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Resonance energy of conjugated hydrocarbons is considered through the
cluster expansion concept. For the first time it is applied in its exact form
and fullness. A comparison with previous results, which were obtained by a
truncation of the expansion, indicates a high sensitivity of the result to the
extent of truncation. The result, which greatly reduces the computation and
simplifies implementation, is presented in the paper.

The reference structure is defined in graph-theoretical terms, but the
application of the model is not confines to any particular method for electron
energy evaluation. o—electrons can be also accounted for. The final expression
is parameter free and requires a knowledge of electron energies of the molecule
and of its certain acyclic fragments.

The model is examined within the framework of the Hiickel z—electron
approximation. The results obtained for a number of molecules show unex-
pected disagreement with commonly accepted values. However, these results
qualitatively agree with the recent results of Shaik et al. by which w—electron
delocalization is interpreted as a generally destabilizing effect.

INTRODUCTION

Evaluation of the resonance energy (RE) of conjugated molecules is still a subject
of interest in theoretical chemistry; for some recent results see Ref. 1. The cause and
consequences of sm—electron delocalization are controversially interpreted even for
simple molecules like benzene.?

There is a plethora of models developed for the evaluation of RE, with a varying
degree of sophistication and relying on various definitions of the reference energy.!-4
All these models could be grouped according to whether a delocalization is considered
in terms of only n—electrons, or if also o—electrons are accounted for. Both concepts
find their confirmation in experimental facts but nevertheless, recent results!® show
that any model based solely on n—electrons is questionable. For example, (in)stabilities
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of atomic clusters X and X4(X=Li,Na,H,F), which are isoelectronic species with p-sys-
tems of benzene and cyclobutadiene, respectively, contradict the Hiickel modulo 4 rule.

Essentially, we pursue the idea exposed by Schmalz et al.,5 who used the cluster
expansion (CE) to get an insight into the relations between various topological models
of the RE. They have shown that the models proposed by Hess and Schaad®, Jiang,
Tang and Hoffmann,” and some others, can be regarded as particular approximations
of the CE concept, mutually differing in the number of retained terms in the expan-
sion. Truncation was necessary due to a large (although finite) number of expansion
terms. One would expect to obtain better results if the truncation were omitted, i.e.
if all expansion terms were included. This expectation has motivated the present re-
search. We have derived a result which greatly reduces computation and enables ac-
counting for all fragments involved in the expansion. Thus, for the first time, cluster
expansion is applied to the evaluation of the RE in its fullness.

An important characteristic of the CE concept in the evaluation of the RE is that
it is not confined to either of the two mentioned views on the role of o- and n—
electrons, i.e. it can be applied with either assumption. Here, we report the results ob-
tained within the framework of the Hiickel method. The obtained results are quite un-
expected and it is interesting to see that they conform to the results! obtained by using
much more sophisticated computational methods.

CLUSTER EXPANSION OF THE RESONANCE ENERGY

Before we describe the use of cluster expansion for the resonance energy evalua-
tion, let us briefly review the basis of the cluster expansion concept. We use mainly
the graph-theoretical concepts and terminology since these are appropriate for struc-
tural relations considered here. More details about the chemical graph theory can be
found in Ref. 8. A molecule is represented by a graph, usually denoted by G, with
atoms and bonds being represented by vertices and edges, respectively. Each molecular
fragment corresponds to a certain connected subgraph of the molecular graph. A sub-
graph relation is denoted by the symbol C. The chemical nature of the fragment cor-
responding to a given subgraph needs to be separately defined. Two possibilities arise:
that broken bonds result from radicals, or that they are appropriately saturated (e.g.
by hydrogen atoms). Both of these options seem to be consistent and worth trying.
However, since here we present the results obtained by accounting for only n—
electrons, this question is left open.

The CE concept starts by expressing any molecular property, X(G), as a sum of
contributions from all possible fragments G':9

X@G) = x(G) (1)

G' CG

The sum goes over all connected subgraphs, including also G. x(G’) is the contribution
of a fragment G' to the property X. x(G) can be calculated recursively from Eq. (1) if
x(G'), G'CG are already known, and if X(G) is available. However, the Mobius inver-
sion of Eq. (1) yields a more practical expression:!0
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X(G) = z ulG',G] - X(G") 2)

G'cG

#[G',G] denotes the Mobius function!® with G’ and G as its arguments. An implied par-
tially ordered set (shortly called poset) consists of G and all of its subgraphs with an
order relation established through subgraph property: G'=G#G'CG. Mobius function
for this poset is known:!!

3)

e { 0 if thereis e € ¢(G\G') not incidentto G }

(=1)l=@\G)

E(G\G') denotes a set of edges in G not included in G'.

If one is interested in the evaluation of X(G), Eq. (1) is of no use, since x(G) re-
quires X(G) to be known. A practical significance of the cluster expansion concept in
that case comes through an approximate expression:

s

(G"<S
X)) = =G 4)
G'CcG

in which the number of terms is reduced by applying some size function s(G’). Only
those fragments having s(G’) less or equal to some chosen limit S are accounted for.
The size function, s(G'), can be defined in various ways?® (e.g. as the number of atoms,
or the number of bonds, or a diameter of an appropriate graph, efc.) and for a certain
property X, it is a matter of convenient choice. Contributions arising from larger frag-
ments are ignored in Eq. (4), but, nevertheless, if these are small, a good estimate of
X(G) can be obtained. Besides, the quantity x(G’) establishes some scale of importance
for fragments G’ and, thus, enables exploring of a relation between the molecular

topology and the property X. For some recent applications of CE in chemistry see Ref.
12 and the references therein.

For evaluation of the resonance energy, cluster expansion is used in a specific way:
for the definition of a reference energy and for its evaluation. To define the reference
energy, first we rewrite Eq. (1) giving to X a meaning of the molecular energy E(G):

EG) = E e(G") (5)

G'CG

e(G') denotes the energy contribution of G'. Theoretical considerations of the
resonance energy34 are widely based on the assumption that the resonance effect is
produced by cycles present in the 7—carbon skeleton. Thus, to define a reference ener-
gy one seeks a way to eliminate energy contributions coming from the presence of
cycles.!3 These contributions are usually identified in a scheme chosen for the evalua-
tion of electronic energy. In the present concept, this idea is naturally realized by
removing from expansion Eq. (5) all terms that correspond to cyclic fragments:

E.(G) = 2 e(Ghe ) (6)

GiZGG
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and retaining only those, G',., which do not possess any cycle. The resonance energy,
RE, is then defined by:

RE(G) = E(G) - E,(G) @)

If G is acyclic, one expects to get RE(G) =0, disregarding the model used, and this is
obviously fulfilled in the present model: in that case Eq. (6) gives E,.(G)=E(G).

In further text, we assume that G is cyclic, i.e. that it contains at least one cycle.
Relation (6) enables one to calculate E,.(G) when all e(G’,.) are determined by using
Egs. (2) and (3). However, although simple, this is a time consuming task and it is dif-
ficult to organize computation efficiently. This was probably the reason why this ap-
pealing concept was not examined before in more detail. An important shortcut is
achieved by the following consideration.

Let us express e(G) from Eq. (5) as:

eG) = EG) - Y @) (8)

G'CG
By substituting Eq. (6) into Eq. (7), one obtains a formally similar expression:

RE@G) = E(@) - Y e(Gy) @

GREE

A comparison of Egs. (8) and (9) reveals that RE(G) equals e(G), the contribution of
G itself, if expansion Eq. (5) is carried out in acyclic fragments only. Therefore, the
Mébius inversion can be applied again, but now on a different poset. The partially or-
dered set involved now consists of G and its acyclic subgraphs only. An expression for
e(G) can be written in advance, by analogy with Eq. (2), as:

RE(G) = €@ = E@G) + > ulGi.,Gl E(G;. ) (10)

GENCG

where E(G) is separately written and already multiplied by x[G,G], which is always
equal to 1.10
There remains to find u[G',.,G], the Mébius function on the poset consisting of a

cyclic graph G and its acyclic subgraphs. In the Appendix, we prove the following
result:

nG Gl = - T a-4) 1y
vieG\G,,

The product goes over all vertices v; in G which are not in G',, and d; denotes the
number of edges by which v; is linked to G',.. The use of Eqgs. (10) and (11) is ad-
vantageous over Eq. (9) since no previous calculation of e(G',.) is required, and since
Eq. (11) enables ignoring of those G',. for which u[G'4,G] =0. It is obvious from Eq.
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(11) that u[G',.,G]#0 if and only if d;#0) for all v,€ G\G',. A reader wishing to have
a look at e(G',.) values is referred to Table II of Ref. 5.

It should be pointed out that a similar result for the evaluation of RE has already
been reported in Ref. 4. However, it was obtained by using completely different argu-
ments, and it is confined to the Hiickel approximation. It was derived as the limiting
case of the TRE* model introduced by Jiang, Tang and Hoffmann.” The coincidence

is not surprising because the scheme from Ref. 7 was already recognized as the special
case of cluster expansion.5

RESULTS AND DISCUSSION

The advantages of the introduced model for the evaluation of the RE are the fol-
lowing: (i) the resulting expression is parameter free, and (ii) there is a freedom to use
any method for the calculation of molecular and fragment electron energies. It means
that, at least in principle, o—electrons can be also included. Nevertheless, one should
observe that the reference »structure« is defined only in topological terms. Thus, the
geometry of the involved fragments and their chemical nature remain undetermined.
The disadvantage of the method relates to the large number of terms involved in the
expansion Eq. (10). Although this number is significantly reduced in comparison with
the initial expression Eq. (9), it still increases very rapidly with the size of the
molecules, and soon surpasses any computationally acceptable limit.

TABLE 1

The considered molecules and their calculated REPE(CE)
together with REPE(Hess-Schaad) values (in f—units)

REPE(CE) REPE(H&S) REPE(CE) REPE(H&S) REPE(CE) REPE(H&S)
O  -0.190 0.065 X -0.009 -0.010 S -0.711 -0.021
CO  -0.403 0.055 A 0003 -0.002 oo -0.597 0.009
Q00 -0.882 0.047 (o -0.534 -0.027 o -0.298 0.023
D -1.047 0.055 a0 -1.086 0.027 QO -0.314 -0.004
OO00 2.107. | 0042 O iosd- - 012 &5 14t = 0019
o -2.937 0.053 Qo -0.903 0.007 C83 -3.351 -0.011
G -2.984 0.051 & -1.154 -0.070 & -1.191 -0.036
OO -0.346 0.060 oo -1.029 -0.060 B -2.720 -0.036
o~ -0.124 0.046 o 0.022 -0.002 (8 -1.064 0.018
Q¢ 0.006 0.005 O 0.001 -0.002 (B -2.688 -0.002
"0 -0.067 0.027 >< -0.063 -0.100 o 2762 0.021
& -0.907 0.039 0= 0.037 0.043 L) 2818 0014
@ -3.108 0.019 0-0 -0.084 -0.033 Q-o.om 0.012
> 0.053 0.005 OO -0.048 0.022

O -0.644 -0.268 o0 -0.107 -0.014

o -0.030 -0.028 M -0.374 -0.018
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To get some insight into the quality of the results which it gives, the model is used
to evaluate the RE’s of a number of conjugated molecules, by considering only 7—
electrons and using the Hiickel method for the calculation of n—electron energies.
Acyclic fragments of a given molecule were generated by the computer program which
also supplied the appropriate u[G',,G] values by Eq. (11). There is a real possibility
for some fragments G',. to be isomorphic. Fortunately, the corresponding acyclic
graphs can be easily coded and checked for isomorphism. Thus, after acyclic fragments
were generated and coded by the method presented in Ref. 15, they were sorted out
and reduced to nonisomorphic representatives. Significant computational time was
saved in this way. Further saving was achieved in the evaluation of the Hiickel energy
spectra. As the acyclic graph is bipartite, the square of its adjacency matrix can be
brought into a block-diagonal form. Then, to get the spectrum of an adjacency matrix,
it is sufficient to diagonalize any of the two diagonal blocks.!6 The diagonalization pro-
cedure was thus approximately 8 times reduced. However, the method remains of
limited applicability due to the explosive growth of fragments to be considered. For
example, the molecule of triangulene (the smallest benzenoid with an even number of
carbon atoms and without Kekule structure, having 22 vertices and 27 edges in 6
cycles) could not be processed on the PC AT microcomputer because of its nonrealistic
memory and time requirements.

The considered molecules and the calculated values of RE per electron (REPE) are
listed in Table I, together with the values obtained by Hess and Schaad.® The Hess-
Schaad values have been chosen for comparison for two reasons: (i) they are commonly
accepted as properly reflecting aromatic properties, and (ii) the underlying concept can

¥ )
0 L0
4 L * 4
[ J ..
& o o0
e RN L T
=
S
(e 3y
2 3
=
-4
° .‘
3 y 3
[
4
-0.3 =010 -0.1 0.0 0.1

REPE (Hess & Schaad)

Figure 1. Resonance energies obtained by the cluster expansion approach (in the framework of
the Hiickel approximation) vs. their Hess-Schaad resonance energies (in 8 units), for molecules
listed in Table L
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be regarded as an approximate cluster expansion in the truncated set of fragments;’
thus, the effect of truncation can be also examined.

The two sets of REPE values are graphically compared in Figure 1. There is an
obvious absence of correlation between the two sets. Values obtained by the cluster
expansion for annulenes are depicted separately in Figure 2 in order to demonstrate
contradiction with the Hiickel rule too: the destabilization effect of electron delocaliza-
tion is assigned to both 4n and 4n+2 annulenes.
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Figure 2. Resonance energies obtained by the cluster expansion approach (in the framework of
the Hiickel approximation, in 8 units) for annulenes vs. the ring size N.

Having in mind the concordance between the Hess and Schaad RE values and em-
pirical facts, as well as the acceptance of the Hiickel rule, the values obtained by cluster
expansion seem to be absurd. However, in the light of recent, but not entirely new,4
results about the role and effect of 7—electron delocalization, a reinterpretation is pos-
sible. Namely, the values obtained by rather sophisticated techniques! suggest that z—
electrons are generally reluctant to delocalize, and that the o—electrons are responsible
for delocalization in a molecule. Thus, the resonance energy is viewed as related to
both o- and n—electrons, and the effect of the n—electrons is estimated as generally
negative. This finding seems to be in good agreement with the results presented here.
From Figure 1 it can be seen that the REPE(CE) values are mainly negative.

As another interesting fact, a large discrepancy between REPE(CE), as exact, and
REPE(H&S), as approximate cluster expansion values should be observed. Since a
similar discrepancy between the exact and approximate values is found also in Ref. 4,
we concluded that the cluster expansion of the RE is very sensitive to truncation of
the complete set of fragments. Perhaps, it is related to the RE as a result of subtraction
of the two usually close values of the molecular and reference electronic energies.
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In conclusion, the usefulness of the complete cluster expansion for the evaluation
of the resonance energy remains an open question. It would be very interesting to
answer whether the agreement with the recent results! is only accidental. If it is not,
the cluster expansion concept could be useful in understanding the controversy be-
tween the two general views of the evaluation of RE.34 It would be meaningful to ex-
amine how the results are affected by the choice of the method for the evaluation of
molecular and fragment electron energies.

Acknowledgement. — The financial support of The Ministry of Science, Technology and In-
formatics of the Republic of Croatia, through Grant 1-07-159, is gratefully acknowledged.

APPENDIX

The partially ordered set (poset) P consists of graph G and all of its acyclic sub-
graphs. The poset is ordered by an inclusion: H<G « HCG. To get a bijection between
the elements of P and intervals defined on it, we introduced the empty graph X, as
the unique least element of P. Thus: X<H for all HEP. In order to avoid any side ef-
fect of the introduction of X into P, we take E(X)=0. Cluster expansion (5), when it
is carried out in terms of acyclic subgraphs only (including G itself), reads as:

E[X,G] = e[H,G] = e} [X,G] (A1)

H=G

where { is the zeta function: {[K,L] =1, K<L, and e* stands for the convolution of e
and {.10 An interval [K,L] denotes the set {M:K<M<L}. An inversion of Eq. (A1) gives:

e[X,G] = E*u[X,G] = 2 EX,H]-«[H,G] (A2)

X<H=G
The Mobius function, u, is defined by:
u*[KL] =8[K,L] =1 if K =1L, and 0 otherwise (A3)

From Eq. (A3), it immediately follows that #[G,G]=1; thus, in deriving the expression
for u[H,G], we consider only the case H#G. First, we derive a recursive relation (A5):

u*t[H,G] = 2 w[H,M] = u[H,G] + Z u[H,M] =0 (A4)
H=M=G H=M=G
#IHG] = - 3 u[HM] (A5)
H=M=G

We proceed by considering a particular subset of P. Vertices to which H, a sub-
graph of G, is linked in G are called the attachment vertices of H [17], and denoted
as a, ay, ***, a,. They are connected with H by dj, ds, -+, d,, edges, respectively. eV
denotes the j-th edge which links a; with H. The following two cases will be separately
treated: H=X and H=spanning tree of G. Until then, we assume that neither one is
the actual case.
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The subposet RCP contains H and the subgraphs obtained by extending H onto
one or more of its attachment vertices. It should be noted that the elements of R are
the least in the interval [H,G], i.e. for H ,H"'€R, there is no K&R, such that
H'<K<H". The subposet R is order isomorphic to the Cartesian product (denoted by
X) of posets:

@, ), é, -, )y (A6)
;

!

n
Q = XQ5=
i=1

n

with (J meaning an empty set. Bijection between elements of R and Q is provided by
the edges between H and the attachment vertices present in elements of R. Q; are or-
dered also by inclusion. According to the Theorem on the Mébius function of a product
of posets:10

wlp,a) = [ [uilpi)ac] (A7)
i=1

where p and q are the elements of Q, p(i) and q(i) denote their components in Q;, and
u; is the Mobius function defined on Q;, whose values are, due to the simple structure
of Q;, easy to obtain: u;[p(i),q()]=1, if p(i)=q(@); and -1, if q(i)>p().1° Let o denote
the element of Q with o(i)=@, i=1---n; by bijection it corresponds to H in R. Now,
we may express the part of the summation in Eq. (A5) which runs over the elements
of R:

Figure 3. An arrangement of the Hasse diagramm of the poset P and its subposets [H,G], R,
[H,K] and S.
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> kIEMI = ulog =

MER qEQ
=2 [Tudo@.amr=]] > wdot,a@l =][a-a (48
q€Q i=1 i=1 q(i)€Q() i=1

To show that each term u[H,K], K&R, is zero, we consider the intersection
S=[H,KINR. The diagram given in Figure 3 could be helpful to get a picture of the
relations between different subposets. First, we prove that S contains a unique ele-
ment M greater than all the others. Let us assume the opposite: that S contains two
incomparable elements M and N, with no elements greater than they are. If they,
taken together, contain two different edges linked to the same attachment vertex, then
K should contain a cycle closed by H and the edges. By definition K is acyclic; hence,
this option must be abandoned. However, if M and N do not contain different edges
linked to the same attachment vertex, then the subgraph being a union of M and N
must be also in S. But it is greater than both M and N, and thus M and N are not
the greatest. We conclude that there is only one maximal element in S.

Now, for K&R, we may write:

#HEK] =~ S ulHL] = - > u[HL - > u[HL] =

H=sL<K H=L=M M<L<K
=~ CHM] - Y u[HL] = - 3 ulHL] A9
M<L<K M<L<K

The first summation term in Eq. (A9) vanishes because it is identical to S[H,M],
being zero for H#M (compare with Eq. (A4)). It should be clear from definitions of
R and S that M cannot be equal to H, i.e. that S cannot be just a single element. The
proof proceeds by induction with the base given by K’s having an »empty« remaining
summation in Eq. (A9), i.e. with no L satisfying M<L<K. For such K, ©[H,K] is ob-
viously zero. It extends inductively to all greater K’s, too.

Then, except for the two mentioned special cases, from Egs. (A5), (A8) and the
above consideration, one arrives at:

w[H,G] = —H(l—d,-) (A10)
i=1

Now, we will examine the case when H is a spanning tree, T, of G. T does not
have any attachment vertex and the interval [T,G] contains only the two elements: T
and G. Having in mind: x[T,T]=1, from Eq. (A5) one gets u[T,G]-1. Taking all d;=0
as a natural choice when «[T,G] is considered, one sees that Eq. (A10) is also ap-
plicable when H=T.

When H=X, the meaning of attachment vertices and numbers of edges linking
them to H becomes elusive. It can be shown that u[X,G]=-C, with C being the
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cyclomatic number of G.8 However, this value is quite irrelevant for the present con-
sideration since E(X) is taken to be zero. The proof is, therefore, omitted.

10.

11
12.

13.

14.

15.

16.
17.
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SAZETAK

Rezonancijska energija konjugiranih ugljikovodika
izvedena razvojem u fragmente

D. Babi¢ i N. Trinagjsti¢

Rezonancijska energija konjugiranih ugljikovodika razmatrana je pomocu razvoja u fragmen-
te. Koncepcija je po prvi puta primijenjena to¢no i potpuno. Usporedba s ranijim rezultatime,
koji su dobiveni kracenjem razvoja, pokazuje visoku osjetljivost rezultata na stupanj kradenja. U
radu je prikazan rezultat koji uvelike smanjuje radunanje i pojednostavnjuje primjenu.

Referentna struktura definirana je graf-teorijskim pojmovima, ali primjena modela nije ogra-
ni¢ena na posebnu metodu za izracunavanje elektronske energije. o—elektroni mogu se takoder
uzeti u obzir. Konacan izraz nema parametara, a zahtijeva poznavanje elektronskih energija mo-
lekule i nekih njezinih acikli¢kih fragmenata.

Model je ispitan u okviru Hiickelove n—elektronske aproksimacije. Rezultati dobiveni za niz
molekula pokazuju neocekivano neslaganje s uobiéajeno prihvaéenim vrijednostima. Medutim,
ovi rezultati kvalitativno se slazu s nedavnim rezultatima Shaika i dr. koji z—elektronsku delo-
kalizaciju prikazuju kao opéenito destabilizirajuéi efekat.
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