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The present article contains two new results: a closed form expression
for the number of column-convex directed (ccd-) animals having a given bond
perimeter, directed site perimeter and number of columns, as well as a cer-
tain logarithmic function, a part of which is the ccd-animals two perimeters
& columns generating function. Finally, an attempt has been made to for-
mulate, in a more immediate way, the original proof of Delest and Dulucq!
concerning the number of ccd-animals with a given area.

INTRODUCTION

A column-convex directed (ccd-) animal is defined as a plane region bounded by
two internally disjoint self-avoiding plane lattice paths having a common origin and
a common terminus. The upper path can make three kinds of steps: (1,0), (0,1) and
(0,-1), while the step-set of the lower path is restricted to (1,0) and (0,1). Further, the
upper path is required to terminate in a (1,0)-step. See Figure 1 for an example.

Two ccd-animals are considered to be equal if and only if there exists a translation
superposing one of them to the other.
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Figure 1. A ccd-animal. Columns: 6, bond perimeter: 30, ds-perimeter: 13, directed corners: 2.
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We commonly denote the upper and the lower path delimiting a ccd-animal 4 by
IT,(4) and I1,(4), respectively. The common origin of the two paths will be called the
southwest pole of 4, while the common terminus will be called the northeast pole.

The unit squares with vertices at integer points of the plane lattice are called cells.
Any non-empty intersection between a ccd-animal 4 and an infinite strip of the form
(i, i+1)xR (i € Z) is called a column of 4 (the rows are defined similarly). Observe
that from our choice of step-sets for I1;(4) and II,(#4) it follows that the columns of
A4 are actually rectangles of unit width. Of course, rectangles are convex sets and that
is why our animals are called column-convex. Further, these column-convex animals
are also called directed because for every cell of a ccd-animal 4, except for the one

which contains the SW-pole, either one of the cell’s left and lower neighbours also
belongs to 4.

The minimal and the maximal ordinate of the i-th column of a ccd-animal A4 will
be denoted by y;(4#) and Y,(4), respectively.

Obviously, the area of a ccd-animal 4 is equal to the number of cells contained
in 4. The bond perimeter of » is what is usually called the perimeter of 4, i.e. the
length of the boundary of 4. However, in this article we are also interested in another
kind of perimeter, which is called the directed site (ds-) perimeter. The ds-perimeter
of a ccd-animal 4 is defined as the number of those cells outside 4 whose left or lower
neighbor cell lies inside 4.

If a cell ¢ does not belong to »4, but the left and the lower neighbors of ¢ both
belong to 4, we shall say that c is a directed corner of 4.

Now, let # be a ccd-animal with k columns, bond perimeter 2k +2v and d directed
corners. The boundary of 4 consists of k tops of columns, k bottoms of columns and
2v vertical edges. The v vertical edges are left-hand and v are right-hand (e.g., by a
right-hand vertical edge we mean an edge of the boundary which is the right-hand bor-
der of some cell that belongs to »4). Imagine going around the animal in, say, clockwise
direction. Every right-hand vertical edge gives rise to a new cell which contributes to
the ds-perimeter. The same is true of every top of a column, unless it is the bottom
of some directed corner of 4. Hence, we conclude that

the ds-perimeter of 4 = v+k-d (1)

The reader may check the above relation for the animal shown in Figure 1.

As far as I know, the only three articles to date about the ccd-animals are those
by Delest and Dulucq' and by Barcucci et al.?® Delest and Dulucq' use Schiitzenberger’s
algebraic language methodology to count the ccd-animals according to the bond peri-
meter or the ds-perimeter or the area. Various problems connected with ccd-animals
enumeration according to the area have been extensively studied by Barcucci et al.®?

Our new coding permits the application of combinatorial tools, such as the cycle
lemma of Dvoretzky and Motzkin, and the transfer matrix method in ccd-animals
enumeration. The results of this approach are a closed form expression for the number
of ccd-animals with a given bond and ds-perimeter and number of columns, as well
as a certain logarithmic function, a part of which is the ccd-animals two perimeters
& columns generating function. We have also tried to formulate, in a more immediate
way, the original proof of Delest and Dulucq' concerning the number of ccd-animals
with a given area.
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The Cycle Lemma

The following apparently simple lemma, which was originally found in 1947 by
Dvoretzky and Motzkin,* proves to be very useful in many enumeration arguments.

Lemma 1 (the cycle lemma). Let zj, 7y, - - z, be integers less or equal to one such
that z; + z; + -+ +z, = p (pEN). Then, the sequence z,7, - -+ z, has exactly p cyclic
permutations

Zi Ziy1 """ In Z1 "t Zjg

whose partial sums are all positive.
In the case p=1, the cycle lemma may be restated in the following way:

Lemma 2.* Let S = 2,7, -+ z, be a sequence of arbitrary integers such that z, +
73+ +++ +z, = 1. Then there is exactly one cyclic permutation of S whose partial sums
are all positive.

Example 3. The only two cyclic permutations of 1,1,-3,1,1,1,1,-2,1 that have posi-
tive partial sums are 1,1,1,1,-2,1,1,1,-3 and 1,1,1,-2,1,1,1,-3,1.

The only one cyclic permutation of 1,5,-6,4,-2,3,0,—4 whose partial sums are all
positive is 4,-2,3,0,-4,1,5,-6.
The New Coding for Column-Convex Directed Animals

Let # be a ccd-animal with k columns. We put

f(4) = ajbjaghy - - ayhy, (2)
where a;, -+, ay and b; ---, by are the numbers defined by
a; = yi(A-y:1(4 ,
a; = yi(A-yi.1 (A (i=2, --+, k), 3)
by = yi(#A)-vyie1(A4) (=1r o ko)

by = yu(#)-y(A +1 .

Example 4. The animal in Figure 1 is encoded by the sequence 3,-1,3,0,~2-1,~
1,0,2,-1,1,-2 .

Theorem 5. Let A4 be a ccd-animal having k columns, bond perimeter 2k +2v and
directed site perimeter s and left ¢ = f(4). We assert that:

a) c is an integer sequence of length 2k.

b) The sum of all positive (resp. negative) terms of ¢ is v (resp. —v+1).

c) The positive terms can occupy only odd positions, while the negative terms are
present in some or none of the even positions and in exactly k +v—s odd positions.

d) The partial sums of c are all positive and the total sum equals one.

* Graham, Knuth and Patashnik5 call Lemma 2 Raney’s cycle lemma and give reference to Raney’s paper,6
where this lemma was employed in a combinatorial proof of the one-variable Lagrange inversion formula.
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Conversely, if a sequence c satisfies conditions a), b), ¢) and d), then it encodes
one and only one cdd-animal with k columns, bond perimeter 2k +2v and directed site
perimeter s.

Proof. **

a) is evident.

b) Assume, for convenience, that the SW-pole of 4 is at the origin (0,0). Now
notice that an a; is positive if there exist left-hand vertical edges with abscissa i-1; and
when there are x (x=1) such edges, then a;=x. Hence, the sum of all the positive a,’s
(which is at the same time the sum of all the positive terms in c=f(4), since the b,’s
are all nonpositive) equals the number of left-hand vertical edges of 4, that is v.

The negative a;’s (I € k) count the right-hand vertical edges with abscissa i-1
along the upper boundary I1, (#). The negative b,’s (i € k-1) count the right-hand ver-
tical edges with abscissa i along the lower boundary I1,(#). However, if there are z
right-hand vertical edges with abscissa k, b, will be —z+1. That is why the sum of all
the negative terms in ¢ is —v+1.

©) By (1), an animal with k columns, v right-hand vertical edges and ds-perimeter
s must have exactly k+v-s directed corners. Clearly, if 4 has k+v—s directed corners,
then I1;(4) has k+v-s downwards steps, so that there are precisely k +v—s negative a,’s.
d) First, observe that

J

a + 2 b = Yi(A4) - yi(# (j € k) and

i=

—

._,
Il

—

=

K

j (4)
a + bi = Yi(A4) - yj+1 (A Ge k-1).

=1

i=

,_.
.

Now, the positiveness of the partial sums of ¢ follows from the fact that 4 has a con-
nected interior. The sum of all terms of ¢ equals 1 because of b). Part d) is thus proved.

The proof that f is one-to-one is easy and we leave it to the reader.

Thus, the task of counting ccd-animals with k columns, bond perimeter 2k + 2v and
ds-perimeter s is now reduced to the less troublesome one of counting the sequences
that have the above properties a), b), ¢) and d).

Theorem 6. The number of ccd-animals having bond perimeter 2k +2v, directed
site perimeter s and k columns is

1/ k k+v-2) (s—1
e E(s—-v) (s—k—l) ( v ) ®)

Proof. We shall say that a sequence which possesses properties a), b) and c) of
Theorem 5 is a type(a) sequence. In order to define a type(x) sequence, we first have to
choose the k+v-s odd positions that will be occupied by negative numbers. After that,
we fix the negative and the nonnegative terms. The number of ways to do all this is

** [n this proof, the terms of f(»4) will again be denoted in the way it was done in (2) and (3), i.e. by ai,
by, ag, b, -+
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o= () (£ ()

Let ¢ = a;b; --- asby be a type(a) sequence. The cycle lemma assures that c has
exactly one cyclic shift (say c«) whose partial sums are all positive. c. cannot be of the form

biajsr - - braby - g

since, by property c), b;’s are all nonpositive. Hence, ¢« is one of the following sequences:

alblazbz SR akbk
azbz e akbkalbl

(7N
agbyaihy - ag_jby g .

But it is easy to see that the sequences listed in Eq. (7) are all of type(a). Thus,
the type(a) sequences can be assembled in groups of cardinality k in such a way that
each group contains exactly one sequence that possesses property d). The number of
type(a) sequences having property d), i.e. the number of sequences having properties
a), b) c¢) and d), is therefore given by

na 1(k k+v-2) (s—1
—k__i{(s—v) (s-—k—l) ( v ) ®)

Theorem 5 ans Eq. (8) immediately imply the present theorem.

Remark. The cycle lemma can also be successfully applied in various enumerations
of diagonally convex directed animals (Svrtan and Fereti¢?).

The Transfer Matrix Method

Let D be a directed graph (or diagraph) with vertices p;, - -+, px. The adjacency
matrix of D is the k by k matrix A = [a;], where a;; is the number of arcs of D running
from p; to p; (see Figure 2). A directed walk is a sequence of arcs s=(a;, - -, a;) such
that (Vi = 1, ---, 1-1) the arc a;,; starts at the same vertex where a; finishes. In this
paper, the directed walks of length 1 will be called 1-walks.

Next, let B(t) = (I-tA).”! Observe that the elements of B(t) are rational functions
of t. Matrix B(t) = [b;(t)] has an amazing property: for i, j € (1, -+, k) and 1 € N,,
the coefficient of t' in by(t) is the number of l-walks in D with the starting point
(origin) p; and ending point (terminus) p;.

More information about directed walks in a diagraph can be obtained by assignation
of weights to its arcs. Let D again be a diagraph with vertices p;, -, px and let to
every arc a of D be assigned w(a), a monomial in variables w;, - -+ w,. w(a) is called
the weight of a. Let A, be a matrix whose (i, j)-entry is the sum of weights associated to
all arcs running from p; to p; (see Figure 3). A, is called the adjacency weight matrix of D.

Then, let B,,=(I-tA,)™!. The matrix B, = [bj] has the following property:
the coefficient of t'wil -+ win in bjj = bj(t, wy, - -+, w,) is the number of those l-walks
s=(a;, --*, a) with origin p; and terminus p; which satisfy the condition
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1020 2 0| P1
01 0 1" 0=P2
AV T 5 a0 15200 ps
OF02227 0% 2y,
00221 0= Ps
P1 P2 P3 P4 Ps

Figure 2. A directed graph and its adjacency matrix (the labels around A serve just to facilitate
the reading).

Wy 0 0 w; + i 0 P1
0 1 0 1 0 | p2

Ap = |W WyW, 0 1 0 | ps
0 0 Wy + Wo 0 2W2 P4
0 0 1 0 Wy | Ps
P Do P3 P4 Ps

Figure 3. Weighted digraph and its adjacency weight matrix.
1
1—[ w(a) = wil -+ win, 9)

i=1

To illustrate the utility of this property of B,, in directed walks enumeration, we
give the following example:

Example 7. For the diagraph in Figure 3, the coefficient of t>*wiw3 in bss is the
number of 20-walks s=(a;, - --, ay) from p, to ps, such that

(A) there are exactly 8 i’s for which

a;€{pip1, upper arc pips, psp1, Psp2, left arc p4ps}
(B) there are exactly 5 i’s for which

a1€{psps, right arc psps, upper and lower arc psps, Psps}-
Namely, properties (A) & (B) are equivalent to the condition
w(a)w(ag) - W(ag) = wiws.

The properties of B and B,, quoted in this section are well known in the graph
theory. For the proof see, for instance, Svrtan and Veljan.®
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The Two Perimeters & Columns »Over-generating« Function for ccd-Animals

First, we are going to put the type(a) sequences (defined in the proof of Theorem

6) in a one-to-one correspondence with some family of directed walks in the weighted
diagraph E of Figure 4.

For m € Ny, let p(m) be a sequence (word) consisting of m letters x (notation:
p(m) = x™). Next, let p(-m) = y™ and let y(-m) = z™

Figure 4. Weighted digraph E.

Now, to a type(a) sequence ¢ = a;b; -+ a.hy, we associate the word

g1 (© =piyp @)pzy G prp @) - p2y (be)p1 ¢ (@ )p2 v (b p;  (10)

g1(c) is the vertex sequence of a directed walk in diagraph E. That directed walk will
be denoted by gx(c). Let us state without proof:

Lemma 8. g, is a bijection between the type(a) sequences and 2k +2v—1-walks in
E s=(aj, ‘-, as42v_1) which have the following five properties:

(i) s starts and ends at p;,

(ii) a,€ {xx, p;x} for exactly v i’s,

(i) a;€ {yy, p1y, Pz, zz} for exactly v-1 i’s,

(v) a;€ {Xps, yp2, P1P2, P2p:1} for exactly 2k i’s,

(v) a; = pyy for exactly k+v-2 i’s.

In terms of weights the properties (ii) — (v) can be recast as

2k+2v—-1

H w(ay) = wy wi~! wik whtv-s, (11)
i=1

Let hy =h,(t,w;, - -+, wy) be the (p;p,)-entry of what for diagraph E is B,. In view
of what was said in the preceding section, we argue that the paths which correspond
to the type(a) sequences are enumerated by the coefficient of t2*>~wyw}y~ lwZkwk+V=s in
h;. This coefficient is equal to the coeff. of wjwy 'whwk*V=s in

hy (Wi, Wa, W3, Wa) = hy(1, Wy, wy, W%, wy).
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Lemma 9. The number of type(a) sequences n(a) is the coeff. of wiwy~lwiwk V=S in

1

e ke 1—[(1—w) T (1 —wy)™ "+ wawy (1 — W) %] w3

(12)

Proof. An elementary calculation of the (p;,p;)-entry of B, (i.e. of h;), which the
reader could carry out by himself.

For any power series h(w), we have
h(w)—po Bx
= k e 2k :
hW) = ¥ Botaf o Ge ¥ o (13)
k=0 k=0
Since the coeff. of w} wj~! w§ w§*V=5 in h, is n(a), the coeff. w{ w§~! w§ w§*¥=s in

hZ(wly i W4) =1
W3

is n(a)/k. But, in Theorem 6 we have seen that n(a)/k is the number of ccd-animals
having the bond perimeter 2k +2v, ds-perimeter s and k columns. So we have:

Theorem 10. The number of ccd-animals having the bond perimeter 2k+2v,
directed site perimeter s and k columns is the coefficient of wiwy !'wiws*V=s in

Hy(wy, -+, wy) = -In {1 - x ik ‘W3t (15)
(L=w)(l—wy) (1-—wp)?

Proof. It suffices to calculate the integral in Eq. (14).

Remark. Let H(wy, -+, Wy) = Wow3Ho (W, WoWs, WiWaWsWy, W31). Another way of
stating Theorem 10 is:

The number of ccd-animals having the bond perimeter 2p, directed site perimeter
s and k columns is the coeff. of wWiwBwiw} in

Ha(wy, -+, wy) =

1 Wy
= -wyow3 In {l - [(1 e + e W2W3)2:| .W1WzW3W4} (16)

Thus, we have obtained a four-variable power series, a part of which is the three-
variable ccd-animals two perimeters & columns generating function.

Enumeration by the Area

Let 4 be a ccd-animal with an area n and k columns. Recall that y;(4) and y;(#4)
denote the minimal and the maximal ordinates of the i*" column of 4. I1,(4) denotes
the lower boundary of 4.

Observe that the numbers

¢ = yib#-yin1(4) (=1, ---, k-1) amn
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are all positive, because otherwise there would be no contact between the animal’s i
and i+ 1° column. Obviously, the length of the k™ column ¢, =y, (4)-y(4) is also positive.
Secondly, since II,(#) makes only east and north steps, the numbers

di —Yi+1(,4)—Y1(/4) (i=1: Ry k_l) (18)
are nonnegative. Further, we have
k

k-1 k-1 k
2 c + 21 d = ; (¢ + di) + ¢ = ; [Yi(A4) - Y1(7¢)] = n. (19)

i=1

A

B

Figure 5.

On the other hand, when the sequence

e(4) =c - cdy o0 diy (20)

is given, it is possible to reconstruct the animal 4 by drawing it from the right to the
left. Thus, we have

Theorem 11. e is a bijection between the ccd-animals with the area n and k
columns and sequences s having the following three properties:

1) s is an integer sequence of length 2k-1;

2) The first k terms of s are positive while the others are nonnegative;
3) The sum of all terms of s is equal to n.

Example 12. For the animal in Figure 5, we have e(4)=4,2,3,4,1,0,2.
Counting the sequences s which satisfy 1), 2) and 3), we get
Corollary 13. The number of ccd-animals having an area n and k columns is

+k-2
e (nn_k ) @1

Thus, the number of all ccd-animals with an area n is
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i (n;}_{;fz) g i 2 (Zn—iz—i) : &5

k=1 i=0

new index
i=n—-k

But, the last sum in Eq. (22) can be calculated by means of the well-known identity***

S (Pfl) - F, ® € Ny, 23)

i
i=0
where F,’s are the Fibonacci numbers:

F() =1, F1 ==l Fp+2 = Fp+1 T Fp (Vp S No) (24)

Thus, we obtain

Theorem 14. The number of ccd-animals with the area n is the 2n-nd Fibonacci
number Fy, ,
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SAZETAK

Novi kod za vertikalno konveksne usmjerene zZivotinje
Suyjetlan Feretié

U ovom je radu dokazana formula zatvorenog tipa za broj vertikalno konveksnih usmjerenih
(vku-) Zivotinja sa zadanim opsegom, usmjerenim okruZenjem i brojem stupaca. Zatim je dobi-
vena jedna logaritamska funkcija od éetiri varijable w; - - -, w4 kod koje se broj Zivotinja s opse-
gom 2p, usmjerenim okruZenjem s i k stupaca pojavljuje kao koeficijent u wiPwoPwssw,K. Uécinjen
je i pokudaj da se razmatranja M. Delest i S. Dulucga! o broju vku-Zivotinja sa zadanom
povrsinom formuliraju na jednostavniji naéin.

*** An interesting proof for (23) can be found in the book of Graham et al.5 (p. 288).
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