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In the case of industrial and other practical applications, one usually
needs certain polymers with several optimized prescribed unrelated proper-
ties. To predict such systems, it is still much cheaper to calculate the band
structures of a larger number of polymers at a high level of approximation
(ab initio Hartree-Fock HF + correlation corrected band structure) and from
them compute the required properties than to snythetize the corresponding
polymers and measure their properties.

First, the paper shortly reviews the method for correcting the band struc-
ture for correlation and the so-called negative factor counting (NFC) method
which provides a very good approximation for the density of states (DOS).

After that, the ground state properties of an (SN),, chain, the vibrational
spectra of a number of polymers and the results obtained for the fundamen-
tal gap are discussed. In a short form, also the exciton spectra of different
polymers, the calculation of primary jump rate of aperiodic polypeptides and
the bulk modulus of polyethylene are mentioned. Finally, the paper gives at
least the most important references for the calculation of the effect of static
and time-dependent electric (static and dynamic polarizabilities and hyper-
polarizabilities) and magnetic field on the band structure of a periodic polymer
as well as for the effect of laser light on a polymer. All these theoretical
developments are very important for an understanding of the non-linear
properties of polymers.

INTRODUCTION

In the last decades, polymers have played an ever increasing role as special con-
struction elements in houses, cars, planes, trains, efc. as well as in computer- and com-
munication technology, in space research, as potentially more effective materials for
batteries efc. They may find new applications in microelectronics, in non-linear optics,
as possible new high temperature superconductors and in many other fields.

The reason that polymers are so important in modern technologies and still open

many other possibilities is that, due to their more complex chemical structure, they
offer a much broader range of their different physical and chemical properties than
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ordinary solids. The prediction of the so-called »tailor-made« polymers, that is
polymers with a number of prescribed properties, was the dream of many experimental
polymer physicists and chemists.

The requirement, however, to predict polymers that simultaneously possess dif-
ferent properties (for instance a highly conducting polymer with prescribed mechani-
cal and magnetic properties) is not an easy task. As long as only one property of a
series of chemically related polymers has to be determined, it is easy to find a simple
empirical or semiempirical method, which relates its electronic and sterical structure
with the required property. Unfortunately, this is not possible if an optimal polymer
with three or four different unrelated properties has to be found, even in a series of
polymers with chemically related units. Solution of this problem requires a very fun-
damental theoretical investigation of the electronic and spatial structure of the series
of polymers under consideration.

HARTREE-FOCK THEORY OF CRYSTALS

In the last two decades, much progress has been made in the development of the
first principle theoretical methods for the calculation of the electronic structure both
for periodic and non-periodic 1- and 2-dimensional polymers.!

The theory starts with the so-called ab initio (all electron and all interaction in-
tegrals) Hartree-Fock theory of periodic (not necessarily possessing only simple trans-
lation as symmetry operation) polymers, which takes advantage of the periodicity but
at the same time treats the repeated subunits as molecules, applying the self consis-
tent-field (SCF) linear combination of atomic orbitals (LCAO) technique, as it is usual
in the case of molecules. This theory was formulated already in 1967%° and can be
found also in Chapter I of Ref. 1.

This ab initio SCF LCAO crystal orbital (CO) theory has been applied to a large
number of quasi 1D polymers (see Ref. 1,4), to several 2D periodic systems®® and to
different 3D crystals.”

The above described ab initio CO theory can be formulated not only for the case
of simple translation but, with the help of the group theory, also for a combined sym-
metry operation (for instance helix operation, see Ref. 1 point 1.2) and provides a
reasonable band structure, charge distribution and not very large amplitude vibration-
al spectra for the ground state of a periodic quasi 1D polymer. As the first example,
let us discuss the case of (SN).8

(SN), is a metallic polymer having 3 7 electrons per unit cell (half-filled valence band)
and, actually, it becomes superconducting at 7' = 0.26 K. A split valence basis (10 con-
tracted AO-s on the N atom and 18 ones on the S atom, respectively) has been applied
to the band structure calculation. The metallic band has a 7 character composed of
(N2p, and S3p, AO-s) and has a width of 4.12 eV.? The effective electronic mass at
the Fermi level is 1.7 m,, in good agreement with the experimental value of 2.0 m,
deduced from the analysis of polarized reflectivity spectra of single crystalline (SN),.?
The theoretical density of states is 0.14 (eV spin molecule)-! at the Fermi level again
agreeing well with the experimentally obtained (from the contribution of the linear
temperature-dependent term to the specific heat) value of 0.18 (eV spin molecule)-1.1
Finally, the theoretical values of the charge transfer from S to N is 0.4 e,® while the
experimental one obtained from X-ray photoemission experiments is 0.3 — 0.4 e.°
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One should mention that using Zerbi’s formalism for a linear chain!! quite a good
agreement was obtained between the results of ab initio CO calculation and experi-
ments for the vibrational spectra of polymethinamine (NCH),,'? for trans polyethylene!*
and for bent (FH: - -FH),!* chains.

Both the results for (SN), and for the mentioned vibrational spectra refer to the
electronic ground state and to a near-equilibrium geometry. As it is well known for
the quantum theory of molecules, in this case a good basis ab initio HF calculation
already provides quite acceptable results.

On the other hand, if one wishes to treat an excited or ionized state of a polymer
or, if its geometry is more strongly changed, one has to correct not only the total ener-
gy per unit cell, but also its band structure (the fundamental gap is notoriously too
large in the HF approximation) for correlation. We have done this using the inverse
Dyson equation in a diagonal approximation, computing the self-energy with the help
of the Mgeller-Plesset (MP)!® many perturbation theory in the second and third
order.1%:17

One can show that if one writes down the second order energy of the MP many
body perturbation theory (the first order term is already included in the HF energy)
for the ground state of a linear chain in the form

Visas 2Vap — Viga)
2) = 2 = -
E ; &g €L g SEEa e (la)
- — 1 - -
Vigap = (P(r7) (1) ;‘1; D, (ry) Pp(ry)) (1b)

Here, I, J, A, and B are combined (band + % value) indices specifying the CO-s ®; and
er are the corresponding HF one-particle energies.

One can write down a similar expression for an N + 1 particle system (the ground
state should have N particles) if one puts one extra electron in the conduction band
and for the N — 1 particle system (one electron missing in the valence bond).

If one uses a generalized Koopman’s theorem

7, = E® — EOV-1 =~ EHF®N) 4 EO®) — EHFN-1) _ ER®-1) =
= ¢fIf 4 EO®) _ ERN-1 = ¢(QP) (2a)

one can define new quasi particle one-electron levels (dressed hole).!517

One can write a similar expression for the electron affinity A assuming the presence
of an extra electron in the conduction band in state A,

—Ay = EQV*D) — E®) = ¢HF 4 EQO+) _ EOM) = ¢,(QP) (2b)

The differences E@™ — EfAN-1 and EPN+D — E@® can be expressed with the help
of Eq. (1a) as differences of the pair correlation functions e;;. In this way, one can
finally write for the corrected levels of the valence and conduction band, respectively,
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e h
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The self energies é. efc. can be obtained as differences of the corresponding sums
of pair correlation function.

Instead of computing the &,9" and ¢.®" quasi particle energies from Eq. (2), one
can also use the inverse Dyson equation. One can show!” that then the following equa-
tion is obtained in the diagonal approximation

w; = ¢ + M®(w)) (4a)

with
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M®O(w)) = 2 1748 (2V1ap 1BA) (4b)
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which can be solved iteratively. According to our experiences, in this way, one obtains,
instead of 70 — 75% of the correlation energy, 75 — 80% for 1- and 2D periodic systems.
Of course, instead of the second order M® (w;) expression, one can put in the formulae
obtained any order of the MP perturbation theory.!”

Applying this formalism, first in its simpler form [Eqgs. (5a) — (5b)], in the case of
alternating trans-polyacetylene (PA), one obtains, instead of the minimal basis gap of
8.3 eV, 41. eV with a G-31** basis in the HF level and 2.9 eV for the correlation cor-
rected band structure.'® A subsequent MP/3 calculation with the same basis, using the
inverse Dyson equation, has provided 2.3 eV,!” while the experimental value is about
2.0 €V.!8 One should point out that the fundamental gap in a solid is not equal to the
smallest optical transition energy which corresponds to the difference of the ground
state energy and the lower edge of the lowest singlet excition band. Finally, it should
be mentioned that the second version (inverse Dyson Eq.) of the above described for-
malism can be successfully applied also for different 2D periodic systems.!®

Based on Deans’s? negative eigenvalue theorem, a new method has been developed
to determine the electronic density of states (DOS) of non-periodic polymers.?! This
so-called Negative Factor Counting Method (NFC) has provided excellent agreement
with direct band structure calculations in the (AB), case and it seems much more reli-
able in the quasi 1D case than the Coherent Potential Approximation (CPA) even with
energy and quasi momentum dependent self-energy.??

The NFC method in its ab initio matrix block form can be formulated with the
help of the secular determinant of an aperiodic chain of N units



HOW TO TAILOR POLYMERS 197

A1 = /‘le Bz == AQZ
B —1QF" A, - 1S,
det[M@)] = det[(F —1 S)] = det c

Ay — ASy
where A; and B, are the diagonal and off-diagonal blocks of the Fock matrix, respec-

tively, and S; and @, are the corresponding blocks of the overlap matrix. Since the
chain is disordered A; # Aj, B, # B;,, etc.

One can prove®*?3 that
det[M (A)] = det[S] det[(F - A1 )], (6)
where F = S-1/2FS-1/2. Det (F - 11) can be easily brought to a diblockdiagonal form

with the help of successive Gaussian elimination; see Ref. 23. The new determinant
has the following as diagonal blocks??

U@ = A; -1S; - B" -1Q,") Uz} B; -1Q) )
with
Ul(ll) == Ai = ASl

Taking into account (11) and realizing that a block-diagonal determinant can be
expressed as the product of the eigenvalues of its diagonal blocks, one can write

n N i

det[(F - 48)] = [ s G- =[] |II] va ® ®)
it
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S

Here, the s; — s are the eigenvalues of matrix S and the A; — s are the roots of the
generalized eigenvalue equation

Fe =4S¢ ©

Further, 4 is a parameter, u;; (1) denotes the k-th eigenvalue of the i-th block of dimen-
sion /; and n is the dimension of the determinant |F - AS]| (n =i§11i)'

For a given value of parameter 1 if an eigenvalue 4; < 4, one obtains a negative factor
in the middle expression of Eq. (13). Since this expression is equal to the r.h.s of (13), the
number of negative factors in the product of u; (1)-s (which can be easily computed)
has to be the same as the number of negative factors in the product of (4; — 1) — s.
One can take a dense grid in A and in this way determine the values of 4; in the grid
internal. In this way, one obtains a histogram which arbitrarily well approximates the
total electronic density of states (DOS) curve of a given non-periodic linear chain.

Besides many other cases,?! this technique has been applied to four-component

random polypeptide chains. We have obtained a primary jump rate (the probability per
unit time that an electron or a hole will jump from a given site in the chain to another)
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values (these quantities determine the hopping conductivity),!!!2 which are in very
good agreement with those determined for well conducting amorphous inorganic solids
(amorphous glasses).?6

Having corrected the HF band structures for correlation, one substitutes the changed
one-particle (quasi particle; QP) energies into the denominators of the Green matrix
elements” occurring in the framework of the intermediate exciton theory?® In this
way, one has obtained excitonic spectra in good agreement with experiment for
polydiacetylenes,?® for polyethylene,?® as well as for the polypeptide polyglycine and
polyalanine® (first theoretical singlet excitation energies 6.2 and 6.1 eV, respectively,
experimental values 6.0 — 6.5 eV). It should be further mentioned that, using the cor-
relation corrected (QP) band structure of a singlet polyethylene chain, also its bulk
modulus has been computed in good agreement with experiment (theoretical value 303,
experimental 235 — 340 Gpa-s, respectively).2?

In addition to the mentioned calculations, a series of papers have dealt with the
determination of the effect of static and non-static electric’!- and magnetic fields as
well as of laser light®® on the electronic structure of periodic polymers. In a first cal-
culation, using a modified formalism, static polarizabilities and hyperpolarizabilities of
different simple periodic chains have been computed.? These recent developments
look very promising also for the application of the quantum theory of polymers to
problems of non-linear optics.3?

One can see from the above presented review that, if one uses first principle
methods, takes into account both aperiodicity and correlation (recently a new method
has been developed that could treat correlation also in disordered polymers), as well
as interactions between polymer chains,?® one can obtain any of their physical proper-
ties quite accurately (the coding of the methods of further properties as well as the
rewriting of the existing basic programs in a vectorized and parallelized way, to take
better advantage of the available supercomputers, is in progress in Erlangen).

Thus, if for some industrial or other purpose, a polymer with prescribed physical
properties is needed, one can make calculations in a large series (typically several
hundreds) of chemically related polymers to find the few ones with optimal properties.
Of course, such a project requires a large amount of CPU time, but this procedure is
still much cheaper than synthesizing several hundreds of polymers and measuring
their different physical properties to find out the optimal systems. In other words, the
theory and the computational facilities are nowadays available to »tailor« polymers
with prescribed properties.
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SAZETAK

Kako krojiti polimere uz pomoé kvantne teorije?
Janos Ladik

U industrijskim i drugim primjenama obié¢no se traze polimeri odredenih, unaprijed trazenih
svojstava. Predvidanja zasnovana na zamrenim ra¢unima strukture vrpci (ab initio Hartree-
Fock, s ispravkama zbog korelacije) jos su uvijek jeftinija od sinteze zanimljivih polimera i mje-
renja njihovih svojstava.

Ukratko je prikazan Hartree-Fockov ab initio formalizam kristalnih orbitala, postupak
ispravaka zbog korelacije, te postupak brojanja negativnih faktora (Sto je vrlo dobar nadin za
procjenu gustoce stanja).

Raspravlja se o svojstvima (SN), lanaca u osnovnom stanju, o vibracijskim spektrima, o
energijskim barijerama i spektrima pobuda za niz polimera, te o radunu brzine preskakivanja
elektrona/supljina u aperiodi¢nim polipeptidima kao i o modulu elasti¢nosti polietilena.
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