Solvolysis Kinetics of 1-Chloro-1-phenyl-$-5,9,14,18,22$-pentamethyl-5,9,13,17,21-tricosapentaene, a Squalene Derivative. Indication of Participation*

Ivica Malnar, Olga Kronja, Krešimir Humski, and Stanko Borčić
Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 41000 Zagreb, Croatia

Received March 26, 1992

Abstract

The title compound 1 was prepared starting from squalene and the solvolysis rates were measured in $80 \%(v / v)$ aqueous ethanol. The relative solvolysis rate and activation parameters were calculated. According to the values obtained it is concluded that 1 solvolyzes probably with participation of at least one double bond.

The precursor to steroid hormones and triterpenes in nature seems to be 2,3epoxysqualene. ${ }^{1}$ The latter compound upon biomimetic acid catalyzed epoxide ring opening yields tricyclic products. ${ }^{2}$ In our effort to clarify the mechanism of biomimetic (poly)cyclizations, ${ }^{\text {a,b, }, 3}$ an investigation which has been initiated in collaboration with Sunko, ${ }^{4}$ we have recently prepared the title compound 1 according to the Scheme.

The chloride 1 was solvolyzed and rate constants measured at different temperatures. The results are given in Table I. In Table II the results obtained are compared with those previously published. ${ }^{\text {aa, } 5}$

TABLE I
Solvolysis rate constants, relative solvolysis rate and activation parameters of 1-chloro-1-phe-nyl-5,9,14,18,22-pentamethyl-5,9,13,17,21-tricosapentaene in $80 \%(v / v)$ aqueous ethanol

$t /{ }^{\circ} \mathrm{C}$	$k / 10^{-4} \mathrm{~s}^{-1 \mathrm{a}}$	$k_{\mathrm{U}} / k_{\mathrm{S}}{ }^{\mathrm{c}}$	$\frac{\Delta H^{\neq}}{\mathrm{kJ} \mathrm{mol}}$	$\frac{-\Delta S^{\neq}}{\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}}$
70	5.39 ± 0.06			
60	2.30 ± 0.04			
50	1.23 ± 0.02	15.8^{d}	$65 \pm 7^{\mathrm{e}}$	$119 \pm 21^{\mathrm{e}}$
25	0.142^{b}			

[^0]* Dedicated to Professor Dionis E. Sunko on the occasion of his seventieth birthday

Scheme
TABLE II
Solvolysis rate constants at $25^{\circ} \mathrm{C}$, relative solvolysis rates and activation parameters of some 1-phenylalk-5-enyl chlorides in $80 \%(\mathrm{v} / \mathrm{v})$ aqueous ethanol

[^1]The rate acceleration of $\mathbf{1}$ is relatively small compared to the analogue with the saturated side chain. However, the rate increase is comparable to that of chloride 2 for which participation has been shown to occur. ${ }^{4 \mathrm{a}, 5 \mathrm{a}, \mathrm{b}}$

Moreover, the activation parameters (low enthalpy and high negative entropy of activation) akin to those of the doubly unsaturated chloride 3 are also indicative of participation. We conclude that the title compound 1 solvolyses in $80 \%(v / v)$ aqueous ethanol with participation of at least one double bond.

Acknowledgement. - We are grateful to National Science Foundation (Grant 825) for partial financial support of this research

REFERENCES

1. (a) E. E. van Tamelen, Acc. Chem. Res. 1 (1968) 111; (b) 8 (1975) 152; (c) L. J. Mulheirn and P. J. Ramm, Chem. Soc. Rev. 1 (1972) 259; (d) E. E. van Tamelen, A. D. Pedlar, E. Li, and D. R. James, J. Amer. Chem. Soc. 99 (1977) 6778.
2. (a) E. E. van Tamelen, J. Willet, M. Schwartz, and R. Nadeau, J. Amer. Chem. Soc. 88 (1966) 5937; (b) E. E. van Tamelen and D. R. James, J. Amer. Chem. Soc. 99 (1977) 950.
3. (a) W. S. Johnson, Acc. Chem. Res. 1 (1968) 1; (b) Angew. Chem. Int. Ed. Eng. 15 (1976) 9; (c) Bioorg. Chem. 5 (1976) 51; (d) E. E. van Tamelen, J. Amer. Chem. Soc. 104 (1982) 6480; (e) O. Kronja, S. Borčić, K. Humski, and C. S. Foote, Croat. Chem. Acta 63 (1990) 193; (f) O. Kronja, M. Orlović, K. Humski, and S. Borčić, J. Amer. Chem. Soc. 113 (1991) 2306; (g) M. Orlović, S. Borčić, K. Humski, O. Kronja, V. Imper, E. Polla, and V. J. Shiner, J. Org. Chem. 56 (1991) 1874.
4. (a) E. Polla, S. Borčić, and D. E. Sunko, Tetrahedron Lett. (1975) 799; (b) I. Mihel, J. Šistek, S. Borčić, K. Humski, and D. E. Sunko, J. Org. Chem. 44 (1979) 4091; (c) E. Polla, S. Borčić, and D. E. Sunko, J. Org. Chem. 44 (1979) 4096.
5. (a) I. Mihel, M. Orlović, E. Polla, and S. Borčić, J. Org. Chem. 44 (1979) 4086; (b) M. Orlović, O. Kronja, K. Humski, S. Borčić, and E. Polla, J. Org. Chem. 51 (1986) 3253; (c) O. Kronja, E. Polla, and S. Borčić, J. Chem. Soc., Chem. Commun. (1983) 1044.

SAŽETAK

Solvoliza 1-fenil-1-klor-5,9,14,18,22-pentametil-5,9,13,17,21-trikosapentaena, derivata skvalena. Indikacija participacije

Ivica Malnar, Olga Kronja, Krešimir Humski i Stanko Borčić
Polazeći od skvalena pripravljen je spoj 1 (1-fenil-1-klor-5,9,14,18,22-pentametil-$5,9,13,17,21$-trikosapentaen), te su izmjerene konstante brzina njegove solvolize u $80 \%(v / v)$ vodenom etanolu. Izračunana je relativna brzine solvolize i aktivacijski parametri. Iz dobivenih podataka slijedi da spoj 1 vjerojatno solvolizira uz participaciju barem jedne dvostruke veze.

[^0]: ${ }^{\text {a }}$ Uncertainties are standard errors; ${ }^{b}$ Extrapolated value; ${ }^{c}$ Rate of unsaturated vs. the corresponding chloride with the saturated side chain; ${ }^{d}$ Extrapolated value, Ref. 4c; e Uncertainties are standard deviations.

[^1]: ${ }^{a}$ Extrapolated values; ${ }^{b}$ Data for analogues with the saturated side chain are shown in parentheses; ${ }^{c}$ Rate of unsaturated $v s$. the corresponding chloride with the saturated side chain; ${ }^{\mathrm{d}}$ Uncertainties are standard deviations

