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Combinatorial fullerene structures (buckyballs for short) have been in-
troduced as a result of the recent discovery of fullerene molecules in
laboratories. The stable forms of these materials appear to depend on the
method of production as well as on energetic considerations. To understand
the stable forms, one would have to examine the confirmed structures among
the theoretical structures. As an alternate route to computerized enumera-
tion (which appears to be expensive and not totally safe), we present a pro-
cedure that is geometrically transparent. Under certain conditions, our pro-
cedure is economical and complete. For example, in the case of buckyballs
Cy, with v < 84 satisfying the isolated pentagon rule, our procedure can be
carried out by hand. To distinguish the inequivalent structures, we present
a procedure that does not involve costly spectral computation. In particular,
we show that Cgy and Cyq are uniquely characterized as the IPR C, for the
two smallest permissible values of v. Some of our results can be used to study
qualitative selection rules as well as the structure of hexagonal cylinders.

1. Basic Definitions.

Definition 1.1. A (topological) buckyball is a convex, closed polyhedral surface in
Euclidian 3-space that satisfies the following conditions:

(BB1) Three edges meet at each of the v vertices.

(BB2) Each of the f faces is either a convex pentagon or a convex hexagon so that
2 such faces may have at most one common edge.

Two such buckyballs are topologically (or combinatorially) equivalent if there is a
homeomorphism between the surfaces so that vertices, edges and faces are preserved.
The equivalence class is, in fact, completely determined by the combinatorial
equivalence defined on the vertices and edges. Chirality reversing homeomorphisms
are permitted.

Definition 1.2. A buckydisk is a polygonal disk in 3-space that can be flattened into
a planar disk (not necessarily convex) so as to satisfy the following conditions:
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(BD1) Each of the vj, interior vertices is the end point of 3 edges. On the bound-
ary, each of ¢, vertices is the end point of two edges on the boundary and
each of the remaining c; vertices is the end point of 2 edges on the bound-
ary and 1 edge from the interior.

(BD2) Each of the polygonal faces is either a convex pentagon or a convex
hexagon.

Definition 1.3. A hexagonal cylinder is a polygonal surface in 3-space that can be

flattened into a plane so that it is an annulus satisfying the following conditions:

(HC1) Same as (BD1) (but there are two boundary components).

(HC2) Each of the faces is a convex hexagon.

Definition 1.1 is based on the classical experimental results of chemists and
physicists, see Ref. 1 for discussions. However, in a recent private communication from
M. Dresselhaus, see Ref. 2., it appears that this definition may be too restrictive when
dealing with »buckytubes«. Definitions 1.2 and 1.3 are based on a naive mathematical
view of the production process for fullerenes. Namely, we consider the shattering of
stacked graphite sheets. The results are assumed to be small units in the form of disks
(hemispheres), rings (annuli) and carbon atoms. Two such disks together with some
rings and carbon atoms can then be assembled to make up buckyballs, as well as buck-
ytubes and hexagonal cylinders. Such a hypothetical viewpoint would surely depend

on the laboratory environment. For example, buckytubes are »grown« at a negative
electrode.

2. Cyclic Boundary Valence Code (CBVC) and Euler’s Theorem.

By flattening a buckydisk into a plane, it can be given the usual orientation of the
plane. Each combinatorial equivalence class may, therefore, support at most two dis-
tinct oriented structures. To the vertices on the boundary, we assign the integer O (for
out) or 1 (for in) which is 2 less than the valence. The CBVC assigned to the disk is
the cyclic sequence of 0’s and 1's starting anywhere on the boundary in the
counterclockwise direction. For example, (0,1)™ is called a sawtooth cycle and (0,0,1,1)*
is called a square-wave cycle. In general, a given CBVC may or may not occur as the
boundary of a buckydisk. Similarly, a given buckydisk may or may not be completed
to a buckyball. A reversal of orientation corresponds to the inversion of the CBVC. If
an oriented buckyball is divided into two oriented buckydisks, then the two CBVC’s
are related by inversion plus complementation (namely, exchange 0 and 1 in the code).

The following result is well known. The first part follows easily from the definition
together with Euler’s Theorem (v — ¢ + f = 2 holds for a spherical 2-complex). The
last is due to Grinbaum and Motzkin, see Griibaum [Ref. 3; Theorem 13.4.1, p. 271].
Namely, the existence was based on the construction of buckydisks with CBVC (0,1)
and h = 1, 2, 3 and 4. The exclusion of f; = 1 can be deduced easily from Theorem
2.2 below.

Theorem 2.1. Let C, be a buckyball with v vertices. Let e denote the number of
edges and let f,, denote the number of m-gon faces, m = 5 or 6. Then,

(@v=20+2f; ®e=30+3f (©Ff =12

The number f; of hexagons can be any non-negative integer other than 1.
An easy extension of the first part yields the following result.
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Theorem 2.2 Let a buckydisk have c,, boundary vertices with valence m (= 2 or
3). Suppose it has h hexagons, p pentagons and v;, vertices in its interior. Then,

@ca=p+2h-vy, +4 Mes=2p + 2h —vy, - 2.

In particular, ¢y - ¢; = 6 - p.

For a prescribed CBVC, Theorem 2.2 does not impose any a priori restriction on
h and vy, For a buckydisk to be part of a buckyball, it is clearly necessary (but not
always sufficient) that |c, — ¢3| = 6. The following result is not difficult.

Theorem 2.3. (Finiteness Criterion). For a prescribed CBVC with ¢y — ¢3) 0, there

are at most a finite number of topologically distinct buckydisks (possibly none). The
bound can be expressed in terms of ¢, and c;.

Sketch of the proof. We proceed by induction on ¢, + ¢z and begin from the bound-
ary by drawing short inward pointing edges from the c; boundary vertices with code
1. Some of these edges may coincide (to form a 1-bridge) or have a common interior
vertex (to form a 2-bridge). We then assign 5- or 6-gons in all possible ways between
successive inward pointing edges. There are at most a finite number of possibilities.
It is important to note that each 1- and 2-bridge divides the given CBVC into two. To
smooth out the argument, we also consider 0-bridges that arise from the identification
of 2 boundary vertices (one must have code 1 while the other may have code 0 or 1).
In organizing the proof, when an i-bridge is formed, i = 0, 1, and 2, we immediately
consider the resulting two CBVC separately by induction. When there is no i-bridge,
I =0, 1 or2, we treat the remaining case by first considering the case where the as-
signment leads to a new CBVC and show that ¢, + c; decreased. The possibility of a
3-bridge or 4-bridge is then subsumed by the inductive treatment of 0-bridges. One
may extract a crude bound on the number of possibilities in terms of ¢, and cs. The
main point is that the assigned 5- and 6-gons may reach across in the form of pontoon
bridges. We omit further details. This result motivates the following definition.

Definition 2.4. Let H be a buckydisk with CBVC having ¢; = ¢3. H is called min-
imal if there is at least one pentagon along the boundary.

Evidently, for any prescribed CBVC with ¢, = c3, there are at most a finite number
of topologically distinct minimal buckydisks. For small ¢, and c3, we can perform clas-
sification of the minimal buckydisks by hand. The imposition of IPR will, of course,
speed up the process by a large factor. In general, by paying attention to 0-, 1- and
2-bridges, the task can be accomplished by using a super-computer.

3. IPR Buckydisks with CBVC (0,1)™ and (0,0,1,1)" and Magic Numbers.

Based on the qualitative idea of minimizing »steric strain«, chemists, see Ref. 1,
have proposed the following selection rule for fullerenes:

(PR) Isolated Pentagon Rule: No two pentagon faces are adjacent. (IPR) is con-
firmed by the long-lived fullerene molecules C,, v = 60, 70, 76 and 78. In fact, the first
observed cases correspond to v = 60 and 70. For small v, (IPR) cuts down the number

of possible buckyball structures by a large factor. The following table (from computer
enumeration) is taken from Ref. 4. and Ref. 5.

60 70 72 74 76 78 80 82 84 86 88 90
sl ol o0 h o g 94 10 35 45
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Our procedure will in fact produce at least these numbers for v < 84 (see Tables
I through IV). In contrast, the total number of Cg, buckyball structures has been
reported to be 1760 in Ref. 4., 1790 in Ref. 5. and revised upward to 1812 by both al-

gorithms, see the comment and reply (listed at the end of Ref. 5. about these algo-
rithms.

TABLES

In the following tables, the name of the fullerenes structures is denoted in the form of G—C,. G
denotes the symmetry group of the graph. We follow the point group notation in Ref. 12. Apostro-
phes on group G in the case of v = 78 follows the convention in Refs. 6 and 7. In Tables II through
1V, superscripts of the form () or (t) signify the number of isolated sites in the pyrene subcomplex.
Additional letters appear as superscripts in Table IV to signify certain distinguishing features in
the pyrene subcomplex. These are not standard. The additional column in Table IV sets up the
distinction between the present Table and Table in Ref. 12. The type column describes the con-
struction of the fullerene structures in terms of buckydisks and hexagonal cylinders. The notation
is of the form (hy,hok)y or (hy,ho;k ). In the first case, there are two buckydisks with h; hexagons
each and CBVC (0,0,1,1)™ joined by k hexagonal necklaces each with m hexagons so that fg = hy +
+ hy + km. In the second case, the buckydisks have CBVC (0,1)" and they are joined by k hexa-
gonal band bracelets with n hexagons each, so that fg = hy + hy + kn. A rotation angle is ap-
pended to indicate the different ways of attaching the disks to each other. This angle is measured
in terms of our graph and has no quantitative physical significance. Column H(C.) gives the struc-
ture of the pyrene subcomplex in terms of the shape of the connected components and their mul-
tiplicities (as exponents). The remarks column provides an alternate type description as well as
chirality and stability in experimental work.

TABLE 1
IPR——C()‘O to C7g

Name Type (rot. angle) H(C,) Remarks

I —Cqgo (5,5;2)5 empty (10,10;0)g, stable

Ds5,—Cry (5,5;3)5 (|)® (112,14;0)10, stable
Dgg—Crg (7,7;2)6 (hex)? not observed

D3p—Cry (13,14;0)10 ()2(])8 (115,16;0) 1, absent
Dy—Crg (14,14;0)10(37/20) (D22 chiral, stable

T4—Crg (14,14;0)1 (57/20) (DE¢E (145,145;0), absent
D3—Cqg (10,10;1)g(27/9) (S)3 chiral, minor Ref. 6, Ref. 7.
D3y —Crsg (7,10,;2)¢ (hex)3 (10,10;1)9(0), absent
Co,—Crg (7,104;2)¢ ()2(U)2(hex) major Ref. 6, minor Ref. 7
C',—Crg (10,,132;1)¢ ()2(H4U)2 (141,15;0)6, (13,16;0);0, absent Ref.

6, major Ref. 7
D'3,—Crg (104,132;1)6 ()8(|)8 (149,15,;0)6, absent
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TABLE 11

IPR—Cgg (none observed)

Name Type (rot. angle) H(C,) Remarks
;6 (5,5:4)5 (0,0,1,1)° (A2, 12D 0n)
Bo-Cor (016D @) (P (10,,145;1)¢
G (10,10; 1), (7) @) (124,12451)
SJETet (14,16;0),4(37/20)  (])*(7-pinwheel)®
DyC{g  (14,160),(67/20) (DA W) (10,,14;;1)g, (145,16,;0);
DyCR  (10,,1451), E(Ew)? (10,,14;;1)g, (145,16,;0)5, (15,1504
D (12,,12;;16(27/3)  (10-sg-wave)®
TABLE III
IPR—Cgy (observed in Ref. 7)
Name Type (rot. angle) H(C,) Remarks
C,~C{ (10,11;51)14(0) S ainy (10,,16,31)5, (125,13, 1)¢
C3=Cy) (10,1151 4(m) Oy (17518, 1), (125,18, 1)
Cy,—~C{J (10,115;1)y ONOX(S (125,131 D
Cy—Cyy (111,20;0)10 (U)z(lzl-scl-wave)1 (124,13,,; g, (121,13“;1)6(41/6)
C,—Cy,p {H,,20:0), 5 (D*(hex)' (12-sq-wave)'  (7,12;51), (12,,13,,;1)g
G0 iy (' (hex! (10,,15,1)q
c,—CQ (2. 1551 PP (8-sg-wave)! (15,1650,
Cy=Cyy (12,18, D6(2/2) (DX (U)A(10-sq-wave)"
c,-C (15,,16,;0), OYDEUES)!
TABLE IV

IPR—Cygy (observed in Ref. 7, FM # as in Ref. 12)

FM # Name  Type (rot. angle)  H(Cy) Remarks

#18 C,,—Cyy

#3 ¢,-0f
#11 C,—Ch,
1T, G620
#9  C,-c
£l0s Dt

#10:-Cj=c)

(114,114;1)14(0)

(119,11;1);9(/5)
(114,11;1)9(27/5)
(114,11;1)0(37/5)
(115,114;1); (47/5)
(114,114;1); ()
(114,115;1),0(0)

(%) (hex)?

ks’
D!
(20 (hex!
P!
°

Grpiue)

(7,1315.2)5, (10410,,;2)(x/2),
(133,13,;1)5

(131,13, 31)27/3), (131,131, 1)g(/3)

(7,132;2)5, (133y131U§1)5

(131, 131,51), (131, 131,1)(m)
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FM # Name

Type (rot. angle)

H(Cy)

Remarks

#16 C,—Cgy
¢~
Cor—Caa
Dy—C8Y
#2205 Co)
#5  Dy=Cyy
#4_ Dyi—Cay
#20 T;—Cyy
#14 C,—Chy
#33° B Ch
#2%aCrCF

£l D5 =Coy
#3  C,—CQ*¥
#6  Cp—Cay
#1  Cyp—CSY
#15 C,—C"

e o)

(114,11531)1((/5)

(11,119:1), o(2/5)
(115,115;1)10)
(U, 1511 /5)
(19,119 1) 127 /5)
(16,16:0), (37/20)
(16,16;0), 9 (577/20)
(7,1345;2)¢
(7,131,:2)¢
(105,10,:2)5(1/2)
(101,10,;2)g(ex/6)
(10,,10,;2)6(/6)
(12,14 ;1)6(0)
(12,14 ;D)
(12),144;1)¢
(131,131 1)6(0)

(16,161;0);

13U thex)!

ORUROINER

()8 (hex)?
ORORGS

QRN

(l)4(open hex glass)2
)22
(hex)*

(D' UXES) *(hex)’
Mo

(|)2(1/2 open hex glass)2
(hex glass)2

AL EB-sq-wave)!
(U)Z(aé—sq—wave):
(')4(|)2(8-S(1-Wave)t
OYpPote*

OROEOK

(7,13152)g, (133,131 331,
(131, 131,15, (1315,131,1)6(27/3)
(135,13,81)5

(7,7:3)s (18157131516

(131[’131[;1)(7[/6). chiral baseball
(104,104;2)6(1 /6)
(141,18;0)5 (164,164;0)¢
(10,,10,;2)g(/2)
(314,131, Dg(m)
(131}1,1311;1)6 baseball
broken glass frames
glass frames
(144,18;0)g, (169,16,;0)g,
hour glass
(139,131,;1)g, track

(139,131;1)g, bottle

We now explain the terminology and notation in the following results.

A hexagonal band bracelet is obtained by attaching m hexagons in a cyclic manner

so that j-th hexagon is attached to the (j-1)-th and (j+ 1)-th along opposite edges, j mod
m. (See Figure 3.1). This leads to two CBVC of the form (0,1)™. It is evident that &
such band bracelets can be used in conjunction with two buckydisks with CBVC (0,1)™
to form a buckyball. If both buckydisks satisfy IPR, then we will automatically have
an IPR buckyball when & > 0. In some cases, we can get a few IPR buckyballs even when
k = 0. The notation (h,, hs; k), denotes the type of buckyball that is obtained by join-
ing two minimal buckydisks with CBVC (0,1)™ and k hexagonal band bracelets. h; and
hy denote the number of hexagons in the two buckydisks so that the total number fi
of hexagons is h; + hy + km. There are only a finite number of topologically distinct
buckyballs of each type. A given buckyball may belong to several different types.

Similarly, a hexagonal necklace is obtained by taking n hexagons so that the j-th
is joined to the (j-1)-th and (j+1)-th along two opposite vertices by means of edges, j
mod n. (See Figure 3.2). The result is a degenerate cylinder with two CBVC of the form
(0,0,1,1)*. We can clearly use k of these hexagonal necklaces in conjunction with two
minimal buckydisks with CBVC (0,0,1,1)* to form a buckyball. If the minimal buck-
ydisks satisfy IPR, then the resulting buckyball will satisty IPR whenever £ > 1. In
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special cases, we could have IPR buckyballs for & = 0 or 1. The resulting buckyball
will be of the type denoted by (h;,hs;k),. As before, h, and h, denote the number of
hexagons in each of the two minimal buckydisks. The total number fo of hexagons will
then be hy + hy + kn.

Since v = 20 + 2f;, the above examples create buckyballs with v belonging to
suitable arithmetic progressions of the form: 2v, + 2¢k, k = 0, where ¢ = m or n and
Vg = 10 + hy + hs. Such sequences have been called »magic numbers«, see Ref. 6.

Theorem 3.1. Consider minimal IPR buckydisks with CBVC (0,1)”. Then m = 9
is the only restriction. All such IPR buckydisks can be embedded in IPR buckyballs
(and used to cap off suitable hexagonal cylinders). When m = 9, there is a unique one
(and A = 10). When m = 10, there are 7 with h = 10, 11, 11,, 13, 14, 16, 20 (see
Figure 3.3).

Theorem 3.2. Let C, be an IPR buckyball containing a minimal buckydisk with
CBVC (0,1)™ m = 9 or 10.

Figure 3.2. Hexagonal Necklace. (Edges a are identified.)

Ll

(0,1)? 10

SR

Figure 3.3. IPR Buckydisks with CBVC (0, )™, m = 9, 10.
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(a) If m = 9, then C, must be made up of two such buckydisks which are joined
together by k hexagonal band bracelets, # = 0. It is denoted by (10,10;k)g, & = 0. v =
= 60 + 18k. If & = 0, we have the unique [;~Cgy. For k£ > 0, the symmetry group is
D34 or D3 (R 0odd) and D3, or D3 (k even). Thus, there are two distinct structures for
k > 0 (one chiral, the other not).

(b) If m = 10, then v = 20 + 2f; satisfies only the restrictions:
fe = 25, fe # 26.

Moreover, except when fg = 25, 27 (v = 70, 74), there are at least 2 distinct IPR buck-
yballs. When fs = 25, 27, we have the unique Ds,—Crqq (of type (115,14;0)9 or (5,5;3);5),
and Dg,—Cq4 (of type (13,14;0)19). When f; = 28, we have T4—C;s and Dy—Crg both of
the type (14,14;0);,, (see Table I).

Remark. The case of fg = 28 in the preceding Theorem is especially interesting.
There are actually three ways of gluing the two buckydisks to make up an IPR buck-
yball and the stable molecule observed in the laboratory is chiral, see Refs. 7 and 8.
In terms of our pictures, the difference appears in the angle of rotation before gluing.
This is the smallest value of v for which there is a chiral IPR buckyball.

Theorem 3.3. Consider minimal IPR buckydisks with CBVC (0,0,1,1)*. Then n =
5 is the only restriction. All such IPR buckydisks may be embedded in IPR buckyballs
(and used to cap off suitable hexagonal cylinders). When n = 5, there is a unique one
(and h = 5). When n = 6, there are: h = 7, 10;, 10,, 12, 123, 133, 135, 13;, 13;3,
13y, 144, 14y, 15,, 15, 164, 16, 18, 22 (see Figure 3.4).

Theorem 3.4. Let C, be an IPR buckyball containing an IPR buckydisk with CBVC
(0,0,1,1)*, n = 5, 6. Then,

(a) If n = 5, then, in order to satisfy IPR, C, must contain two such buckydisks
which are joined together by k + 2 hexagonal necklaces, k = 0. It is denoted by
5,5k +2)5. v = 60 + 10k. When k = 0, we have the unique I;,~Cg(. For & > 0, the sym-

metry group is Dsp, or D54 (for k odd or even, respectively) and there is just one struc-
ture for each k.

(b) If n = 6, then v = 20 + 2f; satisfies only the restrictions:
fo = 26 or fs = 28.

Moreover, except when fs = 26, 28, we have at least two distinct IPR structures. When
fo = 26, 28, we have the unique Dg~Cry of type (7,7;2)¢ and T¢—Crg of type (145,145;0)6
(also of type ( 14,14;0);9 as in Theorem 3.2).

We easily deduce the following result:

Theorem 3.5. For v = 76 and v even, there are at least two distinct IPR buckyball
structures C, and at least one of them is chiral.

Remark 3.6. I am indebted to Prof. D. Klein for sending me Ref. 9, indicating that
they had independently verified Theorem 3.5 (by showing the existence of at least one
IPR C, (called preferable cages) for v = 70. They employed similar ideas by looking
at a selected (incomplete) list of minimal IPR buckydisks (called buckybowls), with
CBVC (0,0,1,1)%. In the present work, Theorem 3.5 is a by-product of Theorems 3.1

through 3.4 where a complete classification of IPR buckydisks with 4 different CBVC
is obtained by hand.
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(0,0,1,1)5 7 10n 10y
12 123 133 13

&

131n 1314
14,
163

ol

i3
@

Figure 3.4. IPR Buckydisks with CBVC (0005 25ne=+h::6:

162 22
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Remark 3.7. It is not very difficult to show that IPR buckydisks with CBVC (0,1)™
and (0,0,1,1)" exist for all integers m = 9 and n = 5. By connecting two such buck-
ydisks (for the same m or n) by an appropriate number of hexagonal band bracelets
or necklaces, we can generate an infinite series of IPR »buckytubes« C, with v = 2v, +
+ 2¢k, k = 0. Our results show that ¢ = 5 can be arbitrary. Only integer v, has to be
sufficiently large (depending on ¢).

Remark 3.8. In Ref. 2 M. Dresselhaus et al. have described a procedure of produc-
ing chiral hexagonal cylinders by rolling up strips of the hexagonal lattice. This can
also be described in terms of wrapping a hexagonal strip around a cylindrical rod (see
Figure 3.5). In Ref. 10, Klein, Liu, and Schmalz suggested the likelihood that a growth

- X

\
\

\

Figure 3.5. Hexagonal Cylinder. Edges ab are identified under translation by the complex number
6 + 2.exp(27i/6). There are non-bounding CBVC (0,1)6(1,0)2 and (0,1)4(1,0,0,1)2 = (0,1)5(1,0)(0,1)(1,0),
as well as others, that are the »shortest ends« of the cylinder.

process involving chiral hexagonal cylinders might develop »bottlenecks«. In fact, it
will be shown elsewhere (using the idea of CBVC) that hexagonal cylinders that could
be grown without bound (i.e. embeddable in infinite long hexagonal cylinders) cannot
develop bottlenecks.

In a private discussion, Prof. M. Dresselhaus described a flaring-out mechanism in-
volving pentagon-septagon pairs so that one could have »bottlenecks«, see also Ref. 10.
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4. Pyrene Subcomplex in IPR Buckyball.

Throughout this section, we consider only IPR-buckyballs C,. The main goal is to
describe a procedure that will distinguish non-equivalent structures in an efficient
manner when v is not too large. For example, in comparison with the computer
generated list for v < 84, we have the curious result that our construction procedure
(which is, a priori, only complete under the assumption of the existence of suitable
buckydisks) manages to generate all such IPR buckyballs. We make no effort to
produce a rigorous proof. In Table IV, we present the distinction between our list and
the list generated by computers in Ref. 12.

We begin by noting that the vertices of any IPR C, are of two types. A vertex com-
mon to 1 pentagon and 2 hexagons is called a corannulene site. There are 60 such sites.
A vertex common to 3 hexagons is called a pyrene site. There are v — 60 such sites.
We define the pyrene subcomplex H(C,) by retaining all the faces, edges and vertices
spanned by these v — 60 pyrene sites. Clearly, equivalent buckyballs will have equivalent
pyrene subcomplexes (the reverse is not true, see Table IV, Dy~Cy,® and DygCgs™).
Each hexagonal face of an IPR C, can be classified into 4 types according to the num-
ber of its pentagon neighbors. Evidently, each hexagon must have an even number of
pyrene vertices. These must either occupy consecutive sites or appear at exactly one
pair of opposite sites. By looking at H(C,), it is therefore trivial to see that there is
no IPR buckyball Cg,. With a little more work, it is not difficult to prove:

Theorem 4.1. Let C, be an IPR buckyball. Then v = 60. If v > 60, then v = 70.
Forv = 60, 70, 72 and 74, there is just one IPR buckyball structure.

Remark. Theorem 4.1 was proved independently by Klein and Liu in Ref. 8 ap-
parently, as a by-product in constructing their computer algorithm.

Sketch of the proof. Let f;; denote the number of hexagons with j adjacent pen-
tagons. Under IPR, we must have 0 < j < 3. Whenj = 2, we can subdivide the case
in two and define f's» and /s » according to whether the two pyrene vertices are op-
posite or adjacent. By counting the hexagons adjacent to pentagons in two different
ways, we have the equation:

60 = 3fs3 + 2f50 + fo,1
Using f5 = fo3 + fo2 + fe.1 + fs,0, we obtain the equation:
3f(; - 60 = fg,g + 2f6,1 S 3}“[;’0 = 0.

With additional work and some case analysis (involving the IPR buckydisks surround-
ing appropriate pentagons and hexagons), the proof can be completed.
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SAZETAK
Kombinatorna konstrukcija fullerenskih struktura
Chih-Han Sah

Kombinatorne strukture fullerena (skracéeno — buckylopte) javljaju se kao posljedica nedav-
nog otkriéa fullerena u laboratoriju. Raspodjela stabilnih formi, osim o energijskim svojstvima,
izgleda zavisi i o postupku proizvodnje. Za razumijevanje stabilnih oblika, potvrdene strukture
treba sagledati medu ostalima teorijski moguéim strukturama. Kao alternativa ra¢unalskom pre-
brojavanju (koje se pokazuje skupim i ne sasvim sigurnim) ovdje je prikazan jednostavan geo-
metrijski postupak. U odredenim uvjetima ovaj postupak je ekonomican i potpun. Npr. za buc-
kylopte C,, uz v < 84, koje zadovoljavaju uvjet odvojenih pentagona, ovaj postupak se moZe
provesti ru¢no. Razlikovanje neekvivalentnih struktura ostvareno je bez skupog prora¢una spek-
tra. U radu je naroéito pokazano da su Cgg i C7g jedinstveno karaterizirani kao C, molekule s
odvojenim pentagonima za dvije najmanje moguce vrijednosti v. Neki rezultati korisni su za
proucavanje kvalitativnih izbornih pravila i strukture heksagonskih cilindara.
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