CROATICA CHEMICA ACTA CCACAA 66 (1) 27-34 (1993)

ISSN 0011-1643

CCA-2115 Conference Paper

Dual Graphs and Retrosynthetic Analysis
of Regular Polyhedranes

Albert Moyano

Departament de Quimica Organica, Universitat de Barcelona,
Marti i Franques, 1-11, 08028-Barcelona, Spain

Received May 18, 1992

The dual graphs of Schlegel projections of regular carbon polyhedranes
(tetrahedrane, cubane, dodecahedrane), when subjected to the sequential
pruning of adjacent vertices of maximum degree, are shown to produce
reasonable synthetic pathways to these complex polycyclic structures.

INTRODUCTION

One of the most exciting research fields of chemistry in the second half of the
twentieth century has been — and will unquestionably be in the following years — the
study of polyhedranes, i.e. the closed carbon cages corresponding to the regular or semi-
regular polyhedra with vertices of a degree equal to three. Restraining ourselves to
regular polyhedra (Platonic solids), the corresponding fully saturated polyhedranes have
received the trivial names of tetrahedrane (C4H,, 1), cubane (CsHg, 2) and dodeca-
hedrane (Cq9Hgg, 3) (See Figure 1).

A convenient way of visualizing these thee-dimensional structures in the plane are the
so-called Schlegel diagrams,! which are easily constructed for any polyhedrane by suppos-
ing that it is resting on one of its faces and that it is viewed from below this particular
face, in such a way that all the other faces lie within the one nearest to the observer. The
Schlegel diagrams corresponding to the regular polyhedranes 4-6 are shown in Figure 2.
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Figure 1. The fully saturated regular polyhedranes: tetrahedrane 1, cubane 2 and dodecahedrane 3.
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Figure 2. Schlegel diagrams of regular polyhedranes: tetrahedrane 4, cubane 5 and dodecahe-
drane 6.

These Schlegel diagrams, which allow the representation of polyhedranes in the
form of fused polycyclic structures, have been shown to provide a simple way to the
naming of polyhedranes according to IUPAC rules.®3 In the present paper, we wish
to demonstrate that the graph-theoretical analysis of Schlegel diagrams offers a simple
way to derive retrosynthetic trees for the parent structures which lead to precursors
of minimum topological complexity.

RESULTS AND DISCUSSION

Dual Graphs and Pruning Algorithm.

According to Harary,* the dual graph G* of a given planar graph G is constructed
by placing a vertex in each ring of G, and joining two vertices of G* by an edge when
the corresponding rings of G have an edge in common (i.e., when they are fused).
Corey®® has proposed that dual graphs of polycyclic fused ring systems can be used
as a basis for their conversion into linear or almost linear precursors, by selecting for
retrosynthetic disconnection the peripheral vertex of the dual of maximum connec-
tivity (which corresponds to the peripheral ring with maximum number of fusion
bonds), and repeating the process until the resulting dual is linear (i.e. it has no rings).
We will presently see that a pruning algorithm of the dual graphs corresponding to
the Schlegel projection of regular polyhedranes, based on a similar line of reasoning,
leads to automatic generation of greatly simplified subgraphs, which are meaningful
starting points for their retrosynthetic analysis.

We begin by constructing the dual graphs 7-9 of the Schlegel diagrams 4-6 of
regular polyhedranes 1-3, and by numbering their vertices in an arbitrary way (Figure
3). Note that the graphs generated in this way are not the dual graphs of the three-
dimensional polyhedra, which are also Platonic solids: In effect, it is very easy to see
that the dual of a tetrahedron is the tetrahedron itself, the dual of a cube is a regular
octahedron, and that the dual of a dodecahedron is an icosahedron,, and vice versa.
In fact, the reduced dual graphs that we are considering correspond to the Schlegel
projections of complete (three-dimensional) dual graphs from which one vertex has
been removed (vertex which corresponds to the face of the polyhedron which we have
used for the Schlegel projection).

Next, we will submit each of these graphs to the following pruning algorithm: i)
Eliminate a peripheral vertex of maximum degree (note that in the case of regular
polyhedranes all of the initial peripheral vertices are equivalent and of the same de-
gree). ii) Among the vertices connected to the one eliminated in the preceding step,
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eliminate one of maximum connectivity. iii) Repeat step ii), until the resulting graph
is a) (i.e. it has no rings) or b) disjoint (i.e., it has two or more unconnected subgraphs).
iv) If there is a choice in step ii), apply the procedure to each of the suitable vertices,
except if they are equivalent by symmetry. This will produce for each graph a pruning
tree, whose final points are again converted to the polycyclic form by performing the
inverse dual transformation with the appropriate rings (i.e., three-membered in the
case of 7, four-membered in the case of 8 and five-membered in the case of 9). The
resulting structures are then analyzed from the synthetic point of view, and compared
to known or proposed routes to regular polyhedranes. In the following sections, we dis-
cuss the application of this analysis to each of the regular polyhedranes.

Tetrahedrane

Since the dual graph 7 corresponding to tetrahedrane 1 is simply a triangle, the
elimination of a vertex converts it into the trivial linear graph 10 (See Figure 4). The
inverse dual transformation of 10 suggests a synthetic pathway to tetrahedrane, which
implies the formation of a bond between the positions 2 and 4 of a bicyclo[1.1.0]butane.

Whereas unsubstituted tetrahedrane is still unknown, a completely characterized
(NMR, mass spectroscopy, X-ray) derivative, tetra-tert-butyltetrahedrane 11, was syn-
thesized by Maier and co-workers in 1978.7 The synthetic path 11, summarized in

Figure 3. Dual graphs of Schlegel diagrams of regular polyhedranes: tetrahedrane 7, cubane 8
and dodecahedrane 9. The numbering of the vertices corresponds to the numbering of the faces
shown in Figure 2.
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Figure 4. Sequential pruning and inverse dual transformation for tetrahedrane.
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Scheme 1, exhibits as the key step the photochemical isomerization and decarbonyla-
tion of tetra-tert-butylcyclopentadienone, which leads to the key intermediate, a bicyclo-
[1.1.0]buta-2,4-diyl biradical. It is, thus, clear that this successful route closely follows
the path generated by the pruning algorithm. It is also interesting to note that several
frustrated approaches to 1 are based on a similar strategy.®

Cubane

The application of the pruning algorithm to the dual graph 8 corresponding to
cubane also results in a linear graph, 12. The inverse dual transformation of 12 sug-
gests a synthetic pathway relying on the formation of two bonds (3-8 and 4-7) within
an all-cis-tricyclo[4.2.0.0%>%]octane (See Figure 5).

Indeed, the first synthesis of cubane, achieved in the laboratory of P. E. Eaton in
1964,° closely follows the topological sequence that we have just described, since the
tetracyclic framework is constructed in the key step through an intramolecular [2 +2]
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Scheme 1: Synthesis of tetra-tert-butyltetrahedrane according to Maier (Ref. 7).
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Figure 5. Sequentuial pruning and inverse dual transformation for cubane.
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Scheme 2: Synthesis of cubane according to Eaton (Ref. 9).

photoaddition of an intermediate topologically equivalent (the ring size is adjusted in
the following step by means of a double Favorskii rearrangement) to an all-cis-tricyclo-
[4.2.0.0%5]octane (See Scheme 2). As in the case of tetrahedrane, other approaches to
2'" and its derivatives'!' are patterned along the same topological strategy.

Dodecahedrane

In the case of the dual graph 10 corresponding to dodecahedrane, the application
of the pruning algorithm leads to generation of a relatively complex pruning tree with
six different end points, corresponding to a linear graph 13 and to five 14-18 disjoint
graphs (See Figure 6). The six corresponding intermediates resulting from inverse dual
transformation 19-24 are shown in Figure 7.

When analyzing the synthetic routes to dodecahedrane suggested by the structures
shown in Figure 7, one finds that three of them correspond to strategies which have
been explored by several research groups.!?

In effect, the pathway which has the linear hexaquinane 19 as key intermediate
has been proposed and attempted (unsuccessfully) by McKervey.!® On the other hand,
the tetracyclic component of the dimerization suggested by 20 has the topology of the
»Domino Diels-Alder adduct«, which is the starting material for the first total syn-
thesis of dodecahedrane, achieved in the laboratory of L. A. Paquette.!* The interest-
ing disconnection suggested by structure 24, which implies the making of six bonds
between two identical, fused triquinane moieties, represents in fact the first suggested



32 A. MOYANO

Figure 6. Pruning tree of dodecahedrane.

approach to 3, and was proposed independently, in the early sixties, by Miiller, Jacob-
son and Woodward.!® This attractive (but so far unsuccessful) idea has been actively
pursued by other research groups.!'® Finally, the strategies suggested by 21 22 and 23,
which imply the trimerization or tetramerization of two fused polycyclic subunits with
isolated atoms or bonds, appear to be more difficult to implement, and no proposed
routes to dodecahedrane conform to their topological strategy.

CONCLUSIONS

We have seen that the sequential pruning of the dual graphs of Schlegel projec-
tions of regular polyheranes generates a set of topologically simple structures, from
which one can retrace the vast majority of synthetic approaches proposed for these
complex cage structures. In the context of the present interest in large carbon cage
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Figure 7. Inverse dual transformation of the six graphs 13-18 generated by the sequential pru-
ning of dodecahedrane.
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compounds,!” it is reasonable to expect that the topological analysis presented in this
paper is capable of generating feasible approaches — or mechanistic hypotheses of for-
mation — to larger, more complex semiregular polyhedranes. Work along these lines
is currently being pursued in our laboratory. It is alo worth noting that, since this al-
gorithm is a reformulation of the procedure proposed by Corey,>5 it is also applicable
to the rethrosynthetic simplification of angularly fused polycyclic structures, yielding
essentially the same results.
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SAZETAK
Dualni grafovi u retrosintetskoj analizi regularnih poliedrana
Albert Moyano

Pokazano je da se postupnim uklanjanjem susjednih ¢vorova maksimalnog stupnja u dual-

nom grafu Schlegelove projekcije regularnog ugljikova poliedrana (tetraedrana, kubana, dodekae-
drana), dobiva smislen sintetski postupak za pripravu tih sloZenih policikli¢kih struktura.
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