CROATICA CHEMICA ACTA

CCACAA 65 (3) 547–549 (1992)

ISSN 0011-1643 UDC 547.31 CCA—2076

Preliminary Communication

Solvolysis Kinetics of 1-Chloro-1-phenyl--5,9,14,18,22-pentamethyl-5,9,13,17,21-tricosapentaene, a Squalene Derivative. Indication of Participation*

Ivica Malnar, Olga Kronja, Krešimir Humski, and Stanko Borčić

Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 41000 Zagreb, Croatia

Received March 26, 1992

The title compound 1 was prepared starting from squalene and the solvolysis rates were measured in 80% (v/v) aqueous ethanol. The relative solvolysis rate and activation parameters were calculated. According to the values obtained it is concluded that 1 solvolyzes probably with participation of at least one double bond.

The precursor to steroid hormones and triterpenes in nature seems to be 2,3epoxysqualene.¹ The latter compound upon biomimetic acid catalyzed epoxide ring opening yields tricyclic products.² In our effort to clarify the mechanism of biomimetic (poly)cyclizations,^{1a,b,3} an investigation which has been initiated in collaboration with Sunko,⁴ we have recently prepared the title compound **1** according to the Scheme.

The chloride 1 was solvolyzed and rate constants measured at different temperatures. The results are given in Table I. In Table II the results obtained are compared with those previously published.^{4a,5}

TABLE I

t∕°C	$k/10^{-4} { m s}^{-1}$ a	$k_{\rm U}/k_{\rm S}^{\rm c}$	<u>∆H</u> ≠ kJ mol ⁻¹	$\frac{-\Delta S^{\neq}}{\text{J K}^{-1} \text{ mol}^{-1}}$
70	5.39 ± 0.06			
60	2.30 ± 0.04			
50	1.23 ± 0.02			
25	0.142 ^b	15.8 ^d	65 ± 7^{e}	119 ± 21^{e}

Solvolysis rate constants, relative solvolysis rate and activation parameters of 1-chloro-1-phenyl-5,9,14,18,22-pentamethyl-5,9,13,17,21-tricosapentaene in 80% (v/v) aqueous ethanol

^a Uncertainties are standard errors; ^b Extrapolated value; ^c Rate of unsaturated vs. the corresponding chloride with the saturated side chain; ^d Extrapolated value, Ref. 4c; ^e Uncertainties are standard deviations.

* Dedicated to Professor Dionis E. Sunko on the occasion of his seventieth birthday

I. MALNAR

Scheme

TA	B	LE	II

Solvolysis rate constants at 25 °C, relative solvolysis rates and activation parameters of some 1-phenylalk-5-enyl chlorides in 80% (v/v) aqueous ethanol

Compound	$k/{ m s}^{-1}$ a	$k_{\mathrm{U}}/k_{\mathrm{S}}^{\mathrm{c}}$	<u>∆H</u> ≠ kJ mol ⁻¹	$\frac{-\Delta S^{\neq}}{J \text{ K}^{-1} \text{ mol}^{-1}}$	Ref.
	2.34×10^{-5} $(1.45 \times 10^{-6})^{b}$	16.1	72.3 $(104\pm6)^{b,d}$	99.0 (9±21) ^{b,d}	4a,b 4a,b,c
	2.24×10^{-4} $(1.44 \times 10^{-6})^{b}$	155.6	36 ± 4 $(104\pm1)^{b,d}$	194 ± 12 $(9 \pm 2)^{b,d}$	4d 4c
	1.42×10^{-5} $(9.0 \times 10^{-7})^{b}$	15.8	65±7	119±21	4c

^a Extrapolated values; ^b Data for analogues with the saturated side chain are shown in parentheses; ^c Rate of unsaturated vs. the corresponding chloride with the saturated side chain; ^d Uncertainties are standard deviations

The rate acceleration of 1 is relatively small compared to the analogue with the saturated side chain. However, the rate increase is comparable to that of chloride 2 for which participation has been shown to occur.^{4a,5a,b}

Moreover, the activation parameters (low enthalpy and high negative entropy of activation) akin to those of the doubly unsaturated chloride **3** are also indicative of participation. We conclude that the title compound **1** solvolyses in 80% (v/v) aqueous ethanol with participation of at least one double bond.

548

SOLVOLYSIS KINETICS OF A SQUALENE DERIVATIVE

Acknowledgement. – We are grateful to National Science Foundation (Grant 825) for partial financial support of this research

REFERENCES

- (a) E. E. van Tamelen, Acc. Chem. Res. 1 (1968) 111; (b) 8 (1975) 152; (c) L. J. Mulheirn and P. J. Ramm, Chem. Soc. Rev. 1 (1972) 259; (d) E. E. van Tamelen, A. D. Pedlar, E. Li, and D. R. James, J. Amer. Chem. Soc. 99 (1977) 6778.
- (a) E. E. van Tamelen, J. Willet, M. Schwartz, and R. Nadeau, J. Amer. Chem. Soc. 88 (1966) 5937; (b) E. E. van Tamelen and D. R. James, J. Amer. Chem. Soc. 99 (1977) 950.
- (a) W. S. Johnson, Acc. Chem. Res. 1 (1968) 1; (b) Angew. Chem. Int. Ed. Eng. 15 (1976) 9; (c) Bioorg. Chem. 5 (1976) 51; (d) E. E. van Tamelen, J. Amer. Chem. Soc. 104 (1982) 6480; (e) O. Kronja, S. Borčić, K. Humski, and C. S. Foote, Croat. Chem. Acta 63 (1990) 193; (f) O. Kronja, M. Orlović, K. Humski, and S. Borčić, J. Amer. Chem. Soc. 113 (1991) 2306; (g) M. Orlović, S. Borčić, K. Humski, O. Kronja, V. Imper, E. Polla, and V. J. Shiner, J. Org. Chem. 56 (1991) 1874.
- (a) E. Polla, S. Borčić, and D. E. Sunko, *Tetrahedron Lett.* (1975) 799; (b) I. Mihel, J. Šistek, S. Borčić, K. Humski, and D. E. Sunko, *J. Org. Chem.* 44 (1979) 4091; (c) E. Polla, S. Borčić, and D. E. Sunko, *J. Org. Chem.* 44 (1979) 4096.
- (a) I. Mihel, M. Orlović, E. Polla, and S. Borčić, J. Org. Chem. 44 (1979) 4086; (b) M. Orlović,
 O. Kronja, K. Humski, S. Borčić, and E. Polla, J. Org. Chem. 51 (1986) 3253; (c) O. Kronja, E.
 Polla, and S. Borčić, J. Chem. Soc., Chem. Commun. (1983) 1044.

SAŽETAK

Solvoliza 1-fenil-1-klor-5,9,14,18,22-pentametil-5,9,13,17,21-trikosapentaena, derivata skvalena. Indikacija participacije

Ivica Malnar, Olga Kronja, Krešimir Humski i Stanko Borčić

Polazeći od skvalena pripravljen je spoj **1** (1-fenil-1-klor-5,9,14,18,22-pentametil-5,9,13,17,21-trikosapentaen), te su izmjerene konstante brzina njegove solvolize u 80% (v/v) vodenom etanolu. Izračunana je relativna brzine solvolize i aktivacijski parametri. Iz dobivenih podataka slijedi da spoj **1** vjerojatno solvolizira uz participaciju barem jedne dvostruke veze.