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A review is presented of the recent progress in designing local vertex
invariants with low intramolecular degeneracy and the derived topological in-
dices with low intermolecular degeneracy; in other words, an attempt is made
to assign to graph vertices real (i.e. non-integer) numerical invariants which
are different for non-equivalent vertices and similarly to assign to non-
isomorphic molecular graphs distinct real-number topological indices.

INTRODUCTION

One of the most rapidly developing chemical applications of the graph theory in-
volves topological (TIs).!-” These are numbers associated with molecular chemical
structures, and they serve for quantitative structure-activity or structure-property cor-
relations (QSAR and QSPR, respectively). TIs do not depend on how one labels the
atoms in a molecular (constitutional) graph and are, therefore, molecular invariants.

A molecular graph usually consists of vertices (points) symbolizing non-hydrogen
atoms and of edges (lines) symbolizing covalent bonds.

At present, the TIs do not have a one-to-one correspondence with chemical struc-
tures, but are more or less degenerate: this means that more than one structure may
correspond to the same value of a T Indeed, taking into account the fast increase of
possible structures with increasing numbers of vertices, the designing of TIs with low
intermolecular degeneracy is not an easy task.

When TIs are integer numbers formed on the basis of integer local vertex in-
variants (LOVIs), such as vertex degrees or topological distances, by simple (book-

* Reported in part as a plenary lecture at the 13th Meeting of Croatian Chemists (Zagreb, February 8-10,
1993).
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keeping) operations, the degeneracy of TIs is high. This is the case of the earlier TIs,
such as Wiener’s index W.8

When the TIs are formed by more sophisticated operations, their degeneracy is
lower: this is the case of Randi¢’s index® or of Balaban’s index J,!° which are real num-
bers based on integer LOVIs.

The lowest degeneracy of TIs, however, is expected to be reached when they are
formed by sophisticated operations from real-number LOVIs. During the last few years,
our efforts have been directed towards finding new real-number LOVIs, and have
developed such intramolecular invariants, which will be reviewed briefly in this paper.
It should be noted, however, that we have so far limited our efforts to the simplest
operations for assembling these new LOVIs into TIs; this was done only to check the
suitability of the new LOVIs by intra- and intermolecular comparison. It is expected
that, on the basis of these new LOVIs, the degeneracy of TIs will be substantially reduced.
This reduction is not a goal per se, because it could go on indefinitely; diminishing
rewards would have to mark a point when the search should stop. However, this point
has not yet been reached to date, as it will be apparent from the treatment below.

INTRAMOLECULAR DEGENERACY OF LOVIs

When topologically non-equivalent vertices have the same LOVI values, they
are said to be degenerate. Evidently, vertex degrees have a high intramolecular degen-
eracy, since they are normally four integers 1, 2, 3, or 4. The smallest alkane graphs
with such degeneracy are isopentane (1) with non-equivalent primary carbon atoms
(i.e. of vertex degree one), and pentane (2) with non-equivalent secondary carbon
atoms.

Vertex degrees :
1
1 1 4 2
1 e o o e
2 1 2 2
1 1
1
1 2 3 4
Distance sums :
18
8 12
9 7 7 12
/{\/ 18
5 SN
8 6 10 6 10 12 570 18
18
1 2 3 4

Figure 1. The simplest LOVIs: vertex degrees and distance sums. It can be observed that graphs
1 and 2 have intramolecular degeneracy of vertex degrees, and that graph 4 has intramolecular
degeneracy of distance sums, for non-equivalent vertices.
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Topological distance sums are integers without upper bounds, so they have lower
degeneracy, as seen for graphs 1 and 2 where non-equivalent vertices have distinct dis-
tance sums (Figure 1).

The pair of graphs 3 and 4 illustrate both the intramolecular degeneracy of LOVIs
(distance sums) and intermolecular degeneracy of the topological index J. This pair is
actually an example of the smallest monocyclic graphs with degenerate J values (for
acyclic graphs, the smallest such examples contain twelve vertices).!!

In graph 4, non-equivalent vertices of degrees 2 and 4 have the same distance
sums, 12. It will be observed, however, that the distance sums s; have different parti-
tions:

18 = 1+(2+2+2)+3+(4+4) = 1+(2+2)+(3+3+3) +4;

12 =(1+1+1+1)+2+B+3) = (1+1)+(2+2+2+2+2) =
= (1+1+1)+2+2+2)+3.

For brevity, the above distance vectors are denoted, in the abbreviated form, as
follows:

18 = 11 23 31 42 = 11 92 33 41
12 Si14 21832 12 9b & 91993 31

One can take the advantage of this fact and resolve intramolecular degeneracies
of distance sums, when partitions differ, by applying intramolecularly the information
theory using Shannon’s formula. This was done earlier by Basak. Raychaudhury,
Klopman and coworkers,'?-1® and more recently, in a different manner, by Balaban
and Balaban.!” (The first application of information theoretic formulas for TI molecular
invariants was implemented by Bonchev and Trinajsti¢'®). Four new LOVIs, denoted
by u, v, x, and y are defined according to formulas (1) — (4).

w == (8/S) log(i/S) 1
v; = S; log,S; — u; (2)
vi= Y g logi @

J
x; = 8; logS; — y; 4)

In the above formulas, for any given vertex i, the distance vectors indicate how
many times (g;) any distance j occurs.

On summing up over all edges the products of LOVIs for the endpoints of each
edge (Randié-type formulas), one obtains TIs denoted by U, V, X, and Y. For an in-
finitely long linear alkane, U tends towards infinity, while V, X, and Y tend towards
zero. For comparison, index J tends towards a finite value, namely the number = =
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3.14159. The informational indices U, V, X, and Y were tested in correlations with
critical data of alkanes, with coefficients of Antoine’s equation for vapor pressure of
alkanes, with good results.!?

There are cases when non-equivalent vertices have identical distance sums and dis-
tance vectors. One example is the graph corresponding to 1-ethyl-2-methylcyclopropane,
5, for which two non-equivalent vertices of degree two have distance sums 9 resulting
from the same distance vector (12 22 3!), as seen in Figure 2.

Vertex numbering : Distance sums :

Distance vectors for S, = S, =12 2? 3!

Matrix of regressive Matrix of regressive
vertex degrees : distance sums :

Shell: 1 2 3 45 a2 34 55
Vertexeal 'L 0305, 38975195 12
28284555 a1 S 920017 12 -
Si8sm2 - 262425 i
22653 1 9F 521130

5B 6 288 20 8228893
6|15 3c 55251 123558+ 65 192 13

Regressive vertex degrees : Regressive distance sums :

0.90
13521 3.021 12.9703 10,503

> 10723
2.451 [> 132 11182

/ 372 / 2.8

1.2351 13.9882

Figure 2. Intramolecular degeneracy of distance sums and distance vectors illustrated for graph
5. It can be observed that both regressive vertex degrees and regressive distance sums resolve
the degeneracy.

In this case, a second or third approach may be followed to resolve this intramolecular
degeneracy, namely by means of regressive vertex degrees (RVDs),2 or regressive dis-
tance sums (RDSs), respectively.2!

The idea in both cases is that vertex degrees indicate only the closest neighbors,
whereas in distance sums the largest contributions arise from the most remote ver-
tices. By introducing progressively attenuated contributions of the more remote ver-
tices, it is possible to obtain real-number LOVIs, which are slightly augmented RVDs
and RDSs, respectively. This is done by constructing non-symmetrical matrices for suc-
cessive shells around each vertex, and summing up for all vertices, in each shell the
vertex degrees or distance sums, respectively. The first shell is the vertex itself and,
therefore, entries in the first column are the vertex degrees and distance sums, respec-
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tively, as seen in Figure 2. For each row in the matrix for regressive vertex degrees,
the sum of entries m;; is twice the number of edges (like in the adjacency matrix) and,
correspondingly, for the matrix of regressive distance sums the sum of entries over rows is
twice the Wiener number. Attenuation with increasing distances may be via a recipro-
cal cubic formula (5) or via reciprocal powers of 10, as indicated by formula (6).

LOVY; = 2 i~ my; 5)
i
Vertex numbering :
2 3 2 1 2
1 —
1 4
Lt [P
6 5 7 5 1
6 7 8

Distance sums (distance vectors) :

14
S 12 5
16 16 6
9
2 16 16 :
12 6
W8T 14

(9 = 1+1424243) (16 = 14142424343 +4) 6= 1414242

Matrices of regressive vertex degrees :

Shell : I 2:53244 2225 3.4"5 15243
Vertex 1} 2 476 2 2.4 55 2 2595155
2250 2 ST 4 Il D
3.3 7 4 - 329470 - 26" -4
4525642 25055 Sl gD 3eTe 2

2.57 3.74 2.574

3.72

2.4552 3742 2552 9. .
2.462 2.642 2,64

Matrices of regressive distance sums :

"~
3
N

Sl 1 234 1 & 54

2 5
Vertex 1|9 16 14 9 16 30 26 28 16
218 16 24 - 14 28 44 30 -
o VT AL B 7 e 12 42 46 16 -
419 1416 9 16 28 26 30 16

984 9.57

17.27
19.2896 16.676 6.76
10.749 7.21
3, Y 4
10.569 ot 7.12

Figure 3. Intramolecular degeneracy of distance sums and distance vectors in condensed bicyclic

systems 6 — 8 with unequal ring sizes. It can be observed that both regressive vertex degrees
and regressive distance sums resolve the degeneracy.
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LOVIJ = z 101_i mij (6)

Figure 2 illustrates the application of the latter formula. It can be seen that both
of these regressive LOVIs resolve the intramolecular degeneracy of distance sums and
distance vectors for the two vertices labelled 2 and 4 in graph 5.

In Figure 3, three other general cases of intermolecular degeneracy of distance
sums are presented; whenever two rings of different sizes are condensed, the highest
distance sum belongs to the pair of nonequivalent vertices; moreover, the distance vec-
tors are also the same and, therefore, information theoretic formulas cannot resolve this
intramolecular degeneracy. However, both regressive vertex degrees and the regressive
distance sums do resolve this intramolecular degeneracy, as shown in Figure 2 for
graphs 6 — 8.

Figure 4 illustrates an acyclic graph 9 (2-ethyloctane) with a pair of nonequivalent
vertices having identical distance sums (25) and identical distance vectors (12 22 32 42 5)

X /-

9
Partial matrix of regressive vertex degrees :

Shell : 28 434 = 50%6

Vertex
X s e
Y 2 4.4 §.3 4

Partial matrix of regressive distance sums :

Shell : 2830 12056

Vertex
X 2025 8 657 ¥
Y; 25 52 44 54 68 39

24 30.70...

9 9

Regressive vertex degrees Regressive distance sums

Figure 4. Graph 9 with the vertices X and Y having identical vertex degrees, distance sums, di-
stance vectors, and regressive vertex degrees, but with distinct regressive distance sums.
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It can be seen that the regressive vertex degrees for that pair do not resolve the in-
tramolecular degeneracy while the regressive distance sums do.

On attaching to graph 9 pairwise paths of various lengths, symmetrically with
respect to the middle of the thick line, one obtains graphs with 12 (e.g. graphs 10 —
12), 14 (e.g. graphs 13 - 15), or with 10 + 2k vertices (k being a natural integer).
Again, in all these cases, the marked vertices have identical distance sums, distance
vectors, and regressive vertex degrees, but the regressive distance sums resolve the in-
tramolecular degeneracies (Figure 5).

B B
/\I)i/ / : :
A
A A
A
11 12

10

33 14 15

Figure 5. Graphs 10 — 12 with 12 vertices and 13 — 15 with 14 vertices resulting from graph 9
by symmetrical attachment (relative to vertices X and Y) of one or two pairs of vertices, respec-
tively. Vertices marked by the same letters have identical vertex degrees, distance sums, distance
vectors, and regressive vertex degrees, but distinct regressive distance sums.

PRESENCE OF HETEROATOMS
AND/OR MULTIPLE BONDS

So far, molecular graphs were supposed to represent the carbon skeleton of hydro-
carbons. One can include information on the presence of heteroatoms for index J, by
means of a formula proposed by Trinajstié¢?? and coworkers, via the atomic number Z
of the heteroatom. However, as chemical properties vary periodically with Z, another
approach was proposed, making use of electronegativities or of covalent radii which
also vary periodically with Z.2® A coefficient is calculated relative to carbon, and this
coefficient multiplies the LOVIs (for J, this is the distance sum). An additional weight-
ing factor is sometimes necessary, as shown in correlations with the anti-cancer ac-
tivity of retinoids.?#?5 For correlations with normal boiling points of ethers, acetals,
peroxides and their sulfur analogues, both the oxygen and sulfur heteroatoms could
be put together into the index J with a single weighting factor.2

One may simultaneously include information on heteroatoms and multiple bonds
by making use of modified distances, as shown in the next section.
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MODIFYING TOPOLOGICAL DISTANCES

For putting in information on the presence of multiple bonds, a simple approach
is to consider the topological distance equal to the reverse bond order b;! (this is 1,
2, 3, or 1.5 for single, double, triple, and aromatic bonds, respectively). One puts these
entries into the distance matrix between multiple-bonded atoms, and one computes the
resulting LOVIs. Then, the TIs are able to discriminate isomers of alkenes, as shown
for 2-methylpentenes 16 — 18 in Figure 6.7

75 s 35
)Q/g‘j /4&/ = 4}'\/ :
6 5 1 7:5
55 45 55

16 157 18
W= 31 W= 26 We=27

Figure 6. Three isomeric alkenes whose LOVIs for non-equivalent vertices and whose resulting
TIs are distinct, i.e. non-degenerate.

A comparison between relative interatomic distances shows, however, that entries
b;* give close agreement with actual distances. Hence, chemical-topological distances
have been recently proposed, as seen in Table I

TABLE I

Topological distances RTD, and chemical-topological
distances CD, for multiple bonds

Bond R (A)? REDP b RTDe cpd
c-C 1.54 1.00 ik 1.00 1.00
C=C (Ar) 1.40 0.91 1.5 0.67 0.90
C=C 1.33 0.86 2 0.50 0.84
C=C 1.20 0.78 3 0.33 0.76
C-N 1.47 1.00 1 1.00 1.00
C=N 1.29 0.88 2 0.50 0.84
C=N 1.16 0.79 3 0.33 0.76
N-N 1.45 1.00 1 1.00 1.00
N=N 1.26 0.87 2 0.50 0.90
c-0 1.41 1.00 1 1.00 1.00
C=0 1.21 0.86 2 0.50 0.84
0-0 1.45 1.00 1 1.00 1.00
N-O 1.47 1.00 1 1.00 1.00
N=0 1.15 0.78 2 0.50 0.84
(O] 1.81 1.00 1 1.00 1.00
C=8 1.61 0.89 2 0.50 0.84

aExperimental interatomic distance (in Angstroms).
PRelative experimental distance (standard : single bonds).
CRelative topological distance b-!.

dChemical-topological distance b—%
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A different approach consists of multiplying integer or real-number LOVIs (result-
ing from the application of any method) by factors fi, determined from experimental
covalent radii, as shown in Table II; the experimental radius r; is divided by the value
of 0.77 A, corresponding to sp3-hybridized carbon, to obtain factor fi- Thus, one ac-
counts simultaneously for heteroatoms and bond multiplicity. This approach was used
in combination with the exponential TIs, which will be described below.229

TABLE II

Covalent radii rj (in Angstroms) and factors f;

3 o 2 e = =
T s pS-hybridized s p“-hybridized s p-hybridized
Ti fi ri fi Ti fi
C 0.77 1.000 0.665 0.864 0.60 0-779
Si 117 1.519 - - - -
F 0.64 0.832 0.54 0.701 - -
Cl 0.99 1.286 0.89 1.156 - -
Br =14 1.480 1.04 1.350 - -
I 1.33 1.727 1.23 1.397 - -
(0] 0.65 0.844 0.55 0.714 0.50 0.649
S 1.04 1.350 0.94 1.220 0.88 1.143
N 0.70 0.909 0.60 0.779 0.55 0.714
P 1.10 1.428 1.00 1.299 - -

Independently, the Zagreb®® and the Bucharest groups®! proposed reciprocals of
topological distances as entries in a new symmetrical matrix, whose sums over rows
and columns are new rational-number LOVIs. The global sum is called the Harary
number, H. In some cases this TI presents lower degeneracies than the Wiener index
W; thus, bicyclic condensed systems with two even-membered rings of sizes k and %
+2 have the same W number as isomeric bicyclic condensed systems with ring sizes
k-1andk +3, but the H numbers differ. Otherwise, this TI parallels closely the Wiener
index in intermolecular ordering of isomeric systems.

Klein and Randié®? used the resistance distance for cyclic graphs, defined as fol-
lows: let each edge in a graph be a one-ohm resistor. Then, the resistance between any
two vertices is the resistance distance. In the corresponding symmetrical matrix, sums
over rows and columns are new rational number LOVIs, and the global half-sum is a
new TI, called the Kirchhoff number K of the graph. For acyclic graphs, the resistance
distance equals the topological distance and, therefore, for such graphs K = W. On
multiplying the LOVIs and TIs by the number of spanning trees in any cyclic graph,
one obtains integers.?® The degeneracy of Kirchhoff numbers is very low and resolves
practically all cases of degeneracy for the Wiener and Harary numbers, such as those
encountered with linearly condensed systems with 3 or more even-membered rings ar-
ranged in different orders of ring sizes. Only one pair of the six possible isomers (dif-
fering by permuting ring sizes in linearly condensed systems having ring size 4, 4, 6,
and 8) was found to have degenerate K values namely graphs 19 and 20, which have
degenerate K, H, and W values (Figure 7).34

However, even this exceptional degeneracy of K values is solvable, since all LOVIs
of graphs 19 and 20 are different; any operation more sophisticated than the simple
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19 20

Figure 7. The single pair of isomeric polycyclic graphs with degenerate W and H indices, having
also degenerate K values.

summation (e.g. information theoretic formulas) will therefore lead to different TIs for
all polycyclic graphs known to date.

Three other types of real-number LOVIs and the corresponding TIs (mainly by
simple summation) have been proposed in the last few years.

(i) Conversion of the adjacency or distance matrix into a system of linear equa-
tions, by including two column vectors conveying chemical (e.g. the atomic number Z
or a periodically-varying property) or topological information (e.g. the vertex degrees,
the distance sum), or even a constant. One of these two vectors provides the coefficient
for the main diagonal and the other provides the free term. Simple summation affords
a variety of TIs denoted by a triplet (matrix, main diagonal column vector, and free
term column vector). Excellent correlations with the boiling points of alkanes were ob-
tained with the AZV LOVIs. Intra- and intermolecular degeneracies of LOVIs and TIs,
respectively, are quite low.35%

(ii) Eigenvectors corresponding to extreme eigenvalues can be used as LOVIs. In
a systematic investigation of all alkanes, it was found that the eigenvectors of the ad-
jacency matrix, but not of the distance matrix, presented intramolecular degeneracy.”’

By the simple summation or by more sophisticated operations, these LOVIs were
then combined into several TIs, which were tested in correlations with normal boiling
points of all alkanes with 2 to 8 carbon atoms.

(iii) In the search for real-number LOVIs and TIs with low degeneracy, exponential
formulas were proposed, leading to LOVIs in the range 0 to 1. By simple summation,
one can obtain the corresponding TIs, which were tested in correlations with physical
properties with satisfactory results.2%2?

FRAGMENT TOPOLOGICAL INDEXES

In addition to LOVIs for atoms and to TIs for whole molecules, we also developed
several approaches for TIs associated with molecular fragments (radicals or substituents)
because, in designing new molecules, one often has to make correlations with struc-
tures in which only a part of the molecule is changed.

In cooperation with D. Bonchev and O. Mekenyan, integer number TIs were proposed
for molecular fragments.3®

A different approach was used for index J, namely the distance sum of the root
vertex (i.e. the atom of the substituents connecting it to the major moiety of the molecule)
was multiplied by the factor 0.1; then, J was computed.?®

The exponential LOVIs, which range from 0 to 1, were used for fragment TIs by
constructing the symmetrical dimer of the fragment, computing the exponential LOVIs,
and discarding one half of the dimer.?
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CONCLUDING REMARKS

This paper has reviewed recent work in devising LOVIs with low intramolecular
degeneracy and TIs with high discrimination ability in intermolecular comparisons
and good properties for use in QSAR/QSPR. Both the recently devised LOVIs and TIs

are real numbers, rather than integers and, therefore, these TIs are 3rd generation
s, 2042

In addition to structural correlations with physico-chemical properties, TIs are fre-
quently used for drug design,!"*3-%6 an area where mathematical modelling can spare
much effort in synthesizing and testing new compounds.

We have focused this review on the efforts of our group in Bucharest,*2-46 but, for-
tunately, during the last few years new cooperations became possible (in addition to
those we had with the Technical University in Burgas, Bulgaria and the University
of Trondheim, Norway), namely with universities in the USA: Virginia Common-

wealth University in Richmond, Virginia, and the Texas A & M University in Galves-
ton, Texas.
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SAZETAK

Snizavanje intra- i intermolekulske degeneracije
topologijskih invarijanti

Alexandru T. Balaban

U ovom preglednom ¢lanku prikazan je suvremeni napredak u kreiranju lokalnih topologij-

skih invarijanti vezanih na évorove molekulskog grafa s niskom intramolekulskom degeneraci-
Jom i u izvodenju topologijskih indeksa s niskom intermolekulskom degeneracijom.
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