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Several real-space renormalization group techniques are applied to the
spin-1/2 linear-chain Heisenberg model. The particular schemes investigated
renormalize blocks (or subchains) to new spin-1/2 sites, each coupled only
to nearest neighbor (like-renormalized) sites. Iteration of the renormaliza-
tion transformation eventually provides values for the per-site properties of
an infinite chain. A first-order perturbational method, a related variationally
optimized approach, and a cluster-expansion technique are applied using
blocks of several different sizes. The first two of these schemes are found to
give less accurate values and converge more slowly with block size than the
cluster-expansion technique, though this last technique (unlike the first two)
is not variationally bounded. A novel modification of the perturbation-varia-
tion scheme, where one renormalizes at each iteration only a single block at
the end of the chain, is also noted as a possibility and is found to give varia-
tionally bounded results comparable to the cluster expansion.

INTRODUCTION

Renormalization »group« theory is a promising general technique, one application
of which is to find ground-state characteristics of large molecular systems. The real-
space version offers a conceptually appealing approach to the treatment of a large sys-
tem in terms of (local) subsystems. Often, the focus has been on temperature-depend-
ent renormalization and/or momentum-space renormalization,! but in principle it can
also be used to treat ground states in coordinate space. However, earlier versions of
real-space ground-state renormalization have met with only slight success, as noted by
White and Noack.?

* Research supported by The Welch Foundation of Houston, Texas.
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Here, we investigate ways to improve the accuracy of a very simple renormaliza-
tion mapping, as applied to a well-known but nontrivial many-body system: the linear-
-chain isotropic spin-1/2 Heisenberg (or valence-bond) model. This simple renor-
malization mapping carries the nearest-neighbor model into another similar rescaled
nearest-neighbor model. That is, the mapping just shifts the zero of energy and res-
cales the interaction strength. In the real-space view, sets of sites are grouped together
in blocks, each of which has first, a low-lying state of the same symmetry as a single
original site; and second, all neighbor pairs of blocks related in symmetrically the same
manner as pairs of original neighbor sites. The blocks give rise to renormalized sites,
and the process is iterated. Our present cluster-expansion® and variational renor-
malization schemes both yield more accurate values than the earlier first-order per-
turbational scheme clearly reviewed by Casper. Further, looking at blocks of varying
size, we investigate extrapolations to the exact infinite block limit.

RENORMALIZATION

The Heisenberg model of present interest is

H=Y Aa+) B+2J5-8§) 2.1)
i i=j

where the §i, are the usual spin operators (for site i) and the second sum is over
nearest-neighbor pairs of sites, and the operators A and B are of the form of scalars
A and B times unit operators. Often, the site and interaction shifts A and B are com-
bined or deleted, though one can expect them to renormalize in different ways. The
renormalized model is to be of the same form

H= a4+ ®+2J58§) (2.2)
i i—j

but with the site indices and associated spin operators now referring to what pre-
viously were blocks, so that in fact the system now appears smaller. Since A and B
merely shift the eigenspectrum, the new »exchange« coupling J' should depend solely
on the previous strength J, and indeed the relation should be linear to preserve units.
Similarly, B' associated with the new interaction should depend only on the previous
one, through B and J, in a linear manner too. Finally, A’ might depend on A, B and
J since hoth several sites and bonds have been incorporated into the new site, and
again we assume a linear relation. For the chain in which M sites (and M-1 bonds)
are combined together into a block to give the new site, we then write

J =yd
B'=B +pJ (2.3)
A'=MA+ M- 1B+ aJ
The different schemes considered here compute a, 8 and y via different criteria, each

of which may be applied to a range of block sizes M. In all cases, M is odd so that the
chain of length M (comprising a block) has a spin doublet ground state, just as does
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a single site. The most common scheme? determines a, 8, y via a first-order perturba-
tional argument. But, as we see in the next two sections, there are other possibilities.

In any of these schemes, the equation (2.3) may be iterated. Denoting the parameter
values at the n't iteration with appropriate superscripts, we find (with B® = A© = ()

I = 1 J©
B("):ﬁl_ynJ(O) (2.4)
L=
™ = St Bty a ik Y0
T e e

of course A™ provides an energy estimate for a chain of M" sites. Thus, our infinite
chain energy per-site estimate (in units of J© is

er A a+p
E= i ™ = W=y 2

and all that remains is the choice of a, 8 and y.

CLUSTER EXPANSION

In the cluster expansion approach,®® renormalized sites and interaction terms are
determined so as to match exactly those of smaller clusters of blocks. The lowest order
approximation (as for the simple renormalization mapping here) makes a fit just to
clusters of one and two blocks. Of course, the blocks must be of an odd number M of
sites if the doublet spin symmetry of the original sites is to be retained upon renor-
malization. The renormalization is entirely determined from cluster energies EpM)J?,
Es(2M)J©, and E1(2M)J© for the lowest doublet, singlet and triplet states of M-site,
2M-site and 2M-site clusters, with A® = B® = 0. Then, from the solution of the 1-
and 2-site renormalized Hamiltonians H' we have

A" = Ep(D)J©
2A' + B' + J'/2 = E7(2M)J© (3.1)
24" + B' - 3J'/2 = Es2M)J©
Thus, recalling Eq. (2.3), one may solve for a, 8, and y to obtain

a = Ep(M)

B = ZEs@D) + 3E) - 28,00 3.2)

1 1
7 = SE22M) - ZEs(2M)

and a consequent energy per site via equation (2.5).
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VARIATIONAL ESTIMATE

In the variational approach, one utilizes block wavefunctions of the same sym-
metry as the site states and uses these wavefunctions to develop a renormalized inter-
block coupling. For the present case, these block wavefunctions are doublets W, and
W_ having z components of spin +1/2 and —1/2, respectively. The renormalized Hamil-
tonian is to be that over the basis of products of the W, and W_ for each block. Each
renormalization stage reduces to the same problem, expressible in terms of single-
block matrix elements of Hyjock, s/ and sf; on the basis {¥,, W_} with u = x, y, z or
# =z, +, — In fact, the various matrix elements for different u are (symmetry) related
by the Wigner-Eckart theorem, and if we also assume that W, and W_ are reflection-
symmetric (as is the ground state), then we have just two relevant symmetry-inde-
pendent matrix elements

EyM) = (¥, |Hyoul W)

ve = ¥, | syl W,) 4.1)
Next, following the analysis reviewed by Caspers, one finds (with A® = B© = 0)
A’ = E,(M)J©
B =0 (4.2)
J' = i@
and the infinite-chain energy per site becomes (in units of J©@ = J)

E
€ = _ﬂ (4.3)
M -y
In the common first-order perturbative approach, one utilizes exactly this formalism
with W,, constrained to be the ground-state to the block Hamiltonian. However, (4.3)
is an upper bound to the ground state regardless of this constraint.

We propose to optimize our per-site energy estimate with regard to (symmetry
preserving) variations in W = W,. If variations are taken with respect to W* in (4.3),
then

1 2E41D)
% = (oW I{m Hua + e ais o o + szM]}l ) @

Consequently, optimization is achieved if the eigensolution to

2E
(B + o2 vl + 54} 9) = €1) 4.5)
¥
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is self-consistent in giving the expectations of (4.1) used in (4.5). Here, it is understood
that to have W retain the doublet spin symmetry of the ground state (and thereby
enable the renormalization from (2.1) to (2.2), only parts of s? and sf not admixing
other spin symmetries are to be used. This relevant symmetric part is given by®

] =25-S (4.6)

where § is the total spin operator (with a sum over M site spins). Now, an iterative
procedure analogous to ordinary SCF theory is suggested: place an estimate of Ey(M)
and yy in (4.5), solve for W, compute new estimates via (4.1), and iterate to conver-
gence. The iteration could start, e.g., with W. from the first-order perturbative scheme.

Even further improvement might be obtained if the reflection symmetry of the
ground state of a block were to be relaxed. Then, taking all blocks translationally
equivalent, one obtains y = yyyy' with yy and yy' being generally distinct spin-den-
sities for the 1st and M-th spins in a block. Then, in place of (4.5) one obtains

2Ey(M)
[Hblock + - vy 5] + 7y [53]) )] | W) = £|W) %))

M - yyyy

and the same self-consistent approach can be applied. If the asymmetry of the blocks
were alternated, the alternating rescaling factors of y§ and (yy')? would arise and thereby
give an apparently dimerized model.

NUMERICAL RESULTS

Using a range of block sizes, we have carried out computations for the three dif-
ferent renormalization schemes: the first-order perturbative scheme, the variational
scheme, and the 2-site cluster-expansion scheme. Our numerical results for the energy
per site (in units of J) are given in Table I, where also we report the corresponding
value for a single block. In addition, we carried out the computations for the (M = 3
and 5) »nonsymmetric« variational scheme of Eq. (4.7), but optimization using this

TABLE 1

Energies per site in units of J

M £
block size  isolated block - orde'r variational elie clgster
perturbation expansion

3 -0.6667 -0.7826 -0.7826 -0.8969
5 -0.7712 -0.8138 -0.8195 -0.8923
7 -0.8104 -0.8314 -0.8368 -0.8901
9 -0.8303 -0.8423 —-0.8469 —0.8890

11 -0.8422 —-0.8499 -0.8883

13 -0.8500 -0.8553 -0.8878

15 0.8556 -0.8593

17 -0.8597 —-0.8625

19 -0.8629 -0.8650

Eexact = —0.886294
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equation led back to the symmetric result, associated to Eq. (4.5). Even the first-order
perturbation theoretic results obtained here extend significantly those earlier reported’
up to M = 9. The numerical computations are made via an efficient »unitary group«
technique.?

The data is sufficient that extrapolations as a function of block size M seem war-
ranted. The block energies per site are naturally expected to deviate from the infinite
block limit €. by (end-correction) terms ~1/M. We anticipate a similar behavior for
the first-order perturbative result, and then also for our variational result, which seems
to approach closely the perturbative result as M increases. The behavior of the cluster-
expansion renormalization result seems though a more delicate matter, which we have
subjected to empirical test by plotting

In {Ep4o(cluster) — Ey(cluster)} vs. -In M (5.1)

The resultant asymptotic slope of about 2.5 suggests that energies per site for this
scheme seem to deviate from &, by terms ~1/M?%?2. A similar plot for the first-order
perturbative scheme gives an asymptotic slope of a little less than 2, and thence tends
to verify earlier expectations for this case.

Extrapolated estimates for the infinite-block energy per site are now made in Fig-
ure 1 by plotting

€
0.781 4 4
04 02 0.3
= . —=1/M°
0807
47
0821 +

0.861

0.90T

Figure 1. Energies per site as computed using different size M blocks plotted versus 1/M%. The
positive slope line is estimated from the first-order perturbational points, just above and below
wich there respectively occur the monomer block and variational points. The negative slope line
is estimated from the cluster-expansion renormalization points.
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€ vs. 1/M® (5.2)

where a = 1 is taken for the first three columns of energies of Table I, and a = 3/2
is taken for the last column. The monomer energies, first-order perturbative energies
and cluster-expansion energies seem, respectively, to extrapolate to near —0.889, —0.885
and -0.8863. Especially, the last extrapolation is near the exact result ~—0.886294 of
Hulthén.?

DISCUSSION

It seems that the earlier studied? first-order perturbative renormalization scheme can
be improved upon. In addition to taking this older scheme to larger block sizes (via
the efficacious computational technique of ref. 8), the variational scheme described
here (in section 4) gives some improvement while maintaining a variational bound.
Even more accurate energies, though now not variationally bounded ones, are obtained
with our simple cluster-expansion technique of section 3.

There is much promise for further applications of our renormalization schemes.
Of course, linear-chain systems with next-nearest-neighbor interactions and/or bond
alternation are treatable by our improved renormalization schemes — and indeed such
systems are of much interest, more so since the exact solution of Hulthén no longer
applies. Also, computations for the ground states of Heisenberg models for 2-dimen-
sional lattices are quite feasible (and are of interest, because of their possible relation
to high-temperature superconductivity).

Further, there are also possibilities that our methods can be extended to deal with
more complicated (and presumably more accurate) renormalization mappings. Higher-
order perturbative and higher-order cluster-expansion approaches would yield new
Hamiltonians (not just shifted and rescaled) with nonnearest neighbor interactions of
varying strengths. Similar techniques, we believe, should be applicable to other models,
such as Hubbard or PPP models.

Even within the constraint of renormalization mappings limited to no more than
nearest neighbor couplings, there are conceivable improvements. One such already
mentioned is that of lowering the translational symmetry leading to alternating bond
strengths. Another type of previously unconsidered scheme iteratively renormalizes
Jjust the M sites at the end of a chain to a new site. This leads to models with the single
bond at the (renormalizing) end of the chain being of a different strength than all the
others, and for M = 3 yields the per-site energy of —0.8737. Indeed, this value is quite
good for a variational bound, e.g. in comparison to the variational renormalization
bounds of Table I, or a number of other bounds as listed in Ref, 4.

In conclusion, it seems that the renormalization schemes described here are of
promise for application to other systems and, in addition, it seems that there are methodo-
logical extensions and alternatives of much promise too. Further investigation of such
ground-state renormalization-group schemes seems warranted.
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SAZETAK

Renormalizacijska grupa za Heisenbergov
model linearnog lanca

Thomas G. Schmalz i Douglas J. Klein

Nekoliko tehnika renormalizacijske grupe u stvarnom prostoru primijenene su na Heisen-
bergov model linearnog lanca sa spinom 1/2. Ispitanim shemama renormaliziraju se blokovi (ili
pod-lanci) u nova mjesta sa spinom 1/2, tako da svako bude povezano samo s najblizim susjednim
(na isti naé¢in renormaliziranim) mjestima. Iteriranje renormalizacijske transformacije pouzdano
daje vrijednosti svojstava beskonaénog lanca, normirane na broj mjesta u lancu. Ispitana je per-
turbacija prvog reda, kao i sli¢an varijacijski optimiran pristup te razvoj u grozdove, upotreblja-
vajuéi blokove nekoliko razli¢itih veli¢ina. Ustanovljeno je da prve dvije tehnike daju manje toc¢ne
vrijednosti i sporije konvergiraju s veli¢inom bloka nego razvoj u grozdove, premda ova zadnja
tehnika (za razliku od prethodnih) nije varijacijski ograni¢ena. Uoc¢ena je nova modifikacija per-
turbacijsko-varijacijske tehnike kojom se u svakoj iteraciji renormalizira samo blok na kraju lan-
ca. Ovom tehnikom dobivaju se varijacijski odredene granice usporedive s onima iz razvoja u
grozdove.
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