CROATICA CHEMICA ACTA CCACAA 66 (1) 141-150 (1993)

ISSN 0011-1643
CCA—2125 Original Scientific Paper

Weighted Self-Returning Walks for
Structure-Property Correlations*

Danail Bonchev**, Xiaoyu Liu, and Douglas J. Klein

Department of Marine Sciences, Texas A&M University, Galveston,
Texas 77553-1675, U. S. A.

Received July 01, 1992

Two algorithms are developed for the weighting of self-returning walks in
molecular graphs. Algorithm I modifies the adjacency matrix of a graph by
a parameter accounting for the Kekule structure’s Pauling bond orders of
conjugated molecules. Algorithm II specifies a two-parameter function which
is a weighted sum of the self-returning walks of different lengths. The two
procedures are shown to improve the structure-property correlations for
benzenoid hydrocarbons compared to the cases with non-weighted walks and
with molecular connectivity indices. Five properties of benzenoids are
studied: heats of atomization and formation, gas-chromatographic retention
indices, n-octanol/water partition coefficients and melting points. The best
result has been found for the heats of atomization (with statistical para-
meters r = .9995, 0 = 1.11, F = 9442, N = 12).

1. INTRODUCTION

The search for graph-invariants that better match molecular structure and mirror
molecular properties has led to the development of a series of powerful topological in-
dices. Among them, the number of self-returning walks of fixed lengths has attracted
increasing attention during the last decade. The reason for this growing popularity of
the self-returning walks (SRWs) is due, in part, to their direct link with the quantum
mechanical method of moments. As shown by Burdett et al.!~7 and others,®? this link
is of great importance in understanding the topological influences of molecular struc-
ture. The SRWs of different length in alkanes have been enumerated by Knop et al.!”
up tp CigHz4. The SRW counts have been applied in specifying isomer comparability.!!
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Their relation to the Wiener index,'? one of the better known topological indices, has
been studied.!® Some correlations with molecular!!® and atomic'®!” properties have
also been reported. Graphs (called endospectral) with non-equivalent vertices which
have the same number of SRWs (isocodal vertices) have been studied.!%1%18-21 Also,
random walks of various types have been applied in statistical mechanics.21-25

A link of SRWs with quantum mechanics is by way of the spectral moments of
Hiickel-type models. When using a convenient weighting of these walks, one simulates
the different values of the interaction integrals between neighbouring atomic orbitals,
thence arriving at an extended Hiickel-type treatment.

The purpose of this paper is to introduce and examine two specific procedures for
weighting the SRWs in molecular graphs with the hope to offer a way towards op-
timized structure-property correlations.

2. SELF-RETURNING-WALK GENERATING FUNCTIONS

Freedom of variation in the self-returning-walk (SRW) model may be elegantly
gained through introduction of appropriate generating functions. First, we may weight
each possible SRW in accordance with bond orders for the bonds traversed. For a
graph G with at least one Kekule structure (perfect matching), the Pauling bond
order?® P; for a bond between sites i and j of G is commonly defined to be the ratio
of the number of Kekule structures where this bond is double to the total number of
Kekule structures. (In a more graph-theoretic language, P;; is the probability that a
perfect matching of G contains the edge {i,j}.) We define a Pauling weight W(s) for
a SRW £ to be the product over factors sP; + (1-s) for each step from a site i to j

traversed in &. (Multiple crossings of a bond give powers of such factors.) Thence, we
introduce a polynomial

(n)
SRW.(s) = > Wi (s) (2.1)

where the summation is over all walks of length n. As s - 0, the value of this nth
degree polynomial approaches the number of SRWs of length n. At s = 1, SRW,(s)
again is an integer which breaks into factors each associated to a separate graphical
component of the graph arising as the union of all perfect matchings of G.

A convenient computational formula for the polynomial of (2.1) is available. It is
well-known (and fairly straightforwardly seen) that the number of SRWs of length n
is simply the trace of the n'* power of the graph’s adjacency matrix A. Further, it is
known?® that the weighted count with W;; for each step from i to is given as the trace
of the n' power of the matrix W. Thence, for the present case with P the matrix of
nearest neighbor Pauling bond orders, we identify

W =3sP + (1-s) A (2.2)
so that
SRW, = Tr W» (2.3)

The indicated computation is further facilitated for benzenoid graph G for which?’
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Car (A—I)ij ’ i"’j
bo= { 0 , otherwise (2.4)

where i ~ j indicates that i and j are nearest neighbors in G. This computational pro-
cedure is referred to in the following section as Algorithm I.

A further more general SRW generating function may be introduced

SRW(s, t) = E SRW,, (s) t" (2.5)

nz0

At s = 0, this reduces to the already well-known?223 ordinary SRW generating func-
tion. In combination with (2.2), one has

SRW(s, )=y Trwer =y 3 (@) # (2.6)

n=0 nz0 a

where the 4,(s) are eigenvalues of W. Thence, if ¢ is less in magnitude than the inverse
of the maximum eigenvalue of W, one has

SRW(s, t) =E 1=t ()} ' =Tr{I -t W}~ 2.7

a

This is referred to as Algorithm II.

Since the elements of W monotonically decrease in magnitude as s increases from
0 to 1, so do the magnitudes of the maximum and minimum eigenvalues decrease, and
thence (2.7) applies if ¢ is less than the inverse of the maximum-magnitude eigenvalue
of A (this being the matrix W at s = 0). For the generating function SRW(s,?), the
average length of the walks making significant contribution increases as ¢ increases
from 0, with the length diverging as ¢ approaches the inverse of the maximum Aa(s).
This average length (or number of steps) of a SRW is

S n#n SRW,(s) t% SRW,(s, )
n=0
n) = =

N WA N A

n=0

_TrtwWd —twW)=2
T Trd -tW)!

(2.8)

where the last equality gives the convenient computational form.

A further point of some interest is that the graph invariant SRW(s,?) is »asymptoti-
cally additive, in the sense that this invariant for a graph comprised of disjoint com-
ponents is the sum of the corresponding invariants for the individual components.
Such additivity has been argued® to correlate to a type of scaling behavior, which we as-
sociate with a variety of properties such as dealt with in the next section. For asymptoti-
cally »constantive«, »multiplicative« or »derivative« invariants, correlations to yet other
sets of properties would be anticipated.
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Figure 1. Molecular graphs of 40 benzenoid hydrocarbons whose properties are correlated with
SRWs.
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3. RESULTS

Correlation Samples

Unlike the numerous calculations, the experimental data for benzenoids are rather
scarce. In Figure 1 we show 34 benzenoid hydrocarbons for which sufficient experimental
data were found to provide statistically significant correlations. The data are shown in
Table I and include 25 gas-chromatographic retention indices RL3! 20 hydrophobicity
constants log P (logarithm of the n-ocatnol/water partition coefficients),3! 12 heats of
atomization AH, ,** and 9 heats of formation AH? .** The precision of some of the data
may not have been sufficiently high, as reflected in the correlations obtained. Thus,
nine of the melting points were given?® within only one interval of 1-2 °C and the
average of the interval had to be taken. On the other hand, the mean deviation of the
log P data was estimated to 0.41.

TABLE I

Four molecular properties of the benzenoid hydrocarbons from Figure 1.

el M RI log P
eV kcal mol-!
1 57.16 20.0 2.13(0.10)
2 90.61 36.0 200.00 3.35(0.10)
3 54.9 301.69 4.50(0.15)
4 124.20 49.4 300.00 4.52(0.15)
5 68.6 408.30 5.76(0.30)
6 157.49 63:1 398.50 5.91(0.40)
7 § 157.73 63.9 400.00 5.86(0.40)
8 157.76 69.3 400.00 5.49(0.50)
) 391.39 -
10 486.81 7.19(0.70)
5 ¢ 6.81(0.70)
12 =
13 191.24 495.45 6.75(0.40)
14 497.66 -
15 -
16 500.00 -
17 191.35 495.01 7.19(0.70)
18
19 138.88 351.22 5.00(0.20)
20 172.04 456.22 6.25(0.50)
2'1: 186.38 501.32 6.90(0.40)
= 453.44 6.35(0.40)
23 450.73
24 503.89
25 200.65 6.50(1.0)
26 233.96 3.98(0.10)
27 6.03(0.50)
28 396.38 6.04(0.50)
29 332.59
30 405.38
31 406.90
32 421.61
33 423.91

34 388.38
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Correlations with Non-Weighted SRWs

In order to evaluate the significance of the weighting of the SRWs by means of
the parameters s and ¢ described in the preceding section, calculations were initially
performed with non-weighted (integer) counts SRWn(0). The linear correlations thus
obtained are given in Egs. (3.1), (3.5), (3.9), (3.13) of Table II.

As seen, the SRWs of length 2 or 4 correlate highly (» = 0.99) with the heats of
atomization, heats of formation, and gas-chromatographic retention indices, as well as
with hydrophobicity constants ( > 0.96). The correlations with melting points were
poor (r = 0.64 to 0.72) and so will not be reported in detail here. Presumably, the dif-
ferences in the crystal structure of the compounds prevent the obtaining of a more
pronounced dependence of melting points on the conjoined molecular structures, at
elast when characterized by our present topological indices.

Correlations with Pauling-Bond-Order Weighted SRWs

The potential importance of the Kekule structures for molecular properties under
consideration was examined with Algorithm I via a computer program. A systematic
search was performed for the optimal values of the step-weight s-parameter. The
SRWs with lengths 2, 4 and 6 (SRW,(s) = 0 for alternants with n = odd) were studied.
With the exception of melting points, the properties studied are sensitive to the varia-
tions of the s-parameter. This is illustrated by Table III, where the ranges of the cor-
relation coefficients r, standard deviation o, and Fischer ratio F values are presented
for the scale of s-parameter variation from s = 0 to 1.

The best correlations, as measured by r and obtained with optimized values of the
s-parameter, are presented in Egs. (3.2), (3.6), (3.10), (3.14) of Table II. The com-
parison of these equations and Egs. (3.1), (3.5), (3.9), (3.13) shows that the accounting

TABLE II

Linear Correlations of the Four Benzenoid Properties with Non-Weighted and Weighted SRWs,
as well as with Molecular Connectivities

a b e o F N (n) s ¢
AH, = 31 F SRW" 23.142 3.1205 .9940 2.04 821" 12 2 - -
3.2 SRW,(s) 9:6294. == 10:377 - (9987 —1:39. - 3873, =919 9 - -
3.3 SRW (s, ) 6.4950 5.3518 .9995 1.11 9442 12 15 092 0.71
34 ™y 8.4990 16.679 .9989 1.33 4618 12 1 - -
AHy 3.5 SRW, 1.9456 1.56464 .9889 1.45 311 9 2 - -
3.6 SRW, (s) —-2.4576 56103 .9936 1.27 539 9 2 0.84 -
3.7 SRW (s, t) -2.0872 3.35642 .9934 1.27 528 9 0.3 1.34 0.66
3.8 iy 3.2389 8.012 .9918 1.35 422 9 2 - -
RI 3.9 SRW, 37.663 2.1780 .9880 3.40 1022 27 4 - -
3.10 SRW, (s) 25.572 3.56258 .9883 3.40 1053 27 4 0.18 -
3.11 SRW (s,t) -0.7826 13.354 .9848 3.63 805 27 2.1 0.16 0.38
3.12: Iy -47.141 48.959 .9696 4.31 39312227 - 1 - -
log P 3.13 SRW, 1.1069 10.832  .9659 56 = b21 20— 2 - -
3.14 SRW, (s) .3402 413019875 443~ 707 20 6 0:86~ —
3.15 SRW (s, t) .2974 .1592 .9875 442 708 200 2.6 0.98 -
3.16 ny .5348 .B774 9783 607 400 20 ] - -
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for the Kekule structures in the benzenoids under examination alters only marginally
the statistics for retention indices. The other three properties, however, are mirrored
considerably better. Their correlation coefficients rise up to 0.999, 0.994 and 0.988 for
the heats of atomization and formation and the hydrophobicity constants, respectively.
The standard deviations of these properties decrease while the Fischer ratios increase.

A further potential improvement of the correlations with the five benzenoid
properties might be expected when using nonlinear functions. This possibility was par-
tially studied by testing six other functions, including hyperbolic, power, and exponen-
tial functions. No single one of these provided better statistics, but the power function
produced correlations very close to those given above, eg.

AH, = 1.1427{SRW,(0.8)}0-91311
r = 0.9986, ¢ = 1.43, F = 3492
AH; (g) = 0.62595{SRW,(0.84)}1-086
r=0.9933, 0 = 1.28 F = 517

Inspection of the four best correlations (Egs. (3.2), (3.6), (3.10). (3.14)) reveals also
that weighted SRWs with length two prevail although those with lengths four and six
can also be of importance. Examination of SRW,,(s)/log P and SRW,,(s) /RI correlations
for n > 6 resulted in worse statistics. Thus, it seems that only the SRWs of lengths
2, 4 and 6 are of importance for the properties under consideration. However, it can
be studied in further detail by Algorithm II (section 2) using the additional parameter ¢.

Correlations with the SRW(s,t) Functions

The calculations based on the averaged and weighted SRW function (Eq. 2.7) were
performed with the weighting parameter s within the 0.0 to 2.0 range and 0<#< 1/, < 1.
The SRW (s,) function clearly shows a specified optimum for the heats of atomization

TABLE III

Sensitivities upon variation in s

n T a F
AH, 2 .994 - 999 1.40 - 2.04 820 - 2495
4 .985 — .999 1.40 - 2.57 320 - 3798
6 972 — 998 1.45 - 2.99 170 — 3187
AH? (g) 2 .989 - .993 1.27 - 1.45 311 - 533
4 .987 - .993 1.31 - 1.52 260 - 471
6 .986 — .988 1.49 - 1.54 246 — 283
RI 2 .934 - .985 36452 172 - 816
4 .914 — 988 3.6 =56 126 — 1052
6 .978 - .987 35 - 45 318 - 923
log P 2 .966 — .983 47 - .57 250 - 510
4 .945 — 985 46 — .64 150 — 590
6 .917 - .986 46 - .70 95 - 626
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and hydrophobicity constant. For the other three properties there is a wide range of
optimal (s,f) values providing nearly the same best statistics. Thus, for the heats of
formation, the maximal correlation coefficient r = r,, = 0.9934, the minimal standard
deviation ¢ = op;, = 1.27 and the Fisher ratio F in the range from 526.4 to 527.7 are
all realized by many (s,?)-pairs: (1.30, 0.68), (1.32, 0.67), (1.34, 0.66), (1.36, 0.65), (1.38,
0.65), (1.40, 0.64), (1.42, 0.63), (1.44, 0.62), 1.46, 0.61) and (1.48, 0.60). Similarly, the
optimal range of (s,#)-values providing the highest correlation (r,., = 0.9848) with gas-
chromatographic retention indices is from (s = 0.02, ¢ = 0.34) to (s = 0.26, t = 0.41).
This might be regarded as an indication of a possible interrelation between the two
parameters.

The four examined properties have been best reproduced by equations (3.3), (3.7),
(3.11), and (3.15) in Table II.

In comparing the correlations produced by the SRW(s,#) function with those ob-
tained for SRW,(s) (Egs. (3.2), (3.6), (3.10), and (3.14), respectively) one may firstly
mention the significant improvement of the results for the heats of atomization. The
correlation coefficient increased from 0.9887 to 0.9995, the standard deviation decreased
from 1.39 to 1.11 and the Fischer ratio jumped from 3873 to 9442. Evidently, SRW(s,?)
produces the best linear correlation with the energy of atomization as compared with
any parameters examined here for this purpose.

The other molecular properties under examination do not show such improved
correlation with SRW(s,#). Equation for log P and AH; (g) have practically the same
statistics with Eqgs. (3.14) and (3.6): r=0.9875, 0.9875 and r = 0.9936, 0.9934, respec-
tively. Surprisingly enough, the RI/SRW correlation is not only worse than that with
RI/SRW(s,t) but even worse than the correlation with the unweighed SRWs (r =
0.9848 < 0.9883, 0.9880).

Some note may be paid to the non-integer n values in Table II in the case of the
SRW(s,t) generating functions. These are the mean values (n ) of the length of SRWs
as calculated by Eq. (2.8). As seen, (n) = 0.3 for heats of formation where also the
optimal value of s is unusually large. The optimal equation (3.3) for the heats of atomiza-
tion still corresponds to a (n ) value less than two (( n ) =1.5) while for retention in-
dices and log P, the average length of the SRWs is within the 2 to 3 range. Thus, once
again, as in the case of optimized SRW,(s) functions (Egs. (3.2), (3.6), (3.10), and
(3.14), the higher lengths of SRWs play no significant role.

Resuming the comparison of the results obtained by Algorithm I and Algorithm
II, we may list the best equations found for calculating the examined properties of ben-
zenoid hydrocarbons: Eq. (3.3) (heats of atomization), Eq. (3.6) (heats of formation),
Eq. (3.10) (gas-chromatographic retention indices), and Eq. (3.15) (logarithm of the oc-
tanol/water partition coefficient).

Comparison with Molecular Connectivity Calculations

Having obtained a number of high structure-property dependencies by virtue of
the weighted SRWs (Algorithm I and Algorithm II), a question may arise: to what ex-
tent is this a novel result? or, otherwise, are not these results a consequence of the
connection between SRWs and molecular connectivity?®4% In fact, it is well known
that the number of non-weighted SRWs of two steps through a vertex i in molecular
graph G equals the vertex degree a;, which is a basic component in calculating the first-
order molecular connectivity index 'y = EJ (a; @)™"? where the summation is taken
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over all bonds. Hence, although some correlation between the total number of SRWs
of length 2k and the k™ order molecular connectivity might be expected, the two graph
invariants are not the same, and any correlation might even be worse when weighted
SRWs are used. Yet, for a more explicit test of the independency of the result obtained,
we performed comparative correlation studies with molecular connectivity indices of
order O through 4, as well as with®® cluster and path-cluster connectivity indices. The
equations with the best statistics are also shown in Table II (Eqs. (3.4), (3.8), (3.12),
(3.16)). Albeit a high correlation is obtained for the four benzenoid properties, the
statistics are somewhat poorer than that of the best equations with weighted SRWs.
More specifically, for the heats of atomization and formation, retention indices, and
the hydrophobicity constant of the benzenoids under examination, the use of weighted
SRWs improved the statistics as follows: correlation coefficient: 0.9989 - 0.9995,
0.9918 -~ 0.9936, 0.9696 - 0.9883, and 0.9783 - 0.9875, respectively; standard devia-
tion: 1.33 -~ 1.11, 1.35 » 1.27, 4.3 > 3.4, and 0.507 - 0.442, respectively; Fischer ratio:
4618 ~ 9442, 422 -~ 539, 393 - 1053, and 400 - 708, respectively.

4. CONCLUSION

Novel types of graph invariants based on weighted self-returning walks have been
introduced and found to correlate very well with certain properties of our data set of
benzenoids. Particularly well correlated were the heat of atomization and chromato-
graphic retention index, to a lesser extent, the heat of formation and octanol/water
partition coefficient. Neither the new invariants nor the others compared to them cor-
relate well with the melting points. The new self-returning walk invariants often im-
prove (though often just slightly and sometimes at the »expense« of an additional

parameter) over the edge count (SRW;) and may also be of use in other QSAR/QSPR
studies.
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SAZETAK
Vagane povratne setnje za korelaciju strukture i svojstava
Danail Bonchev, Xiaoyu Liu i Douglas J. Klein

Razvijena su dva algoritma za vaganje povratnih $etnji u molekularnim grafovima. Algori-
tam I modificira matricu susjedstva grafa parametrom zasnovanim na Paulingovu redu veza kon-
jugirane molekule. Algoritam II Koristi se dvo-parametarskom funkcijom koja predstavlja vaganu
sumu povratnih $etnji razli¢itih duljina. Pokazano je da te dvije procedure poboljsavaju korelaciju
izmedu strukture i svojstava benzenoidnih ugljikovodika u usporedbi s vaganim Setnjama i in-
deksima molekularske povezanosti. Prou¢avano je pet svojstava benzenoida: topline atomizacije
i nastajanja, plinsko-kromatografski retencijski indeksi, particijski koeficijenti n-oktanol/voda i
talista. Najbolji rezultati dobiveni su za topline atomizacije (sa statistickim parametrima r =
9995, 0 = 1.11, F = 9442, N = 121).
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