other factors, such as nonbonded close contacts, which are not taken into account and
which will make significant differences between isospectral pairs. The fact is, that, for
example, 2,3,5-trimethylhexane and 2,2-dimethylheptane have very similar boiling points,
indices of diffraction and liquid densities, and identical heats of vaporization and the
Antoine constants A. This is either a pure coincidence or is possibly due to some struc-
tural cause. Our conjecture is that these are not pure »coincidences«. The Hosoya
index Z suggests that this is the case. Overall, we may say that Table I displays a fairly
good evidence in support of the notion that isospectral structures may be expected to
show similar thermodynamical properties. One has to be mindful that we are employ-
ing a single structural parameter and that, therefore, there are limits to accuracy for
other (non-isospectral) structures as well and the quality of the agreement for all
(isospectral and non-isospectral) structures is expected to be approximately the same.

We conclude that the concept of isospectral graphs, which has received some at-
tention in the literature,’ is relevant in chemistry, in contrast to the opinion derived
from the consideration of a single property of some of such molecules. Upon compar-
ing photoelectron spectra of 1,4-divynilbenzene and 2-phenylbutadiene (which form an
isospectral pair), Heilbronner and Jones™ expressed the opinion that »...the graph
theoretical statement that two molecules are "isospectral” is of no relevance for their
physical and chemical behaviour...« because they found the actual spectra to be dif-
ferent. The expectation that isospectral molecules may have similar spectra follows
from the interpretation of the graph adjacency matrix as the interaction matrix (in the
Hiickel MO method). But the Hiickel MO has been known to be deficient for discus-
sion of 7-electron spectra for some 40 years. In fact, the recognition of this deficiency
has stimulated an early interest in the development of more sophisticated approximate
MO theories, exemplified by the Pariser-Parr and Pople methods.”®" Thus, an effort
to investigate photoelectron spectra of isospectral conjugated systems boils down to
verification of whether a known deficient scheme is equally deficient in different
molecules! This may still be a valid task, but perhaps peripheral to current theoretical
interests. In addition, however, the conclusion is incorrect and could have been
avoided if the authors had taken molecular graphs and associated concepts in a
broader context, not limiting (as, unfortunately it has frequently been the case among
quantum chemists) such considerations to m-electron conjugated systems only. Our
considerations here clearly apply to isospectral non-conjugated systems and, when dis-
cussing the concept if isospectral graphs, already in the introductory part of one of
the papers™ we indicated a wider socpe for the concept when stating: »...Generally,
the topological eigenvalues and eigenvectors have distinctive significance and should
reflect the inherent properties of molecular skeletons as such. Their study is of interest
then in investigations of molecular properties which critically depend on molecular size,
shape and conformation, degree of branching and its mode, etc. This will enable one
to trace some of the molecular properties to a topological origin.« The statement re-
quires no revision, perhaps attention!
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As another illustration of the use of the isocodal test, consider the isocodal struc-
tures in Table II having the same values for p, and p.

We have selected 7 properties and have indicated the range of values for each
property (the maximal and the minimal values found for other isomers), which provide
some indication of the degree of agreement among the isocodal structures. Additional
comparisons of this kind can be made by considering, for example, not octanes’ but
nonanes,” which in view of a larger number of isocodal cases make accidental coin-
cidences very unlikely. Table II is indicative of the potential use of the structural
parameters py, ps for discussion of molecular properties.

TABLE 1T

Isocodal octanes (that is, octanes having the same py,p3) and their selecled properties
(a) critical densities (in g/cm®); (b) critical pressures (in atm); (c) specific dispersions (in cm3/g);
(d) heats of combustion (in kecal/mol); (e) critical temperatures (in °C); (f) critical volumes
(in cm3/mol); (g) mean radiuses (in A) and () connectivity indices. The last lwo rows give
the range of values for the above properties in all octanes

Isocodal structures Properties
(a) (b) (c) (d) () () (g) (h)

3-ethyl-2-methylpentane 0.254 27.4 96.2 1222.11 295 0.450 1.521 3.718
3,4-dimethylhexane 0.2563 274 96.7 1221.68 298 0.452 1.6562 3.718
3-methylheptane 0.239 26.6 97.6 1221.76 292 0.478 1.798 3.808
4-methylheptane 0.240 25.6 97.6  1221.89 290 0.476 1.767 3.808
Maximal value 0.263  29.0 106.6  1222.70 305 0.489 2.044 3.914
Minimal value 0.234 246 95.9 1218.59 271 0.433 1.250 3.250

A HIERARCHY OF STRUCTURAL INVARIANTS

Selection of graph (or structural) invariants is left to individual researchers, just
like the choice of coordinates or basis functions in quantum chemical computations.
Hence, it is not surprising to see many different choices. One may be interested in
developing a »system« by selecting invariants that would suffice for characterization
of any structure in a useful manner, but, while such an effort appears attractive, it may
be more ambitious than necessary. Many molecules have the same or similar proper-
ties and if one is interested in structure-property correlations, one does not need to
have different codes for molecules, since some will have the same properties and,
hence, can be assigned the same descriptors. All one should require is to capture the
most relevant structural features responsible for the variation in magnitude for the
property considered. A complete set of graph invariants is not yet available which
could serve as a reference for converting different structural parameters to the same
reference scale. It is questionable whether such a complete set is possible! We suggest
here a more modest option: a selection of reference invariants that can be classified
in the order of increasing generality. Generality is here to be interpreted as the
capacity for preserving structural information. Although such reference invariants do
not constitute a complete system (which would consequently lead to unique structural
names), they can provide a useful basis for comparison of different models. We will
confine our discussion to molecular graphs rather than molecular structures. Then, the
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following appear as useful reference invariants, given in a hierarchical order of an in-
creasing level of structural information content:

(1) the count of neighbors at different distances;

(2) the count of paths (or self-avoiding walks) of different length;

(3) the count of self-returning walks;

(4) the count of random walks.

In acyclic structures, the count of neighbors and the count of paths are equivalent
since any two vertices are connected by a single path. In cyclic structures the count
of neighbors becomes the count of the shortest paths, which are entries in the distance
matrix. Algorithms for the above counts have been outlined and computer programs are
available,”® while the count of self-returning walks and random walks is relatively simple.?"
It amounts to evaluation of the powers of the adjacency matrix A.#! In Figure 8, we have
illustrated all the self-returning walks of length six and have also depicted their alter-
native representation as subgraphs.

S
. v G

b

Fig. 8. Self-returning walks of length six and the corresponding subgraphs representing them.
The cases related to acyclic graphs only have been considered. The starting (and ending) vertex
is indicated as a black dot.
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It would be of interest to know the number of all subgraphs once matrices A™ have
been evaluated, the problem which has not yet been considered in the literature, It
appears that information on smaller subgraphs of this kind, corresponding to self-
returning walks of shorter distance (radius), can be related to the degree of a vertex,3?
but the topic has to be further studied. Self-returning walks have shown some unusual
properties,®34 and deserve more attention. The relation between paths and walks has
been considered, and a simple connection is found in graps for paths that are shorter
than the periphery of the smallest cycle.* The hierarchical ordering of invariants is
a new concept, but it has already been found useful in an attempt to extend the con-
cept of graph center (well-defined previously only for acyclic structures by Jordan®)
to polycyclic graphs.#”:# In the next section, we will use one of the reference invariants
(the concept of paths) and will show how such invariants can be used to compare dif-
ferent topological indices. As a result, we will also see the reasons why such simple
1-parameter approaches to structure-property correlations work reasonably well and,
we hope thus to lift the veil of mystery that accompanied these important analytical-
theoretical avenues to the study of molecules.

COMPARISON OF VARIOUS TOPOLOGICAL INDICES

We would now like to come back to clarification of various graph-theoretical in-
variants, such as Wiener’s W, Hosoya's Z and the connectivity index % If we could ex-
press the above apparently »mysterious« concepts in terms of other more
»iransparent« concepts, we would achieve some understanding of their content. We
will try to relate the above invariants to paths, in particular to paths p; and p3, which
we already found to dominate isomeric variations in alkanes.”’788%% In Figure 9, we

P3
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6 7 8 9 10 1 12
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Fig. 9. The (pz,p3) grid for octanes isomers in which isomers are placed at the corresponding
(pz2,p3) values.
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show a grid with points representing various octane isomers. For each isomer, one
counts the fragments C-C-C and C-C-C-C which give p, and pj;, respectively, and
determine the coordinates (py,ps) for the isomer.

In the case of coordinates (7,6) and (8,8), we find two isomers to belong to the
same location (as already indicated in Table II). The fundamental hypothesis is that
structural and molecular properties vary with p; and p; rather »smoothly«, in harmony
with the well-known Aristotle’s dogma: »Natura non facit saltuss, i.e., the changes are
gradual (the principle of graduality).®! The validity of the approach has already been
tested on many molecular properties of alkanes, e.g.% Here, we want to show that the
same approach is valid for structural indices. This will then provide an answer why
simple topological approaches work so well. They are dependent on the same fun-
damental (reference) invariants in the same way as properties.

Figure 10 illustrates the (ps,ps) grid in which each isomer is replaced by the numerical
value of (a) Wiener’s W number; (b) Hosoya’s Z index; (c) the connectivity index y; and
(d) the information-theoretic index I of Bonchev and Trinajstic.5"® In brackets, the
signs of change along p, and p; are shown which classify Z and y as one class, and W
and Ip as another class. A meaningful comparison is possible only between indices of
the same class because they can be employed for the same collection of molecular proper-
ties, which have to be of the same class.

Observe that four of the mentioned indices vary relatively smoothly along p, and
pz. There may be a small oscillation in the differences between adjacent values, but

64 62 58 28 23 17
W(-) Z(-+)
67 65 63 29 24 22
68 28
72 70 67 32 27 25
76 ral 31 26
75 30
84 79 74 ral 66 34 29 25 23 19
368 3.50 325 53.1 512 434
X(hv+) Io(':')
N 3.55 3.48 55.3 54.2 53.0
3.7 59.0
3.85 3.68 3.62 62.1 62.0 58.8
3.80 3.66 66.2 618
3.80 67.0
3.91 377 365 3.56 3.41 731 68.9 63.3 61.3 546

Fig. 10. Isomeric variations of selected topological indices with pz and pz path numbers for oc-
tanes: (a) Wiener’s index W; (b) Hosoya’s Z-index; (c) the connectivity index y and (d) the infor-
mation-theoretic index Ip.
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the trends generally appear to be well-reproduced. We conclude that all the four in-
dices considered qualify for discussion of molecular properties, displaying desirable
regular changes with p, and pj, although they will not all be equally suitable for the
same properties.

Selection of graph invariants may be influenced by previous work and considera-
tions, or based on what appears to some as »natural« or can be unrelated to earlier
ideas.?-*¢ Conceptually, path numbers p; and pg are very simple and may, therefore,
provide the basis for interpretation of other successful approaches. They certainly have
a more transparent interpretation than the connectivity index y, the topological index
Z, and Wiener parameter W, which can all be viewed as derived. Since the mentioned
indices show a regular variation with p,, ps, we can expect them to provide useful
parameters for structure-property correlations. Occasionally, the question on the fun-
damental or non-fundamental character of a particular parameter is raised. Should for-
mal carbon atom valencies (in hydrogen-suppressed graphs),?” i.e., the concept of
primary, secondary, tertiary and quaternary carbon atoms, be considered more fun-
damental than path numbers p,? Should not the count of conformational isomers
(such as rotational isomers) be considered a fundamental factor? Various additivity
schemes used various structural parameters considering them fundamental, and it still
appears to be a matter of personal preference what one calls fundamental. We would
like to call p, and p; fundamental (in addition to py — the number of atoms and p; -
the number of CC bonds) because they offer a simple basis for comparison of different
schemes, but others may insist on their own choices. Finally, we should mention that
many earlier and some current works use structural concepts, in part or fully, with
no explicit mention of the graph theory, but graph theory partly underlies such ap-
proaches too, which, however, may include concepts beyond the molecular connectivity
(particularly some elements of stereochemistry).

CONCLUDING REMARKS

On the one side, there is considerable enthusiasm for graph-theoretical approaches
in chemistry.”® Such interests have been particularly fruitful in structure-activity and
structure-property correlations. On the other side, some authors have pointed out the
advantages and disadvantages of topological indices, but also of physico-chemical
descriptors.? But, there has also been some evidence of the lack of understanding of
the graph-theoretical approach to structure-property-activity relationships, even bor-
dering on hostility. Tolerance is not to be taken for granted in science, and diversifica-
tion does not always seem to be recognized as an asset. Despite that, the greatest scien-
tists have indicated their stand on these issues. The situation is well-presented in the
following quotation of Max Planck: »In endeavoring to claim your attention for a short
time, I would remark that our science, Physics, cannot attain its object by direct means,
but only gradually along numerous and devious paths, and that therefore a wide scope
is provided for individuality of the worker. One works at one branch, another at
another, this one applies one method, that one another, so that the physical universe
with which we are all concerned appears in different lights to different workers«. This
is not the place to discuss objections and reply to criticism because, for most part, such
objections and criticisms are not made in the open. The volume of graph-theoretical
literature in chemistry has increased visibly during the last twenty years and one ex-
pects that critics have been given ample material on which they can focus their dis-
approval and engage in constructive dialogue. As they appear unwilling to air their
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reservations publicly, yet hinder the development of a theoretical branch by expressing
opinions on a field to which they have made no contribution, it appears that it may
be in order to solicit public support in an effort to clarify the role of the graph theory
in chemistry. Traditionally, novel approaches (e.g., quantum mechanics) or new ap-
plications of neglected disciplines (e.g., the group theory in 1930-50 particularly in
chemistry) have had difficulties before being accepted. At one time or another, many
presently considered essential and fundamental approaches have experienced such in-
itial receptions. Not long ago, perhaps, the pattern recognition as a tool in chemistry
was in a similar position but it succeeded in enlisting distinguished support.!®’ Such
support may encourage newcomers and attract new talents, although its beneficial im-
pact on those in the field already should not be belittled. Great scientists, like Planck,
have appreciated such support, as evidenced from the quote: »...As an offset against
much disappointment I derive much satisfaction from the fact that Ludwig Boltzmann,
in a letter acknowledging my paper, gave me to understand that he was interested in,
and fundamentally in agreement with, my ideas.« In concluding, we would like to make
a similar remark. As an offset against much disappointment, we derive much satisfac-
tion from the fact that Coulson, in a letter acknowledging a paper of one of us, gave
us to understand that he was interested in the forthcoming graph-theoretical revival:!'!
»..] was particularly interested in your graph theory paper. This topic seems to be
rather popular at the moment...« This was in 1973, and perhaps reflects the general
optimism that radiated around the late Professor Coulson, but it may take a few more
years before such optimism is fully appreciated.

We started the presentation with a quote of Max Planck, borrowed a few more for
appropriate parts of the text, and would like to end with yet another extract from Max
Planck’s Survey of Physical Theory:® »It would certainly be a serious illusion on my
part if I hoped that may remarks have carried general conviction, or even that they have
been generally understood, and I shall very anxiously leave it with you. Surely much
more will be thought and written concerning these questions, for theorists are numerous
and paper is patient.«
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SAZETAK

Graf-teorijske korelacije — izmisljotine ili ¢injenice?
Milan Randi¢, Zlatko Mihalié, Sonja Nikoli¢ i Nenad Trinajstié

Analizirane su relacije struktura-svojstvo i razli¢iti naéini njihova prikazivanja. Predlozen
Je skup pravila za procjenu upotrebljivosti takovih relacija. Naglagena je razlika izmedu empirij-
skih, teorijskih i strukturnih korelacija, koja pomaze da se odgovori na pitanje da li su graf-teo-
rijske korelacije izmisljotine ili ¢injenice. Iz provedene analize slijedi da su graf-teorijske korela-
cije prave korelacije izmedu strukturnih i fizikalno-kemijskih parametara koje imaju veliku
prediktivnu moé.
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