ISSN 0011-1643 UDC 547.65 CCA—2089

Original Scientific Paper

Non-degenerate Exchange of 1,2-Dialkyl Groups in Naphthalenium Cations*

David P. Kelly**, Alicia M. Dachs, and Voon Y. Stokie

Department of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia

Received April 17, 1992

Protonation of 1-isopropyl- $D_5(Me)$ -2-methylnaphthalene in FSO $_3H/SO_2$ CIF leads initially to the ipso (C-1) protonated naphthalenium ion, which slowly rearranges irreversibly at -80 °C to the C4-protonated 2-isopropyl- $D_5(Me)$ -1-methylnaphthalenium cation, the two alkyl groups having thus ex-changed positions. A similar exchange does not occur in the case of 1-ethyl-2-methyl-naphthalenium cation. A possible mechanism for this unique rearrangement is discussed.

INTRODUCTION

The relative migratory aptitude of alkyl groups in protonated alkyl aromatic hydrocarbons is well established to be Me < Et < i-Pr < t-Bu. 1 The dienone-phenol rearrangement 1,2 has been used to create competitive migration of one of the two alkyl groups of a geminal, 1,2-dialkylnaphthalenone to the vicinal carbon. 3 Thus treatment of 1 with acetic anhydride/sulfuric acid gave the rearranged acetate 2 exclusively, as shown by NMR spectroscopy and by reduction to the known 1-methyl-2-ethylnaphthalene (3) 3,4 (Scheme 1).

Scheme 1

In a more recent study of cyclopropa[a]naphthalenium cations it was shown that treatment of the alcohol 4 with FSO₃H at -100 °C gave the rearranged cation 5 which underwent further rearrangement on warming to yield the 2-isopropyl-1-methylnaph-

^{*} Dedicated to Professor Dionis E. Sunko on the occasion of his seventieth birthday.

^{**} Author to whom correspondence should be addressed.

714 D. P. KELLY ET AL.

thalenium cation (6)⁵ (Scheme 2). The later was identified by similarity of its ¹³C NMR spectrum to that of protonated 1,2-dimethylnaphthalene,⁶ by isolation of 2-isopropyl-1-methylnaphthalene upon quenching in methoxide/methanol,⁵ by its generation from authentic hydrocarbon 7 and by isolation of 2-isopropyl-D₃(Me)-1-methylnaphthalene (7)-D₃ from the quenched cation derived from 4-2-D₃(Me).⁵ A surprising result was that protonation of the regioisomer 1-isopropyl-2-methylnaphthalene (8) yielded the ipso,^{7,8} protonated species 9 but on quenching in methoxide/methanol after storage for one week at -80 °C, the product isolated was the hydrocarbon 7, not 8⁵ (Scheme 2).

We now confirm that this rearrangement proceeds by a non-degenerate exchange of methyl and isopropyl groups in the carbocation.

RESULTS AND DISCUSSION

1-Isopropyl-D₅-2-methylnaphthalene (8), in which the isopropyl group was labelled (CD₃CHCD₂H), was prepared by hydrogenation of 1-isopropenyl-D₅-2-methylnaphthalene from acetone-D₆ and 1-bromo-2-methylnaphthalene.⁹ Treatment of 8-D₅ with FSO₃H/SO₂ClF at -80 °C gave a red-brown solution, the ¹³C NMR spectrum of which was identical to that previously recorded for 9, except for the low intensity multiplets at 15.4 (CD₃) and 23.3 (CD₂H) ppm⁵ (Figure 1A). After storage for one week at -80 °C, the solution was considerably darker and gave a ¹³C NMR spectrum consistent with a mixture (\sim 1:1) of the two cations 9 and 6 (δ Cl of 6 at 200.1, δ Cl of 9 at 65.9 ppm)⁵ (Figure 1B). After four weeks storage the solution was dark green and showed no sig-

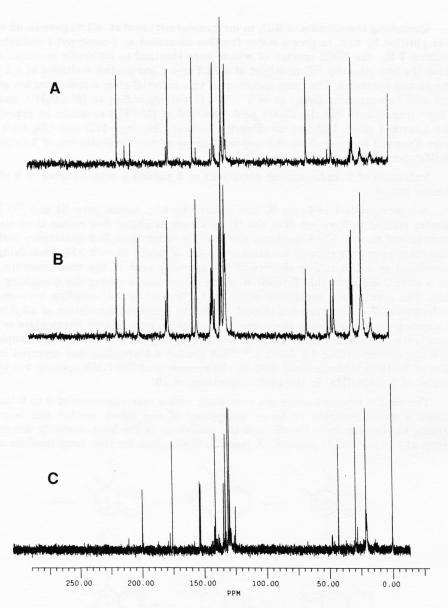


Figure 1. 13 C NMR spectra of the rearrangement process $9 \xrightarrow{0} 6$ at -80 $^{\circ}$ C: A, 9-D₅; B, after 1 week; C, after 4 weeks, 6-D₅.

nal at δ 65.9 but a strong triplet (DEPT) at 42.8 ppm (C4) consistent only with **6**. In addition, only one low intensity multiplet was observed at 21 ppm, consistent with the equivalent methyl resonances, C11, 13, 14 previously observed for **6**. The resonance of the C11 methyl group had moved from δ 29.6 to 22.0 ppm (Figure 1C).

716 D. P. KELLY ET AL.

Quenching the solution of $6\text{-}D_5$ in methoxide/methanol at $-80\,^{\circ}\text{C}$ gave an oil which was purified by t.l.c. to give a major fraction identified as 2-isopropyl-1-methylnaphthalene $7\text{-}D_5$, the NMR spectra of which were identical to authentic material, apart from the low intensity ^{13}C multiplet at δ 22.7 and a one-proton multiplet at δ 1.26 in the proton spectrum. The mass spectrum of this material gives a molecular ion at m/z 189 and two stronger peaks at m/z 172, 171 corresponding to $[M\text{-}CD_2\text{H}]^+$ and $[M\text{-}CD_3]^+$ respectively. No significant peak occurred at $[M\text{-}CH_3]$ as would be expected if the isopropyl group had lost its integrity. Loss of CH_3 (m/z 172) and CD_3 (m/z 169) were observed however from the isopropyl group of the molecular ion of 2-isopropyl- $D_3(Me)$ -1-methylnaphthalene (m/z 187).

Ionisation of $\bf 7$ under similar conditions to $\bf 8$ yielded $\bf 6$ with no trace of $\bf 9$ after a similar period.

A minor product of lower R_f was isolated by t.l.c. which gave 1H and ^{13}C NMR spectra similar to 7 except that the 1H spectrum exhibited five rather than six aryl protons and the ^{13}C NMR spectrum showed five rather than four quaternary carbons. The mass spectrum showed an intense cluster of peaks at m/z 376, identifying the compound as a dimer. The absence of any impurity peak in the mass spectrum of 6 (at 4 weeks) indicates that formation of the dimer occurs during the quenching reaction. The spectra are consistent with 10-D_{10} formed by 4,4'-coupling between two molecules of 7 in the presence of acid. Oxidative dehydrodimerization of alkyl naphthalenes generally occurs in the presence of reagents such as lead tetraacetate or thallium trifluoroacetate. Thus 1,2- and 1,8-dimethylnaphthalenes have been coupled to give the corresponding 4,4'-biaryls. That similar 4,4'-coupling has occurred in the case of $7 \rightarrow 10$ is evidenced not only by the symmetry of the NMR spectra, but by the singlet at δ 7.456 (H3) in the proton spectrum of 10.

The results reported above are consistent with a rearrangement of **9** to **6** that involves a non-degenerate *exchange* (swapping) of the intact methyl and isopropyl groups, the driving force for which is the placement of the least sterically demanding group at the *peri* (C-1) position. A possible mechanism for this swap involves a 1,2-

Scheme 3

hydride shift, a 1,2-methyl migration to generate a 1,1-dialkylnaphthalenium system $\bf 11$ as in the dienone-phenol rearrangement (Scheme 1), followed by migration of the isopropyl group to the vacant 2-position. Subsequent 1,2-H and 1,4-H shifts then afford $\bf 6-D_5$ (Scheme 3). (We cannot exclude, at this stage, the possibility that the isopropyl group migrates first to give a 2,2-dialkylnaphthalenium system, which is then followed by the methyl migration.).

In order to explore the generality of this rearrangement 1-ethyl-2-methylnaphthalene (12) was subjected to similar conditions as 8 but unlike 8 the 13 C NMR spectrum of the cation produced at -80 °C showed peaks consistent with protonation at C4 only (triplet at δ 43.7), cation 13. After two weeks at -80 °C the spectrum was unchanged. Warming of the solution to -40 °C resulted in no change of the spectrum. Protonation of the isomeric 2-ethyl-1-methylnaphthalene (3) occurs also at C4 (triplet at δ 43.5) in a similar manner to 7, to yield cation 14. Quenching of the cations 13 and 14 regenerates the hydrocarbons 12 and 3 respectively (Scheme 4).

FSO₃H
NaOMe

$$12$$
 13

FSO₃H
NaOMe
 13
 14

Scheme 4

It is obvious that the 1,8 (peri) interaction is sufficiently large in the case of H and i-Pr to favour rearrangement. Initial relief of strain occurs with the formation of a tetrahedral centre by protonation at C1 to give 9, followed by migration of the isopropyl group. Rearrangement has also been reported in the case of 1,8-dimethylnaphthalene, where the initially formed C4-protonated cation 15 rearranges via the C1-protonated cation 16 to the 1,7-dimethylnaphthalenium cation (17) (Scheme 5). However, the steric interaction between H and Et is obviously less than both H/i-Pr and Me/Me, the cations being stable and relatively unaffected by temperature increases. Estimates

Scheme 5

718 D. P. KELLY ET AL.

of the steric strain may be elicited from the kinetics of hydrogenation of 1-alkyl- and 1,8-dialkylnaphthalenes, the relative rates being 4.9, 6.8, 6.2 and 59 for 1-Me, 1-Et, 1-i-Pr and 1,8-Me₂ respectively. Although there is little difference between the rates for Et and i-Pr, the greater *peri* strain in the latter case is shown by the preference for hydrogenation of the substituted ring over that of the unsubstituted ring. 11

EXPERIMENTAL

The hydrocarbons were prepared by literature procedures from commercially available starting materials. Melting points are uncorrected. NMR spectra were recorded of CDCl₃ (hydrocarbons) or SO₂ClF (cations) solution on JEOL FX-90, FX-100 or GX-400 spectrometers. Chemical shifts of the cation solutions were referenced to external Me₄Si (capillary of Me₄Si and acetone-D6) and those of CDCl₃-solutions to internal Me₄Si or to the solvent taken as δ 7.26 (¹H) or 77.0 (¹³C). Mass spectra were recorded on a Micromass VG 70/70 F spectrometer in positive ion, electron impact (70 eV) mode. Infrared spectra were recorded as films (NaCl) on a Perkin Elmer 983 spectrometer.

1-Isopropyl- $(13,14-CD_3,CD_2H)$ -2-methylnaphthalene (8)- $(13,14-D_5)$

1-Isopropyl-D₅-2-methylnaphthalene was prepared according to Mannschreck and Ernst from acetone-D₆ and 1-bromo-2-methylnaphthalene; 9 treatment with NaBH₄ in diglyme yielded 9 -D₅, (57%) b.p. 70-71 $^{\circ}$ C/0.12 mm (lit. 9 88-89 $^{\circ}$ C/0.4 mm).

 $^1\mathrm{H}$ NMR (400 MHz) δ 1.49 (br s, 1H), 2.475 (s, 3H, H12), 3.79 (br s, 1H, H9), 7.20–7.8 (m, 5H), 8.23 (d, 1H); $^{13}\mathrm{C}$ NMR (100 MHz) δ 21.1 (weak m, CD₃, CD₂H), 21.57 (s, C12), 28.76 (br s, C9) plus aryl C.⁵ Mass spectrum (70 ev) m/z (relative intensity) 189 (56, M), 172 (100, M-CD₂H), 171 (87, M-CD₃), 156 (40), 142 (55), 141 (45).⁵

1-Methyl-2-ethylnaphthalene (3)

The title compound was prepared according to literature procedures via the following intermediates.

1-Tetralone-2-glyoxalate (81%) mp 47–48 °C (lit. 12 47–48 °C), $\nu_{\rm max}$ (film) 3400 (br), 1718, 1614, 1591, 1282, 1293, 1174 cm $^{-1}$; 1 H NMR (90 MHz) δ 7.95 (d,d 1H, H8), 7.15–7.55 (m, 3H), 4.30 (q 2H), 2.85 (br s, 4H), 1.35 (t, 3H); 13 C NMR (22.5 MHz) δ 186.4 (C1), 170.2 (C2'), 162.8 (C1'-enol), 142.3 (s), 133.4 (d), 131.1 (s), 127.8 (d), 126.9 (d), 126.8 (d), 108.4 (s, C2), 61.9 (t), 27.9 (t), 22.3 (t), 13.9 (q).

2-Ethoxycarbonyl-1-tetralone^{12,13} b.p. 92–94 °C/0.05 mm (lit.¹¹ 116–120 °C/0.2 mm), recrystallised (–10 °C) from petroleum ether (40–60 °C), m.p. 34–35°, $\nu_{\rm max}$ (film) 1740, 1690, 1640, 1610 cm⁻¹; ¹H NMR (90 MHz) δ 7.8 (m, H8), 7.1–7.35 (m, 3H), 4.25 (q, 2H), 2.45–2.90 (m, 5H), 1.35 (t, 3H); ¹³C NMR (22.5 MHz) δ 172.7 (C1), 165.0 (C1'), 139.3 (s), 130.4 (d), 130.0 (s), 127.3 (d), 126.5 (d), 124.2 (d), 96.9 (d, C2), 60.4 (t), 27.7 (t), 20.5 (t), 14.2 (q); mass spectrum (70 eV) m/z (%) 218 (M, 60), 172 (65), 144 (100), 118 (68), 115 (57), 90 (55).

Dehydrogenation of the above over selenium dioxide in xylene¹⁶ gave *1-methyl-2-ethylnaphthalene* (3) (48%) b.p. 125 °C/(oven)/0.5 mm (lit. 140–145 °C/11 mm,¹⁴ 155 °C/30 mm¹⁵); ¹H NMR (90 MHz) δ 7.13–7.49 (m, 6H), 2.71 (q, 2H), 2.49 (s, 3H), 1.16 (t, 3H); ¹³C NMR (22.5 MHz) δ 139.1 (s), 133.1 (s), 132.2 (s), 130.1 (s), 128.3 (d), 127.6 (d), 126.0 (d), 125.6 (d), 124.4 (d), 123.8 (d), 27.4, 15.3, 13.8.

1-Ethyl-2-methylnaphthalene (12)

1-Ethyl-2-methylnaphthalene (12) was prepared in a manner similar to 3 via 2-methyl-1-tetralone, b.p. 100–102 °C/4 mm (lit. 14 136–138 °C/16 mm); 1 H NMR (90 MHz). δ 8.05 (d,d, 1H, H8), 7.1–7.5 (m, 3H), 2.85–3.10 (m, 2H), 1.7–2.7 (m, 3H), 1.25 (d, J = 7 Hz, 3H); 13 C NMR. δ 200.4 (s), 143.9 (s), 132.9 (d), 132.2 (s), 128.5 (d), 127.1 (d), 126.3 (d), 42.4 (d), 31.2 (t), 28.6 (t), 15.2 (q).

2-Ethyl-1-methyl-3,4-dihydronaphthalene, b.p.. 122–124 °C/8 mm (lit. 14 132 °C/14 mm); 1 H NMR (60 MHz) δ 7.0–7.3 (m, 4H), 2.0–2.8 (m, 6H), 1.82 (s, 3H), 1.05 (t, 3H); 13 C NMR (22.5 MHz) δ 135.8 (s), 131.7 (s), 131.4 (s), 127.2 (d), 126.2 (d), 125.9 (s), 125.4 (d), 122.2 (d), 30.6, 28.6, 21.0, 19.9, 13.6.

Dehydrogenation as above 16 gave 1-ethyl-2-methylnaphthalene (12) b.p. 100-104 °C/6 mm (lit. 133-135 °C/15 mm 14 , 153 °C/30 mm 15); $^{1}{\rm H}$ NMR (90 MHz) δ 7.2–7.05 (m, 6H), 3.05 (q, J = 8 Hz, 2H), 2.44 (s, 3H), 1.22 (t, J = 8 Hz, 3H); $^{13}{\rm C}$ NMR (22.5 MHz) δ 137.2 (s), 132.6 (s), 132.3 (s), 131.8 (s), 129.2 (d), 128.5 (d), 125.7 (d \times 2), 124.3 (d), 123.5 (d), 21.6 (t), 19.9 (q), 14.2 (q).

Generation and quenching of cations. The cation solutions were prepared as described previously,⁵ by slow addition of the hydrocarbon dissolved in cold SO_2ClF to the rapidly stirred (vortex) mixture of FSO_3H/SO_2ClF (1:1 pbv) at -78 °C. The solutions were quenched by their slow addition to excess sodium methoxide in methanol at -78 °C with rapid stirring. The mixtures were allowed to warm to room temperature, diluted with water until clear, extracted with pentane, dried and evaporated to yield yellow oils. Compounds **7**-D₅ and **10**-D₁₀ were isolated from the oil by preparative thin layer chromatography.

1-Isopropyl-13,14-CD₃CD₂H)-2-methylnaphthalenium (9)-D₅, 0.5 M; 13 C NMR δ (25. MHz, -80 $^{\circ}$ C)⁵ 217.9, 176.7, 157.0, 140.7, 140.4, 133.8, 131.1, 130.8, 65.8, 45.9 (C12), 29.6, (C11), 23.3 (br m, C13), 15.4 (br m, C14).

2-Isopropyl-(13,14-CD₃CD₂H)-1-methylnaphthalenium (6)-D₅. From rearrangement of 9-D₅; $^{13}\mathrm{C}$ NMR (100 MHz, -60 °C) δ 43.8 (t, DEPT, C4), 30.3 (C12), 22.0 (C11), 20.5 (br m, C13,14), plus 10 aryl carbons. 5

Quenching of **6**-D₅ and chromatography of the resulting oil gave **7**-D₅ and **10**-D₁₀: 2-isopropyl-(13,14-D₅)-1-methylnaphthalene⁵ (**7**)-D₅, R_f 0.9; ¹H NMR (400 MHz) δ 8.050 (dd, J = 7.8, 1.0 Hz, 1H), 7.786 (dd, J = 8.0, 1.5 Hz, 1H), 7.696 (d, J = 8.7 Hz, 1H), 7.485 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.436 (d, J = 8.7 Hz, 1H), 7.409 (ddd, J = 7.8, 6.8, 1.0 Hz, 1H), 3.444 (d, J = 6.6 Hz, H12), 2.656 (s, 3H, H11), 1.267 (br d, J = 6.6 Hz, 1H, H13). ¹³C NMR (100 MHz) δ 143.2, 132.9, 131.9, 129.4, 128.3, 126.2, 125.7, 124.6, 124.2, 123.6, 29,33, 22.7 (m, CD₃CD₂H) 13.7; mass spectrum m/z (%) 190 (15, M + 1), 189 (73, M), 188 (9), 173 (18), 172 (100, M-CD₂H),171 (88, M-CD₃), 157 (19), 156 (29), 155 (20), 143 (13), 142 (38), 141 (27).

2,2 '-Di (isopropyl-D₅-1,1 '-dimethyl-4,4 '-binaphthalene (10)-D₁₀, R_f 0.8, colourless prisms from ethanol, m.p. 141–143 °C;

¹H NMR (400 MHz, »100%« CDCl₃) δ 8.155 (ddd, J = 8.5, 1.0, 0.7 Hz, 2H, H8,8'), 7.483 (ddd, J = 8.5, 6.8, 1.2 Hz, 2H), 7.456 (s, 2H, H3,3'), 7.456 (s, 2H, H3,3'), 7.416 (d m, J = 8.2, 0.7 Hz, 2H, H5,5'), 7.223 (ddd, J = 8.2, 6.8, 1.2 Hz, 2H), 3.535 (br d, J = 6.8 Hz, 2H, H12,12'), 2.770 (s, 6H), 1.263 (br m, 2H, CD₂H × 2).

¹³C NMR (100 MHz) δ 142.7 (s), 137.1 (s), 132.9 (s), 131.5 (s), 129.1 (s), 127.1, 125.9, 125.6, 124.6, 124.3, 29.46, 22.7 (br m), 13.89. Mass spectrum m/z (%) 378 (M+2, 7), 377 (M+1, 37), 376 (M, 100), 375 (M-1, 22), 359 (M-CD₂H, 17) 358 (M-CD₃, 15), Found: M⁺, 376.2975. C₂₈H₂₀D₁₀ requires 376.2975.

1-Ethyl-1-methylnaphthalenium (13). 13 C NMR (25, MHz, $^{-80}$ °C) δ 204.8 (s, C1), 179.7 (d, C3), 154.6 (s), 143.7 (s), 141.7 (d), 133.5 (s), 133.3 (d), 131.5 (d), 130.7 (d), 43.7 (t, C4), 29.3 (t), 19.8 (1), 15.8 (q).

2-Ethyl-1-methylnaphthalenium (14). 13 C NMR (25 MHz, $^{-80}$ °C) δ 200.8 (s, C1), 176.6 (d, C3), 153.8 (s), 149.2 (s), 141.8 (d), 134.7 (s), 133.6 (d), 131.4 (d), 130.4 (d), 43.5 (t, C4), 26.7 (t), 22.4 (q), 12.4 (q).

Acknowledgement. – We acknowledge assistance from undergraduate research participants Mr S. Lane and Ms K. Smith in the preparation of 8 and 3 respectively. We acknowledge general support of the Australian Research Grants Scheme and for assistance with the acquisition of the GX-400 NMR spectrometer.

REFERENCES

- 1. H. J. Shine, Aromatic Rearrangements, Ch. 1 Elsevier, New York, 1969.
- R. T. Arnold, J. S. Buckley, and J. Richter, J. Amer. Chem. Soc. 69 (1947) 2322; G. A. Olah,
 G. K. S. Prakash, and J. Sommer, Superacids, Wiley, New York, 1985, p. 331.
- 3. R. B. Carlin and K. P. Sivaramakrishnan, J. Org. Chem. 35 (1970) 3368.
- 4. J. M. Duswalt and T. J. Mayer, Anal. Chem. 42 (1970) 1789.
- 5. D. P. Kelly, D. R. Leslie, and B. D. Smith, J. Amer. Chem. Soc. 106 (1984) 687.
- 6. K. Lammertsma and H. Cerfontain, J. Amer. Chem. Soc. 101 (1979) 3618.
- 7. H. Hart, J. B. -C. Jiang, and R. K. Coupta, Tetrahedron Lett. (1975) 4639.
- 8. For a review on the site of protonation in simple aromatics, see: D. Farcasiu, Acc. Chem. Res. 15 (1982) 46.
- 9. A. Mannschreck and L. Ernst, Chem. Ber. 104 (1971) 228.
- A. McKillop, A. G. Turrell, D. W. Young, and E. C. Taylor, J. Amer. Chem. Soc. 102 (1980) 6504
- 11. J. Nieuwstad, P. Klapwijk, and H. Van Bekkum, J. Catalysis 29 (1973) 404.
- 12. A. S. Bailey and C. M. Staveley, J. Inst. Petroleum 42 (1956) 97.
- 13. I. Ugi, R. Huisgen, and D. Pawellek, Justus Liebigs Ann. Chem. 641 (1961) 63.
- 14. H. Adkins and J. W. Davis, J. Amer. Chem. Soc. 71 (1949) 2955.
- 15. H. Christol, C. Martin, and M. Mousseron, Bull Soc. Chim. Fr. (1960) 1696.
- 16. H. Christol, R. Jacquier, and M. Mousseron, Bull. Soc. Chim. Fr. (1958) 248.

SAŽETAK

Nedegenerirana izmjena 1,2-dialkilnih skupina u naftalenijevu kationu

David P. Kelly, Alicia Dachs i Voon Y. Stokie

Protoniranjem 1-izopropil- $D_5(Me)$ -2-metilnaftalena u FSO $_3H/SO_2C1F$ na -80 °C generiran je ipso (C-1) protonirani naftalenijev ion i ^{13}C NMR spektrometrijom praćena njegova ireverzibilna pregradnja u C-4 protonirani 2-izopropil- $D_5(Me)$ -1-metilnaftalenijev kation. Diskutira se o mehanizmu pregradnje.