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The present work investigates an inequality derived earlier by Gadre.
The inequality involves the product of the expectation values of the radial
distance and the inverse of the radial distance. Using the density-functional
theory, and the Ne atom as an example, these quantities are calculated in
three successive approximations. It is found that, in all three cases, the product
of the expectation values satisfies the inequality of Gadre. The results are
compared with a calculation of Gadre and Matcha, who have obtained the ex-
pectation values with the Thomas-Fermi equation. It is found that the den-
sity-functional approach leads to a tighter bound for the product of the ex-
pectation values than the approach based on the Thomas-Fermi equation.
This is attributed to the power law decay of the solution of the Thomas-
Fermi equation at large distances from the nucleus.

INTRODUCTION

The possibility of deriving a bound on one expectation value in terms of other ex-
pectation values via an inequality is an intriguing one. The feasibility of such a pro-
cedure has been recently demonstrated by Gadre,! and Gadre and Matcha,? who made
use of theorems by Pdlya and Szego.?

One of the inequalities that Gadre and Matcha? have numerically investigated is
given by

e o o

where ( r) is the expectation value of the radial distance, { 1/r ) is the expectation value
of the inverse of the radial distance, and Z is the atomic number. This inequality has
been derived earlier by Gadre,! with the sole assumption of a monotonously decreasing
electron (number) density.
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Gadre and Matcha® have investigated the value of the product (r ¥ 1/r)/Z? for
atoms by resorting to the Thomas-Fermi (TF) equation.* The TF model has recently
received extensive mathematical attention by Lieb,® and by Lieb and Simon,® who have
established that it is the correct model of a neutral atom of atomic number Z in the
Z - o limit. Gadre and Matcha® have found that the value of (r ¥ 1/r) /2% is 5.72,
whereas Eq. (1) predicts it to be merely greater than 1.125. This result shows that the
bound obtained with Eq. (1) is not tight when expectation values based on the TF
equation are used.

The present work makes use of the density-functional theory’ to arrive at values
of (r) and ( 1/r). In the density-functional theory the basic variable is the electron
(number) density, for which approximations may be made. One approximation that has
been suggested® constructs the electron (number) density of an atom from hydrogen-
like wave functions. This is the approach adopted in the present work in three suc-
cessive stages of sophistication, using the Ne atom as an example.

In the first approximation, the »Z« in the 1s, 2s, and 2p wave functions is taken
to be the same (Z, = Z, = Z3). In the second approximation, the »Z« in the 1s wave
function is different from the »Z« in the 2s and 2p wave functions, which latter two
are taken to be the same (Z; # Z, = Z3). In the third approximation, the »Z« in the
1s wave function differs from the »Z« in the 2s wave function which, in turn, differs
from the »Z« in the 2p wave function (Z; # Z, # Z3). In the second and third ap-
proximations, the 2s wave function is orthogonalized to the 1s wave function . With
the electron (number) densities resulting from the above three approximations, the TF
energy-density functional is minimized with respect to the variational parameters Z,
Zs, Z3, and the expectation values () and ( 1/r ) are computed.

THEORY

The TF energy-density functional (in atomic units®) is given* by

E[p]=Ek[p]+Ene[P]+Eee[P]y (2)

where p is the electron (number) density,
Ey o] = —1% (Bn2)¥? } P 4w dr (3)
0
is the kinetic energy of the electrons,
Ene[o]=—}Vnp 4 ¥ dr 4)
0

is the attractive (Coulomb) interaction energy between the nucleus of atomic number
¢ and the N electrons (¢ = N), and

Eee&)]=—%fVep4andr (5)
0
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is the repulsive (Coulomb) interaction energy among the N electrons.
In Eq. (4), the quantity

Vn =

o : (6)
=

is the potential of the nucleus, while in Eq. (5) the quantity V, is the potential of the
electrons which, with the present three choices for p, is determined analytically from
Poisson’s equation,

d&(rv,
—((i-:z—)— = 4mpr , (7
by integrating it twice with the boundary condition

rV.--N as roo. (8)

p is such that the electron (number) density is (1) finite at the atomic nucleus, (2) it
exhibits an exponential decay with r, and (3) its associated radial electron (number)
density exhibits the shell structure of the Ne atom.

For the Ne atom of electron configuration (1s)? (2s)? (2p)%, the electron (number)
density is constructed as

1t
P~ [2Ris (Z1)® + 2Ry (2, Z9)* + 6Ry, (Z9)°], )

where R14(Z;) and R,(Z;) are the radial parts of hydrogen-like radial wave functions,
given!’ (in atomic units?) by

Ri:(Zy)y = 22 iferiiny (10)

Ry, (Z3) = 16 i e o R

it
e (11
while Ry4(Z1,Z,) is the radial part of a hydrogen-like wave function R,(Z5), namely

RZS (ZZ) = ngzg/z (2 = er)e—l/Z (Zgr) ; (12)

orthogonalized to a R;s radial function.
This orthogonalized radial wave function Ry,(Z1,Z,) is given by*

Ry(Z1,Z5) = N [Ro™ (Zy) + CRys (Z))] , (13)

* The Gram-Schmidt procedure!l has been used. The superscript un on Ros(Z9) means unnormalized.
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where the constant N is determined from the normalization condition,
J Bu@,Z) & =1, (14)

and the constant C is obtained from the orthogonality condition,

©

J Ri @) Ry 21, Z) PP dr = 0. (15)

Using Eq. (9), the minimum of Eq. (2) has been found by numerical integration
(employing Simpson’s rule'!) in all three approximations. (In the first approximation
Zy = Zy = Zs. In the second approximation Z, # Z, = Zs. In the third approximation
Zy # Zy # Z3). The results of the calculations are displayed in Tables I — III, and in
Figures 1 - 3.

TABLE L.

Values of the variational parameters Z;, Zs, Z3 and the constants
C and N in three approximations for the Ne atom.

Approximation Zy Zs Zs C N
1st 7.81 7.81 7.81 0 7.72
2nd 10.49 5.76 5.76 -0.0402 4.98
3rd 10.52 2.34 6.63 -0.120 1.28
TABLE II.

Values of the total energy E, the energy components Ey, Ene, Eee
(in atomic units®), and check on the virial theorem V.T.

Approximation E Ey Epe Ee. VAL
1st -115.05 115.19 -312.40 82.15 -1.9988
2nd -125.63 125.72 -317.29 65.95 -1.9993
3rd -128.96 128.91 -320.49 62.62 -2.0004
TABLE III.

Atomic expectations values and their products (in atomic units9),
obtained in the three approximations for the Ne atom.

Approximation (ry ] z23 (1/r)y ) Z43 (rY{r)/z?
1st 1.24 1.45 1.80
2nd 1.65 1.47 2.43
3rd 2.16 1.49 3.21
TF equation* 3.19 1.79 5.72
SM equation 3.28 1.76 5.77

* The TF equation values are taken from Ref. 2.
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Figure 1. Comparison of the radial electron (number) density obtained in the first approximation
for the Ne atom with the Hartree radial (number) density of Brown!2. (D is measured in units
of a,~! and r is measured in units of a,).

10+

Figure 2. Comparison of the radial electron (number) density obtained in the second approxima-
tion for the Ne atom with the Hatree radial (number) density of Brown!2, (D is measured in
units of a,~!, and r is measured in units of Qo).

DISCUSSION
Figure 1 compares the radial electron (number) density,
D =4nr’ , (16)

obtained in the first approximation with the Hartree (H) radial electron (number) den-
sity of Brown.!? (Consideration of the H density, instead of the Hartree-Fock (HF)
density is called for since, as Dirac'® has shown, the TF model is the semiclassical
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Figure 3. Comparison of the radial electron (number) density obtained in the third approximation
for the Ne Atom with the Hatree radial (number) density of Brown!2. (D is measured in units
of a,~1, and r is measured in units of a,).

equivalent of the H model). Figures 2 and 3 carry out similar comparisons for the
second and third approximations, respectively. It is seen from Figures 1 — 3 that the
overall agreement between the calculated radial electron (number) densities and the
H radial electron (number) densities is poor in the first approximation, improves in
the second approximation, and further improves in the third approximation. This find-
ing is in agreement with expectations.

Table I shows the values of the variational parameters at which Eq. (2) attains its
minimum, together with the corresponding values of the orthogonalization and nor-
malization constants C and N.

Table II shows the total energy values, and the values of the energy components
defined in Egs. (3) — (5). It is seen from Table II that, as the number of variational
parameters is increased, the magnitude of E is also increased. This is in agreement
with expectations. Table II also lists a check on the virial theorem,

VT = (F. B e -7, an

and shows that it is satisfied quite well.

Table III displays the values of ( r ) / Z%/® and ( 1/r ) / Z*/3, together with the values

of the product {7 ) ( 1/r) / Z% The respective expectation values have been calculated
from

() = [ rp dnrdr, (18)
0

with n = 1 and n = -1, respectively. Table III also displays the values of these quan-
tities, obtained by Gadre and Matcha,? using the exact solution of the TF equation. It
is seen from Table III that, in all three approximations considered in the present work,



A BOUND FOR ATOMIC EXPECTATION VALUES 173

the inequality of Gadre! is satisfied. It is also seen from Table III that the present ener-
gy-density functional approach leads to better bounds on the product (r) < 1/r > /Z*
than the approach based on the TF equation. These, and several other aspects of Table
III, need to be discussed.

(1) One sees from Table III that the ( 1/r) / Z%? values are nearly the same in all
the three approximations considered while this is not the case for the () / Z%/3 values.
To explain this finding, Eq. (18) has been evaluated for various intervals in r. The
result of the computations is presented in Tables IV and V.

Table IV shows that the largest contribution to ( 1/7) comes from distances close
to the nucleus. In this region, the contribution to { 1/r) does not appear to change
drastically as one moves from the first to the second and then to the third approxima-

TABLE IV

Contribution to ( 1/r) from various intervals in r.

Contribution to ( 1
Interval in r mrhnagn lo. )

Approximation: 1st 2nd 3rd SM eq.

[0, 0.5.]* 23.76 23.87 25.46 20.49
[0. 1] 30.33 29.38 30.22 35.65
[0:°2] 31.24 31.64 31.53 37.21
[0. 3] 31.25 31.69 31.88 37.59
[0, 4] 32.01 37.92
[0. 5] 32.04 37.78
[0. 6] 32.05 37.80
[0,:-7] 37.82
[0, 8] 37.83
[0, 9] 37.84

* The entry in the last column has been computed from Eq. (20) with the x = ¥2 substitution.

TABLE V

Contribution to (r) from various intervals in r.

Contributi t
Interval in r ontribution to (r)

Approximation: 1st 2nd 3rd SM eq.
[0, 05] 1.24 0.68 0.83 0.87
[0, 1] 4.46 3.70 3.25 2.51
[0, 2] 5.75 7.41 5.60 5.55
[0, 3] 5.76 7.65 7.72 7.75
[0, 4] 7.66 9.21 9.30
[0, 5] 9.82 10.42
[0, 6] 9.99 11.26
[0, 71 10.04 11.89
[0, 8] 10.05 12.39
[0, 12] 13.57
[0, 16] 14.16
[0, 20] 14.48
[0, 24] 14.69
[0, 28] 14.82
[0, 70] 15.24

[0, 110] 15.25
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tion. Therein lies the explanation of why the values of ( 1/r) / Z*? is nearly the same
in all the three approximations considered. Table IV also reveals that distances from
the nucleus, which are important for the third approximation, are less important for
the first and second approximations. This finding has its origin in the fact that one
of the variational parameters (Z,) in the third approximation has a considerably smaller
values than the value of any of the variational parameters in the first and second ap-
proximations. As a result, p decays slower with increasing r in the third approximation
than it does in the other two approximations. Therein lies the explanation that there
is a slight increase in the value of ( 1/r) / Z*3 as one moves from the first to the
second and then from the second to the third approximation.

Table V shows that, relative to the ( 1/r ) case, distances considerably further away
from the nucleus are important in contributing to ( r ) . Table V also reveals that larger
distances from the nucleus are important for the third approximation and not so im-
portant for the first and second approximations. This finding is explainable again by
the fact that p in the third approximation decreases slower with increasing r than p
in the first and second approximations. Therein lies the explanation of why the value
of (r) / Z?? in Table III increases from the first to the second, and then again from
the second to the third approximation.

(2) It is seen from Table IIT that the present energy-density functional approach
leads to better bounds on the product (r ) ( 1/r) / Z? than the approach based? on the
TF equation. To explain this finding, an analytical approximation of the solution of
the TF equation by Sommerfeld!* and March!® (SM) is adopted for the evaluation of
Eg. (18). The SM equation, which is accurate!'® to better than 3%, is given by

/3 53/
x3 )
= T ith 4 = 0. 9
¢ l:l+ (144/ with 1 0.8034 , (19)
in terms of which Eq. (18) can be evaluated as?
(™) = (0.88534138)" ZG-M/3 f sl oy iy (20)

0
The connection between the distance » and the dimensionless variable x, on the one

hand, and the universal function ¢ and the electron (number) density p, on the other
hand, is given (in a.u.) by the relations

x=r/u (21)
with
u = 0.88534138 Z-1/3, (22)

and

=4ny3 x

3/2
G (f) . 23)
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Equation (20) has been evaluated for the same intervals in r as before, and the
result of the computations is displayed in the last columns of Tables IV and V. Table
IV shows that the region closer to the nucleus is again the most important one for
(1/r). Table V shows that distances quite far from the nucleus are important for (r).
These are the distances that were unimportant for (r) in the first, second, and third
approximations. The origin of this finding is attributed to the fact that, at large values
of r, the asymptotic form of the SM equation is proportional to 1/r%. Consequently,
the integrand in the expression for ( r ) decays slower with r than the integrand does
in the first, second, and third approximations. This explains why the value of (r) is
largest in the TF approximation.

CONCLUSIONS

It is found that the energy-density functional approach gives a better bound on
the product of the expectation values of (r) / Z%* and ( 1/r) / Z*/* than the bound
obtained by the TF equation. The fact that the TF value of (r) is significantly larger
than the values of (r) obtained in the first, second, and third approximations is at-
tributed to the power law decay of the TF electron (number) density. To put it another
way, distances from the nucleus at which the exponentially decaying electron (number)
densities associated with the first, second, and third approximations furnish negligible
contributions to (7 ) are still important for contributions to the TF value of (r).
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SAZETAK

Ispitivanje Gadreove nejednakosti s pomoéu
teorije funkcionala gustoée

P. Csavinsky

U radu se ispituje Gadreova nejednakost. Ona sadrzava umnozZak ocekivanih vrijednosti za
udaljenost od sredi$ta i recipro¢nu vrijednost te udaljenosti. O¢ekivane vrijednosti izra¢unane su
s pomocu teorije funkcionala gustoce, u tri postupne aproksimacije. Za svaku od njih nadeno je
da vrijedi Gadreova nejednakost. Rezultati su usporedeni s Thomas-Fermijevim ra¢unima Gadrea
i Matche. Nadeno je da pristup zasnovan na funkcionalu gustoée daje bolje granice za umnozak
oc¢ekivanih vrijednosti nego Thomas-Fermijev model koji nerealno opisuje gustoéu na velikim
udaljenostima.
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