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It is shown that the Wiener index and the Schultz index are highly in-
tercorrelated topological indices. For some classes of chemical graphs such
as weighted and unweighed trees and cycles, the Schultz index can be ex-
pressed exactly in terms of the Weiner index, the number of vertices, the
number of paths of length two and the position of weighted vertex in a
chemical graph. Consequently, the structure-property-activity relationships
based on either of these two indices should be closely congruent.

INTRODUCTION

The development of the quantitative structure-property relationships (QSPR) and
the quantitative structure-activity relationships (QSAR) has been a major field of re-
search for a long time.!-® In the last two decades, the QSPR and QSAR modeling based
on topological (graph-theoretical) indices has shown an explosive growth.”'¢ Two fac-
tors greatly influenced research in this area. The first was a rapid progress of chemical
graph theory'®!417 and the second was an amazing advance of computer technology,
especially in terms of the portability and performance of PCs.

A topological index is a single number, derived following a certain rule, which can
be used to characterize the molecule.” More than 120 topological indices have been
proposed so far.!® This large number of topological indices indicates that a clear and

* Reported in part at the 13th Meeting of Croatian Chemists (Zagreb: February 8-10, 1993)
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unambiguous criterion for their selection and verification is missing. However,
Randi¢!® has recently proposed a set of desirable properties of topological indices
which will hopefully put some constraints on the unreasonable proliferation of indices.
These requirements are summarized in Table I. When a molecular descriptor?’ fulfills
the requirements in Table I, only then it can be »promoted« to the status of a topologi-
cal index.

TABLE I

List of requirements for topological indices as proposed by Randi¢!9

Direct structural interpretation

Good correlation with at least one physical or chemical property
Good discrimination of isomers

Locally defined

Generalizable to higher analogues

Linearly independent

Simplicity

Not based on physical or chemical properties

Not trivially related to, or highly intercorrelated with, other indices
10  Efficiency of construction

11 Based on familiar structural concepts

12  Showing size dependence

13  Gradual change with gradual structural changes

W00 -J0 0T W -

In the present report we will consider two topological indices: the Wiener index?!
and the Schultz index.?? These two indices obey all the requirements from Table I, but
two (No. 3 and No. 9), that is, they are not particularly discriminative indices?®?* and
they are closely mutually related for several classes of chemical structures. Here we
discuss the latter point, i.e., relationship between these two topological indices, also
called distance indices!'® because both can be derived from the distance matrix.10:14:24

DEFINITIONS

Both the Wiener index and the Schultz index are well presented in litera-
ture.”-1416,23.24 Therefore, they will be described here rather briefly.

Wiener Index

The Wiener index W = W(G) of a chemical graph G was introduced in 1947 as
the path number.?! It was elegantly defined 25 years later as a half-sum of the ele-
ments of the distance matrix D = D(G) of G’

W=%Z§D,-j L

Since the distance matrix is also defined for weighted graphs,??7 the respective
Wiener index can also be computed by means of Eq. (1).
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An efficient computer program for the calculation of the Weiner index for any
chemical graph is available in the literature.28

The Weiner index has been used in various structure-property relationships with
considerable success.!6:29,30

Schultz Index

The Schultz index MTI = MTI(G) of a chemical graph G was introduced in 1989

as the molecular topological index, and hence its acronym MTL22 It was defined suc-
cinctly as:24

MTI = z e; (2)

where e;(i = 1,---,N) are the elements of the row (1xN) matrix:
v[A + D] = [e; -+ ep] 3)

where v is the valency (1xN) matrix, A the adjacency (NxN) matrix and D the distance
(NxN) matrix of a chemical graph.

Since the Wiener index and the Schultz index use the same distance matrix for
the same structure, the MTI index can also be computed without any difficulty for
weighted chemical graphs.

The Schultz index has also been used in several structure-property relationships
with reasonable success,!6:23,31,32

The Relationship Between the Wiener Index
and the Schultz Index for Alkanes

The Wiener index and the Schultz index are strongly linearly intercorrelated dis-
tance indices for trees depicting the carbon skeletons of alkanes.'® For example, the
linear correlation between W and MTI for all alkane-trees with up to 10 vertices is
shown in Figure 1. The high value of the correlation coefficient (R = 0.9999) hints
that a formal relationship might exist between W and MTI for alkane-trees. In the
present paper, we will show that there is indeed a close connection between the above
two distance indices for alkane-trees and several other classes of chemical graphs.

RELATIONSHIPS BETWEEN W AND MTI

Alkane-trees

The relationship between the Weiner index and the Schultz index for alkane-trees
is given by:

MTI =4 W + 2p, - (N - D(N - 2) 4)

where N is the number of vertices and p, the number of paths of length two in a tree.
Eq. (4) was proved by Klein et al.33

A special case of Eq. (4) is a relationship between W and MTI for chains (n-alkane-
trees) which can be given only in terms of N. Since the Wiener number of chains?? is:



348 D. PLAVSIG ET AL.

700
MTI=aW+b
600 1
= a=3.6071£0.0051
= b=1.813+0.542
500 R =0.9999
§=2.26
F = 509052

140 160

w

Figure 1. Plot of MTI vs W for the first 150 alkane-trees

W = NWV? - 1)/6
and the number of p,-paths of chains is given by:
p2=N-2
Eq. (4) reduces for chains to:
MTI = 2N(N? - 1)/3 - (N - 2) (N - 3)

Weighted Trees

180

(5)

(6)

(7

Various acyclic molecules that contain heteroatoms can be represented graph-
theoretically by weighted tress.!%1¢ The Wiener index for weighted chains with, for ex-

ample, a single weighted vertex is given by:

W=©EN/6 N-D-RN-nhr-1)+ N-DI1-8) + (1/2a

(8

where n ¢ [1, N/2] for N = even and ne[1, N + 1)/2] for N = odd; n being the position

of weighted vertex. « is the vertex-weight and § the edge-weight.

One way of choosing the value of the a-parameter is the use of the following

relationship:2®

= 1- Z/Z,

9
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where Z, is the atomic number of the element X and Z. = 6. In the case of weighted
trees representing, for example, alkyl-alcohols,®! the value of the a-parameter for
oxygen is obtained as follows:

a, = 1-6/8 = 0.25 (10)
Similarly, the edge-weight 8 may be chosen as:28
Bex = ZE/2:Zy) [bex 1y
where b, is the bond multiplicity parameter with values 1, 1.5, 2 and 3 for a single
bond, an aromatic bond, a double bond and a triple bond, respectively. In the case of

weighted trees representing, for example, alkyl-alcohols®' the value of the B-
parameters for the C-O bond is given by:

Bco = 36/(6 - 8) = 0.75 (12)

The formula for computing the MTI for weighted chains with a single weighed ter-
minal vertex is given by:

MTI = @N/3) (W2 -1)-(N-2)(N-3)-(BN-1-Fk) Q-8 +2a (@13)

where 2 = 1 for N = 2 and %k = 0 for N > 2.

If the weighted vertex is placed at the location n (n = 2) in the chain then the
above formula changes to:

MTI = (2N/3) N? - 1) - (N = 2) (N - 3) — 2[4Nn - 3N
—4n® + 4n + 2-k/21 1 -PB) + 4a (14)

where n ¢ [2, N/2] for N = even and n ¢ [2, (N + 1)/2] for N = odd. The parameter
k takes the following values:

2 n=2andN=3
k=J1 n=2andN>3 (15)
0 n=3

The relationship between W and MTI for weighted chains with a single terminal
weighted vertex is given by:

MTI = 4W - (N -2)(IN-3) +(N -3 + k)1 -p) (16)

where k=1 for N=2 and k=0 for N>2. This relationship slightly changes when the
weighted vertex is placed at the nonterminal location n (n = 2) in the chain:

MTI = 4W-(N-2)(N-3) + 2N -8 + R)(1 -p) + 2a 17

where:
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1 n=2andN>3 (18)

2 n=2andN=3
k=
0 n=3

Cycles

[Nlcycles (N=3) can be used to depict the carbon skeletons of cycloalkanes or
[N]annulenes. The expression for computing their Wiener indices are known:2%24

W= {(N/,‘Z)3 N = even (19)

(N/8)(N*—1) N =odd

The explicit formulae for computing the Schultz index for cycles are given by:

_ [(N/2)(N? + 8) N = even
i {(N/z)(z\rZ +7  N=odd a0
The relationship between W and MTI for cycles is rather simple:
MTI = 4 (W + N) 21)

Weighted Cycles

There are possible three formulae for Wiener indices of weighted cycles with a
single weighted vertex. They depend on the parity of cycles and the f-values. We will
consider all three cases here.

Case I: N=even, 0 < f < 1
W = (N/2)® - [(N -1) + (N? - 2N)/4] (1-8) + (1/2) (22)
Case 2: N=odd, 0 < 8 < 1/2
W=O/8)N* - 1) + N - 1)/2 -[(N? + 4N - 5)/41(1 - B) + (1/2) (23)
Case 3: N =o0dd, 1/12 <8 <1
W= (N/8)IN? - 1) - [(N? - 1)/41(1 - B) + (1/2a (24)

For the same three cases the formulae for the MTI are as follows:
Case 1: N=even, 0 < f < 1

MTI = (N/2)(N? + 8) = (N? + 2N + 4)(1 - ) + 4« (25)
Case 2: N=odd, 0 < 8 < 1/2
MTI = (N/2)YN? + T) + 20N - 1) - (N? + 4N + 3)(1 - ) + 4a (26)

Case 3: N=odd, 1/2 < < 1
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MTI = (1/2)(N? + Y(N - 2 + 28) + 4a @27

The relationship between the Wiener index and the Schultz index for weighted
cycles is then given by:

MTI = 4(W + N) + 2 (@ + 48 — 4) (28)
for0 < g =<1

Cyclic Graph With Branches

We correlated the Wiener index and the Schultz index for 102 cyclic graphs with
branches with an even number of vertices. Their sizes were in a range from 4 to 32
vertices. The linear correlation between W and MTI for this case is shown in Figure 2.

84

MTI x 103

W x 103

Figure 2. Plot of MTI vs. W for 102 cyclic graphs with branches

The linear least-squares relationship, corresponding to the line in Figure 2, pos-
sesses the following statistical characteristics: R = 0.9916, s = 168.314 and F =
11266.378. This indicates that, for a general set of graphs, the MTI cannot be ex-

pressed in a simple way in terms of the Wiener number and some other graph-theoreti-
cal invariants.

CONCLUDING REMARKS

In this report we have shown that the MTI index can be expressed in terms of
the Wiener index, the number of vertices, the number of paths of length two and the
position of weighted vertex in simple classes of chemical graphs such as trees, weighted
trees, cycles and weighted cycles.
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SAZETAK

Odnos izmedu Wienerovog indeksa i Schultzovog indeksa
za neke klase kemijskih grafova

D. Plavsié, S. Nikolié, N. Trinajsti¢ i D. J. Klein

Pokazano je da su Wienerov indeks i Schultzov indeks jako interkorelirani topologijski in-
deksi. Za neke klase kemijskih grafova kao 3to su stabla, prstenovi, utezena stabla i utezeni
prstenovi, Schultzov indeks moZe se toéno izraziti pomoéu Wienerova indeksa, broja ¢évorova, sta-
za duljine dva i poloZaja utezenog atoma. To ima za posljedicu da su odnosi strukture i svojstava
(ili aktivnosti) temeljeni na jednomu od ta dva topologijska indeksa sukladni.
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