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Recent work on understanding colloidal aggregation phenomena using
fractal geometry is reviewed. After describing a typical aggregation experi-
ment, the concepts of fractal and fractal dimension are introduced and some
simple models fit to describe the mechanism of diffusion-limited aggregation
leading to fractal aggregates are presented. The old Smoluchowski’s theory
for describing the kinetics of colloidal aggregation is revised using fractal
concepts.

1. INTRODUCTION

The field of colloidal aggregation is a very old subject whose theory was pioneered
by Von Smoluchowski! in 1916. However, if a lot of work was devoted to understand
the nature of interactions between colloidal particles, the conditions of aggregation
and the principles of aggregation kinetics,? it is only recently (after the introduction
of the concept of fractal by B. Mandelbrot® in 1975) that it has become possible to
quantitatively describe the structure of colloidal aggregates. These recent studies pro-
vide very interesting new insights to old theories. There are a number of books and
review papers? on this subject but most of them are aimed at physicists. After present-
ing a typical experimental example, I explain what a fractal aggregate is and I intro-
duce the diffusion-limited aggregation models and their improvements, then I show
how the old Smoluchowski's theory can be revised using fractal concepts.

2. AN EXPERIMENTAL EXAMPLE

As a typical example, I have chosen to describe the aggregation of gold colloids.
Gold colloids have been known for a very long time. The alchemists of the Middle Age
used them to color glasses. These are small spherical solid gold particles, of a diameter
of some nanometers, dissolved in a liquid medium. In general, there exists a strong
electrostatic long range repulsion between particles, due to the electrical charges lo-
cated on their surface. This ensures a remarkable stability of the colloidal suspension.
Some gold colloids, prepared by Faraday 130 years ago, are still conserved today! The
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aggregation phenomenon does not occur as long as this long range repulsion is not
suppressed by some suitable experimental procedure. This can be done either by dis-
solving mobile ions, with a charge opposite to the surface charge, which come near
the spheres and produce an efficient electrostatic screening, or by fixing neutral or-
ganic molecules on the surface as has been done by David Weitz and collaborators.®
Under such conditions, short range van der Waals attractive forces are restored and
the reversible aggregation phenomenon starts to take place.

As long as a given particle is too far from other particles, it undergoes a random
diffusive motion in the suspension (the so-called Brownian motion). But as soon as it
approaches another particle, it feels the van der Waals attraction force and it sticks
irreversibly to the particle to form a dimer, which can diffuse in the suspension. In
turn, this dimer can stick to a particle or to another dimer, and from sticking to stick-
ing, larger and larger aggregates are formed in the solution. Aggregates may eventually
contain up to some thousand particles and reach sizes of the order of a micrometer.
At this stage, they begin to scatter visible light and the solution exhibits a colored ap-
pearance. This irreversible mechanism is called diffusion limited aggregation, since the
diffusion of clusters plays an important role in determining the kinetics of the process,
as well as the resulting shapes of the clusters.

Similar structures can be obtained with other colloidal suspensions. In a gaseous
atmosphere, instead of a liquid, the colloids are called »aerosols«. This is the case of
smoke, dust, efc... Until very recently, there was no quantitative analysis of such struc-
tures available. By analyzing digitalized photographs, such as the one shown in Figure 1,
Forrest and Witten,® in 1979, have demonstrated the fractal nature of such aggregates.
After this discovery, a great number of quantitative studies have appeared.

Figure 1. Electron microscope photograph of an aerosol aggregate (iron smoke). By analyzing a
digitalized version of this photograph Forrest and Witten® have, for the first time, proved the
fractal character of aggregates grown by diffusion limited aggregation.
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3. WHAT IS A FRACTAL AGGREGATE?
3.1. Self Similarity

The word »fractal« was introduced by Benoit Mandelbrot® to describe rugose
(wrinkled or corrugated) objects whose rugosities show up in a large range of length
scales. The simplest are self-similar fractals whose structure remains invariant under
a change of scale. A typical and quite instructive example of a self-similar fractal ag-
gregate built with disc-shaped particles in two dimensions is shown in Figure 2. It is
worth noting, as quoted in Mandelbrot’s book?® that such a picture was employed by
E.E. Fournier d’Albe’ in 1907 to describe some hierarchical structure of the world. It
is now known as the »Vicsek fractal« since it was used by Tamas Vicsek in the context
of aggregation phenomena.® This fractal can be built following a precise and deter-
ministic iterative procedure. To begin with, one particle is surrounded with four others
to form a cross. Then, this pattern of five particles is treated as a single particle: it is
surrounded by the same pattern at each corner, and so on. The object obtained after
an infinite number of iterations exhibits fascinating properties. Self-similarity is one
of these: here, if a part of the aggregate is enlarged by a power of three, the enlarge-
ment is identical to the original structure.

In practice, most of the »natural« fractals, such as the one shown in Figure 1, do
not exhibit the regularity and the anisotropy of Vicsek’s fractal: they are »disordered«
fractals. They can be built by an iterative procedure as before, but introducing some
randomness at each iteration. Owing to randomness, enlargement is not strictly iden-
tical to the original, like in the case of Vicsek’s fractal. The enlargement is, however,
statistically equivalent to the original aggregate, in the sense that it could, with equal
probability, have been the original aggregate in a similar experiment. Here self-simi-
larity is now only true on average.

3.2. Fractal Dimension

Another remarkable property of self-similar fractal objects appears if one calcu-
lates the number of particles N within a circle of radius R around a particle at or near
the center of the aggregate. One then discovers a characteristic power-law relationship.

N~RP

The exponent D is called fractal exponent of fractal dimension.

Fractal dimension can be seen, in a way, to measure the degree of occupation of
the embedding space by the particles of the aggregate. If the particles are aligned along
a straight line, one trivially recovers D = 1. If the particles are placed on a two dimen-
sional array, one has D = 2. In fact, for the most compact arrangement, or for any
homogeneous disposition, in a space of any number of dimensions, the fractal dimen-
sion is equal to the dimension of space (D = d). However, for a general fractal ag-
gregate, the fractal dimension D is smaller than the space dimension d and may very
well not be an integer. In the case of the aggregate shown in Figure 2, one can easily
be convinced that when the radius of the circle is multiplied by a factor 3, the number
of particles contained in it is multiplied by a factor 5. The fractal dimension is then
In 5/In 3 = 1.4649... In the case of a disordered fractal, one must calculate an average
over many, statistically equivalent, aggregates to get a power law of sufficiently high
precision. ;
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Figure 2. Vicsek fractal built in two dimensions.

3.3. Density and Correlation Function

If one calculates the density of matter within a sphere of radius R, one finds that,
for a fractal object, it varies as R2?/R? = R-@-D) This is another important charac-
teristic of fractals: the larger the part one considers, the lower is its density. This im-
plies that holes of all sizes are present in its structure.

Another closely related property concerns the particle-particle correlation function
p(r), which measures the probability of finding a particle at a distance r from a given
particle. This correlation function varies as a power law.

ple) = r@=m

which bears a close resemblance to the laws governing the behaviour of »critical« mat-
ter near a second order phase transition.?

3.4. The Different Kinds of Fractals

Up to now, I have restricted discussion to the simplest case of self-similar fractals
for which there is no ambiguity when defining the fractal dimension. However, much
more complicated fractals have been introduced, such as self-affine fractals,® for which
exist different fractal dimensions along different directions of space. Special attention
has also been paid to multifractals,® for which one needs an infinite set of independent
fractal dimensions to define completely all their properties.

Moreover, fractal aggregates are examples of particular fractal structures called
»mass fractals« in contrast to »surface fractals«, where the fractal structure is no more
the bulk (which is now compact) but the surface of the considered object.

3.5. Natural Cut-offs

It is important to distinguish between ideal fractal aggregates, which are mathe-
matical objects built of an infinite number of infinitely small particles for which the
above properties are exact, and fractal aggregates that are encountered in real world,
for which the self-similarity and power-law properties are observed only over a limited
range of lengths. The natural cut-offs generally have the typical size, a, of the in-



THE APPLICATION OF FRACTALS TO COLLOIDAL AGGREGATION 219

dividual particles, and the size, L, of the aggregate itself. The aggregate is then con-
sidered as a fractal if the characteristic power law behaviour is observed over a wide
range of R values between a and L, and if the two cut-offs are sufficiently well separated.

3.6. Experimental Determination of the Fractal Dimension

The most straightforward way to calculate the fractal dimension of a colloidal ag-
gregate is a numerical analysis of digitized images, as it was first done by Forrest and
Witten.® It can be shown that such a method, which analyzes a two-dimensional
projection of a three-dimensional object, gives the right answer for fractal dimensions
less than 2. This method has been used to calculate the fractal dimension of gold col-

loid aggregates,® as well as the fractal dimension of aggregates made of polydisperse
iron particles.!?

According to the definition of the fractal dimension, any physical property which
is directly linked with the repartition of mass in space can be also used to determine
the fractal dimension. One method, which is now commonly used,'? is the low angle
scattering of neutrons, X-ray or light, which gives information on the particle-particle
correlations in an aggregate. When one can neglect multiple scattering, the scattered
intensity is shown to vary as

I(g)~q7®

where
.
g = sing

is the magnitude of the scattering vector, 8 being the scattering angle and A the wave-
length of the incident beam. The range of g-values where this power-law is recovered
is limited by the Guinier regime for q of the order of 1/L (where the incident beam
sees the whole aggregate) and the Porod regime for q of the order of 1/a (where the
incident beam is scattered by the surface of individual particles).

Special care must be taken when trying the extract the fractal dimension from a
given physical property. Many studies have shown that the physics of fractals is quite
different than in regular Euclidean spaces.* When a physical property on an Euclidean
lattice depends explicitly on the dimension d of space, it cannot be trivially extended
to fractal structures by simply replacing d by D. Other exponents that also play the
role of dimensions must be introduced, and, in general, they are different from the
fractal dimension. For example, when studying dynamical properties on fractals, one
must introduce the so-called spectral dimension.!?

4. DIFFUSION-LIMITED AGGREGATION

4.1. Diffusion-Cluster Diffusion-Limited Aggregation

The first simple model for simulating diffusion-limited aggregafion phenomena
and able of building a fractal structure was that of Witten and Sander (1981).15 This
was the starting point for very many theoretical and experimental studies.

In its original two-dimensional version, particles were disks placed on a square lat-
tice. A seed particle (the first particle of the aggregate) is first placed at the origin.
Then a circle, large compared to the size to be attained by the resulting aggregate,
centred on the origin, is drawn, and a point is selected at random on the circle. A
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Figure 3. Witten-Sander aggregate built on a square lattice. Gray tones indicate the arrival time
of the particles.

second particle is released at the site nearest to this point, which then starts to un-
dergo a random walk on the lattice. If this moving particle goes too far from the origin
(say a distance three times the radius of the circle), it is abandoned and a new particle
is released again at random, on the circle. When the moving particle reaches a site
next to the seed particle, it stops its random walk and sticks permanently to the seed.
The aggregate then contains two particles. Then another point is selected at random
on the circle and a new particle is released. When it reaches one of the sites nearest
to the aggregate, it stays there, and so on.

The aggregate of Figure 3 contains 1024 particles, and even in such a modest
simulation, one can already see the fractal character of the Witten-Sander aggregate.
The moving particles are most likely to join the aggregate on the tips and, consequent-
ly, deep 'fjords’ develop in the structure, which are then quickly preserved by the
growth of new branches. Thus, holes of all sizes are created. This screening effect can
easily be seen in Figure 3, where the gray tones indicate the arrival time for each par-
ticle. The fractal character can be quantitatively analyzed by calculating a typical size,
the radius of gyration of the aggregate, R which is the standard deviation of the par-
ticles from the centre of mass, and by studying its dependence on the total number
of particles, N. In doing so, a characteristic power law is recovered:

N-—R?

with D = 1.70 in two dimensions. From earlier small scale simulations, it was com-
monly believed that this number did not depend on the type of lattice used, and the
same result was obtained with off-lattice simulations.'®!” Following the general univer-
sality argument of critical phenomena,® the fractal dimension of the Witten-Sander
model was believed to depend only on the space dimension d. The model can be
straightforwardly extended to higher dimensions and the earlier results for the fractal
dimension D, as a function of the space dimension d, are given in Table I.

Further numerical and analytical investigations show that the scaling properties
of the Witten-Sander aggregate are much more complicated than it was believed ini-
tially. First, it was found that there are two different fractal dimensions,!” one cor-
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TABLE [

Fractal dimension D of aggregales obtained by diffusion-limited aggregation as a function of
the dimension of space d

d 2 3 4 5 6
Particle-cluster 1.70 2.50 3.33 4.20 5.3
Cluster-cluster 1.44 1.78 2.05 2.27 2.6

responds to radial correlations, the other, which is slightly smaller, corresponds to tan-
gential correlations. As a consequence, the Witten-Sander aggregate is not rigorously
self-similar (it is more like a self-affine fractal): the bigger it is, the thinner are its
branches. Second, after the large scale simulations of Paul Meakin,'® it became clear
that there was some induced anisotropy arising from the underlying lattice: growth oc-
curs preferentially along some »easy« axis. Third, as first predicted by analytical in-
vestigations'” and confirmed by numerical simulations,'® the fractal dimension
depends on the lattice. All these very exciting results show that the universality argu-
ments, demonstrated for at-equilibrium critical phenomena,® do not apply to irrever-
sible processes.

Once three-dimensional simulations had been made using the Witten-Sander
model, it was quickly recognized that it could not quantitatively describe colloidal ag-
gregation experiments: the three-dimensional value found for the fractal dimension 00)
= 2.5) is larger than most of the experimental estimates.5612.13 In fact, a great number
of different experimental realizations were found and it became clear that the Witten-
Sander model describes what I call »aggregation under fields, typical of electrodeposi-
tion and similar situations. In electrodeposition, an electrical current goes through a
metallic salt solution, and metallic particles appear on the cathode. If the experiment
is performed under the right conditions, metallic particles are more likely to be de-
posited where the electric field is large, i.e. near the tips of the growing aggregate. Such
an experiment was first carried out in three dimensions?® but, since the pattern is
probably more spectacular in two dimension, Figure 4 presents the photograph of an
aggregate built by a Japanese group.?! In both cases, however, qualitative as well as

Figurezfll. Aggregate obtained in a two dimensional electrodeposition experiment (M. Matsushita
el al.).
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quantitative agreement with the Witten-Sander model is remarkable. The link with
the Witten-Sander model can be understood from the equivalence between microscopic
(random walk) diffusion and the macroscopic Laplace equation which governs the dis-
tribution of electrical fields in such an experiment.?? This mathematical equivalence
explains why the Witten-Sander model applies to many other situations that are not
truly aggregation, such as dielectric breakdown,?® fluid-fluid displacement (viscous
fingering)®® and the dissolution of porous materials.?’

4.2. Cluster-Cluster Diffusion-Limited Aggregation

The Witten-Sander model fails to describe correctly the aggregation of colloids be-
cause it considers a single immobile growing cluster around which only single particles
move, while, in the experiment described in section 2, there is a more democratic sys-
tem in which all clusters move. To describe this situation more realistically, an exten-
sion of the Witten-Sander model, called the cluster-cluster model has been introdu-
ced,?® in which the growth mechanism is now governed by collisions between diffusing
clusters of the same mean size.

In its original two-dimensional version,”® the model starts with a collection of
equally sized disc-shaped particles placed randomly on a two-dimensional square lat-
tice in a square box. These particles are then allowed to undergo a random diffusional
motion simulated by a pure random walk on the lattice (taking into account the pe-
riodic boundary conditions at the edge of the box). When two particles arrive at ad-
jacent lattice sites, they stick together irreversibly to form a rigid dimer which is now
also able to diffuse in the box. This dimer, in turn, can stick to other dimers or to
single particles, and so on. After each adhesion, the two colliding clusters form a new,
rigid, larger cluster. The mechanism can be pursued until a single large aggregate re-
mains in the box. Figure 5 gives a typical case where one can see the aggregates at
three different steps of the aggregation process.

In the simulations, a kinetic parameter a is introduced, which determines how the
velocity of a cluster, v;, varies as a function of the number of constituent particles, i:
v, ~1*

For realistic cases of negative a values, i.e. when small clusters move faster than large
clusters, and in the limiting case of a very low initial particle concentration, it can be
established numerically that the aggregates exhibit fractal structure and that their
fractal dimension is independent of a cover a large range of a values.

Up to now, it appeared that such subtle induced-anisotropy effects, like those en-
countered in the Witten-Sander model, do not occur, and cluster-cluster aggregates can
be considered as ’gentle’ self-similar fractals whose fractal dimension depends only on
the dimension of space. Another difference from Witten-Sander aggregates is that clus-
ter-cluster aggregates exhibit an overall ellipsoidal shape characterized by quite a large
anisotropy ratio.?” The estimated values for the fractal dimension are given in Table
I and can be seen to be smaller than the corresponding values found for the Witten-
Sander model. This can be understood by a simple qualitative argument: when two,
equally sized diffusing clusters come in contact, they interpenetrate less than a cluster
and a single particle do and, consequently, the resulting structure is more open, ie.
has a smaller fractal dimension. The three-dimensional value, D = 1.78, appears to be
in quite good agreement with the experimental values,®%!%13 at least in the case of
rapid aggregation where the electrostatic repulsion between colloids is completely
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screened. In contrast to the geometrical characteristics, all the kinetics strongly de-
pend on a, and this will be discussed later in section 6.

An idealized version of the cluster-cluster model, the hierarchical model,?® has
been considered, in which only clusters of exactly the same number of particles are
allowed to stick together. This version, which gives the same quantitative results but
is less demanding of computer time, has permitted systematic extensions to straight-
forward simulations, in particular to off-lattice simulations,?® to reach high space
dimensions,* to include rotational diffusion,?' and to take into account polarizability
effects.” Figure 6a shows an aggregate of 4096 particles built with an off-lattice hierar-
chical procedure in three dimensions. In comparison, Figure 6b shows a gold-colloid
aggregate grown by David Weitz and coworkers.®

The hierarchical version has also permitted some interesting analytical investiga-
tions. It has been established that, in contrast to the Witten-Sander model, in the
cluster-cluster model there is a characteristic upper critical dimension (d = 8.8) above
which the clusters become transparent to each other and, consequently, their fractal
dimension becomes independent of the space dimension.??

- i ™

S o, oy -

k, Pk 3

Figure 5. At typical simulation of diffusion li-
mited cluster-cluster aggregation in two di-
mensions. (a — up) small aggregates undergo
random walks and stick irreversibly to form
larger aggregates (b — up, right). Ultimately,
a single aggregate remains (c - right).
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5. OTHER AGGREGATION MECHANISMS

5.1. Ballistic Aggregation

In both particle-cluster and cluster-cluster diffusion-limited aggregation models,
the mean-free path of the Brownian diffusion of particles (or clusters) has been chosen,
for simplicity, to be exactly equal to the particle diameter, which is the lattice spacing
when the model is built on a lattice. This fact was first highlighted by Bensimon et
al® in the case of particle-cluster aggregation. In practice, one can easily relax this
constraint and choose a larger mean-free path. If this is done, one observes that in
both cases, after an intermediate regime where the clusters are more compact, the
same results as before with the same fractal dimension are obtained, when the cluster
size becomes larger than the mean-free path. An interesting limit is the case where
this mean free path is chosen to be quasi-infinite, i.e. when it remains always larger
than the cluster size. Within these limits, another model, called ballistic model is defi-
ned, in which the particles (or clusters) follow straight-line trajectories randomly lo-
cated in space. In fact, this model was already introduced more than ten years ago by
Vold® in the case of particle-cluster aggregation and by Sutherland and Goodarz-Nia®®
the case of hierarchical cluster-cluster aggregation. From an experimental point of view,
this situation is encountered in the case of aerosols, when the gas pressure becomes
very low or when the particles (or clusters) are too large, i.e. in the molecular regime.

Many numerical investigations have been performed on the particle-cluster’**’ as
well as on the cluster-cluster®® ballistic models. The results are qualitatively different
in the two cases. In the particle-cluster model, the passage from the Brownian to linear
trajectory has a dramatic effect (the cluster becomes 'compact’ in the terminology of
fractals, i.e. D = d), whilst in the cluster-cluster model fractal dimension is only slight-
ly increased (from 1.44 to 1.51 in two dimensions and from 1.78 to 1.90 in three).

a

Pigure 6. (a) Typical cluster-cluster aggregate built using the off lattice hlerarchlml model, com-
pared with (b) a gold colloid aggregate experimentally observed by Weitz et al.® in the case of
rapid aggregation.
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Another variant of the ballistic model considers random straight-line trajectories
with a zero impact parameter. In this case, the relative trajectory goes through the
centres of mass of the two colliding objects. In the case of particle-cluster aggregation,
the resulting cluster is again compact (D = d), while in the case of cluster-cluster ag-
gregation®® the fractal dimension is again slightly increased, as compared to the case

of non-zero impact parameter (from 1.51 to 1.56 in two dimensions and from 1.91 to
2.06 in three).

5.2. Chemically-Limited Aggregation

Another important constraint of the diffusion-limited aggregation models is that
the sticking always occurs on first contact. This constraint can be relaxed by intro-
ducing a probability p that when the two colliding objects come into contact they stick
together permanently. This is physically justified in the case of partially screened col-
loids where, due to an electrostatic energy barrier, the aggregates must bounce many
times on each other before they finally stick. Again, this modification of the earlier
models merely introduces an intermediate regime in which the clusters are apparently
more compact, after which the same fractal dimension as that found for p = 1 is finally
obtained when sufficiently large cluster sizes are reached.’’ The characteristic inter-
mediate regime cluster size tends to infinity when p tends to zero. Thus, one can define
another model in the p = 0 limit, when the colliding objects have unlimited time to
investigate all the sticking possibilities. Clearly, the characteristic of their relative tra-
Jectory can no longer play a role in the aggregation mechanism, which is then mostly
dependent on the chemical properties of the colliding objects. This is, therefore, called
the chemically-limited (or reaction-limited) aggregation model.

In the particle-cluster case one recovers a well-known model, Eden model,*! which
was originally introduced to study biological growth. In this model, particles are added
one after another, at random, on the cluster surface. While compact aggregates are
produced in this way,* their surface exhibits interesting rugosities which have been
the subject of many recent numerical investigations.

Although in the cluster-cluster case, this process does not lead to compact aggre-
gates, their fractal dimension is greater than in the ballistic case. The fractal dimen-
sions are found to be 1.55 and 2.04, in two and three dimensions,* respectively, which
is to be compared with 1.44 and 1.78 in the diffusive case. Soon after the invention
of the chemically-limited aggregation model, this change of fractal dimension was veri-
fied experimentally by David Weitz et al.,> who, in the case of gold colloids, were able

to go from rapid aggregation to slow aggregation by increasing the repulsive barrier
between particles.

5.3. Aggregation with Restructuring

The last constraint in the earlier aggregation models that I would like to discuss
is the rigid character of the clusters throughout the aggregation process. In practice,
in all real experiments, restructuring phenomena (i.e. cluster deformations) are always
present to some degree. Unless we take into account all the detailed features of the
interaction forces between particles, such mechanisms are very difficult to simulate in
a simple way. There has, nevertheless, been an attempt to take into account a com-
pletely explicit form for the interaction potential in the case of colloidal aggregation
by performing molecular dynamics based on the Langevin equation;*® however, only
modest cluster sizes could be reached and no precise conclusion was reached on their
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fractal dimension. The only simple large simulations currently available are those

taking into account ad-hoc restructuring or readjusting mechanisms that are justified
by experimental data.

Concerning particle-cluster aggregation, there have been some very interesting ex-
tensions of the Witten-Sander model, in which the incoming particle is allowed to dif-
fuse on the cluster surface in order to find a more favourable site where it will adhere
more strongly to the aggregate. In this context, surface tension effects® and anisotropy
effects*” have been considered in order to model dendritic growth such as observed in
the formation of snowflakes.

In the case of cluster-cluster aggregation, a simple readjusting mechanism has been
considered in two dimensions: after their first contact, the two colliding clusters are al-
lowed to rotate until a second contact is made.*® For small clusters (N of order 512),
a clear compact ion is evident, as observed, for example, in aggregation experiments
of wax balls on water.”® However, on reaching larger clusters (up to N = 16384), the
readjusting effect is less visible and the fractal dimension, measuring long-range cor-
relations, is only slightly increased. Spectacular quantitative experimental confirmation of
this has been recently produced by Skjeltorp®® in an experiment using uniformly sized
polystyrene microspheres confined to thin layers. Quantitative comparisons between
all the situations encountered in this experiment (including particle-cluster mechanisms)
and numerical simulations relating to surface tension and restructuring have been
made recently.5!

Another kind of restructuring permits the particles, or clusters, to escape after
sticking. This effect is different from that of considering a sticking probability. Here,
some reversibility is allowed, which can be physically justified if the attractive mini-
mum of the van der Waals potential is sufficiently weak. A completely reversible situa-
tion, in which a steady-state (or dynamical equilibrium) is reached, making and break-
ing continuously, has been considered in the particle-cluster’ as well in the
cluster-cluster cases.’® In both cases, the fractal dimensions of at-equilibrium branch-
ed-polymers (or ’lattice animals’) are obtained.

6. THE KINETICS OF COLLOIDAL AGGREGATION

6.1. The Smoluchowski Equation

In the preceding sections, we were mainly interested in the geometrical aspects of
the aggregates. Other important features of the cluster-cluster aggregation process are
the time dependence of the mean cluster size, as well as the knowledge of the cluster
size distribution. This was already studied in the past, using a simple formalism based
on an equation introduced by von Smoluchowski in 1916.! T would like to show how
this theory can be revived, taking care of the fractal nature of aggregates.

The Smoluchowski equation can be considered as a standard equation for irre-
versible chemical reaction kinetics. The reactions are:

K
[i]1+ [1— [ +J]

where [i] refers to the chemical species: [ensemble of aggregates containing i particles],
and Kj; is the kinetic constant (or ’kernel’) of the reaction. Note that the [k] species
may appear as a result of the reaction between [i] and [j] species, so that i + j = &,
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but may also disappear to form [k + i] species, by reacting with any [i]. Hence, the
equation giving the time evolution of the concentration ¢, where ¢, is the number of
[k] aggregates per unit volume, is given by:

de, 1
I

i+j=

K‘-jci ¢ — Z K, cc,
k R

Factor 1/2 is due to the fact that both i,j and j,i events are counted in the double sum.

Quantity Kjjcic; is the rate of collisions between [i] and [j] clusters per unit volume
or, equivalently, the probability, per unit time and per unit volume, that such an event
occurs. The assumption that this probability is proportional to concentrations ¢; and
¢ is equivalent to neglecting spatial fluctuation of concentrations. This can be con-
sidered as an effective medium, or mean-field, approximative treatment, to employ the
terminology commonly used in statistical physics.

In the case of colloids, where one initially deals with monodisperse particles, the
initial conditions are:
€, =c
¢, =0 for k>1

where c is the initial particle concentration.

It is sometimes more convenient to write the Smoluchowski equation in terms of
the n,’s, where n, = Vg, is the number of clusters of k particles and V is the total
volume of the solution. The kernel is then k; = K;;V. One can also write the following

relations:
2 n,=V ZCk =N,

> kn, =V ke, =N

where N, the number of clusters, is a quantity whose time variations must be studied
and where N, the total number of particles, must stay constant if there is no cause of
creation or destruction of matter.

6.2. Case of a Constant Kernel
Smoluchowski himself has proposed a solution of this equation in the case where

the Kjj's are constant numbers. Considering kj = «, the equation writes:

dn

T‘”(%_Z T n,,)

ivj=k i
Let us write:

ny = $(8) y(t)!

where we introduce two unknown functions w(t) and ¢(¢). The initial conditions be-
come:

¢0)=N  ¢0)=0
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Inserting them in the Smoluchowski equation, one gets a condition to be satisfied, for
all k:

-

Identifying terms proportional to k-1 and constant terms, one obtains a system
of differential equations:

e R ("—;5 —“”—)

g sl
e e Tl
L2
&8
Eliminating df, one gets:
L 1
? + 2 1“/’_0

which, taking care of the initial conditions, allows us to express ¢ as a function of y:
¢ =N(1-y)

Using this expression, the differential equation on y writes:

dy N
—_t e —dt
A-yy "2
which, after integrating and taking care of the initial conditions, gives:
LS
g B
leading to:
o o
U214+ x%t
and:
(.vc-gt‘)"‘1
LN N e+l
(1 +x500"

The total number of clusters is then given by:

- N
1+x—gt

<

For very large time, i.e. t >> 2/kN, n, takes the following form:

2 2 k
n,= 4 -4 e"kﬁ?
ETRIEN (¢t
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In this large time regime, one observes a data collapse: all the size distribution
functions can be superimposed using the reduced variables k*n;, and k/t. More general-
ly, it appears to be very useful to write the size distribution function under the fol-
lowing scaling form:

R

If this is possible, the y exponent tells us how the mean cluster size grows with
time:

k)~
Correlatively, the total number of clusters N, decreases as
N, ~¢t7

Thus, we have been able to show that, for constant K, the solution of the Smoluchowski

equation, for sufficiently large times, can be written under the above scaling form as:
T=2 y=1

6.3. The Kernel in the Brownian Case

The explicit form of kernel K; depends on the considered type of aggregation
mechanism. In the Brownian case, the original calculation of Smoluchowski! can be
straightforwardly extended to the case of fractal aggregates. The rate of collision be-
tween a given i aggregate supposed to be fixed, centred on the origin, and all the others
J clusters, which is K;n;, can be calculated assuming that, for sufficiently large times,
a steady state is established in which all j aggregates diffuse radially from a region far
away from the origin, where concentration ¢; is constant and equal to n;/V (the mean
value in the solution) to a region close to the aggregate where they disappear, i.e. ¢ = 0.
Introducing a mean hard core radius R; for clusters i, and assuming a spherical
geometry, this reduces to a trivial steady-state diffusion problem in which ¢; depends
on the distance r from the origin, with ¢; = n;/V forr = w and¢ = 0 forr = R; + R;.

The radial current of j clusters, Jj, is given by:

& _Kunj

s

Introducing the relative diffusion coefficient D, the Fick’s law writes:

This gives:

Kq n;

T ) S

Taking care of the limiting conditions on ¢j, one obtains:



230 R. JULLIEN

K;=42D; (R, + R)
Using the fact that:
D=0+

where 2, is the absolute coefficient of diffusion for cluster im this relation writes:
K;=4n (D, + D) (R, + R)

For spherical particles, it is known that the diffusion constant varies as the inverse
of the radius. In the case of fractal objects, like our aggregates, this is in principle no
longer true. To be general, let us produce an exponent a, which tells how 2; varies
with i:

D, ~i

This is the same a exponent as the one introduced in the first cluster-cluster simula-
tions (see section 4). Using this exponent, extending our reasoning in d dimensions,
and assuming the aggregates are self-smiliar fractals with fractal dimension D (this im-

plies that all characteristic lengths, such as R;, or the radius of gyration, scale as ivo,
one finally gets:

Ky — (%% FYHR S JiPy2

Even if this is quite complicated expression, one verifies the following homogeneity
property:

KA;,,U=12"’K47
with:
d -
20 =a + DZ

6.4. Form of the Kernel in the Ballistic Case

In the case of random straight line trajectories, the calculation is the same as the
one used in the classical theory of the perfect gas. The rate of collision between a given
i aggregate, supposed to be fixed, and all the other j clusters is equal to the number
of j clusters contained in a cylinder of base area #(R; + R;)* and length vy, where R;
has the same meaning as before and vj; is the mean relative velocity of cluster j com-
pared to cluster i. This reasoning gives:

K,

y=Uvy (R + RJ,.)2

Using

2 = 152 2
UU_vi +Uj

where v; and v; are now the mean absolute velocities, and generalizing in d dimensions,
one finds:

K, ~ @} +vH2 (R, + R)y!

Introducing again the exponent a defined by:
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~
v; 14

and assuming that the clusters are self-similar fractals, with fractal dimension D, one
finally gets:

— ({2 4 2ayl/2 ;1D 4 1/Dyd-1
K;—(@*+j )2 (VP + jWOy
This again leads to homogeneous kernel, whose homogeneity exponent is given by:

2w=a+d_1

The same derivation, but assuming a compact spherical shape for the aggregates
(d =D = 3), and taking ¢ =-1/2 for an ideal gas, was already made by Friedlander
more than twenty years ago to describe aerosols in a highly rarefied gas atmosphere.5
His calculation gave 20 = 1/6. Both Brownian and ballistic cases can be summarized
in the unique formula:

d—-d

=a + =
2w =« D

where d, is the fractal dimension of the cluster trajectory: d, = 2 in the Brownian
case, d, = 1 in the ballistic case. It has been shown that Smoluchowski’s approach,

which neglects concentration fluctuations, is justified for space dimensions greater
than d,.5°

6.5. Scaling Properties of the Smoluchowski Equation

It is generally very difficult to solve the Smoluchowski equation analytically, espe-
cially when realistic forms, like the ones derived above, are taken for the kernel. Many
efforts have been made® %57 and, using scaling arguments,®’ some general conclusions
can be drawn in the case of homogeneous kernel of degree 2w. The properties of the
solution depend on w. Two cases can be distinguished:

1) w < 1/2: flocculation regime

This case shows that one can define a regular size distribution function. For large
times, the mean cluster size (k) varies as a power law:

(k) ~ #
with:
= 1
S o

Considering only the case of large clusters in the large time regime (i.e. (k) > 1
and k > (k)), one can even find a reduced form for the size distribution function:

il
J‘Ik -k f(@)
with 7 = 2 (like in the case of constant K;'s) and

flx) = x~2 g~ (120
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If w is negative, this distribution function exhibits a maximum at:

If 0 < w < 1/2, the size distribution function is always decreasing.
2) w > 1/2: gelation regime

Let us consider a system of infinite volume containing a given constant number
of particles per unit volume. In the case w = 1/2, one finds that, after a finite char-
acteristic time f;, an infinite cluster appears. By infinite cluster we mean a cluster con-
taining a finite fraction of the total number of particles. At time 7, a singularity occurs
in the solution of the Smoluchowski equation. Above #,, the total number of particles
starts to decrease with time. This can be understood if it is taken that the infinite clus-
ter absorbs more and more other clusters as time goes on. Above #,, the above scaling
form is no longer valid. This change of properties of the solutions of the Smoluchowski
equation at ¢ = ¢, has been invoked to explain the sol-gel transition observed in some
polymeric and colloidal systems.®® The gelation transition shares some properties with
the percolation transition. However, the essential difference is that, while percolation
is a static, at equilibrium, phenomenon, obtained by increasing slowly a concentration
parameter, gelation is essentially dynamical.

6.6. Connection Between Statics and Kinetics

The connection between the geometry of clusters, characterized by their fractal
dimension D, and the kinetics, characterized by exponent w, is summarized by the for-
mula established above:

d-d

20 =a + Dw

where the other quantities ¢, d and d Pv are input parameters of the model. This con-
nection has been fully confirmed by numerical simulations on the cluster-cluster model
in the box®® as well as on direct simulations of the Smoluchowski equation itself.5® Ex-
tensions of the simulations to larger a values show that, beyond a critical & value
a.=1-(d —d,)/D corresponding to the critical value w = 1/2, the aggregation mec-
hanism becomes dominated by particle-cluster collisions: one large cluster finally
dominates by absorbing all other small clusters.’® This abrupt change from cluster-
cluster to particle-cluster aggregation, when increasing «, is related to the change of
analytical properties in the solutions of the Smoluchowski equation.’® While the
Brownian case, as well as the ballistic case, are well described by the formalism des-
cribed above, the case of chemically-limited aggregation is more complicated. A theory
has been developed® that leads to @ = 1/2 with exponential kinetics (< k > is an ex-
ponential function of time).

CONCLUSION

A spectacular progress has recently been made in our understanding of aggrega-
tion phenomena owing to the introduction of the Witten-Sander model, different theo-
retical models have been built. They can be classified according to the nature of the
aggregation mechanism, particle-cluster or cluster-cluster, and they correspond to dif-
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ferent experimental situations. Agreement between theory and experiment is already
very encouraging, but many more studies are still to be made. In particular, one must
study the physical properties of aggregates, such as their elasticity, rheology etc. One
might also hope that the recent studies, which were mainly carried out with the help
of numerical methods on large computers, will yield some ideas on how to develop ana-
lytical theories and how to make fundamental progress in the understanding of irre-
versible phenomena.
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SAZETAK
Primjena fraktala u agregaciji koloida
R. Jullien

Dan jer pregled novijih istraivanja u svrhu razumijevanja pojava kod agregacije koloida

primjenom fraktalne geometrije. Nakon opisa tipi¢nog agregacijskog eksperimenta, uvedeni su
koncepti fraktala i fraktalne dimenzije, te prikazani neki jednostavni modeli, koji mogu opisati
mehanizam difuzijski-limitirane agregacije, koja prethodi fraktalnim agregatima. Stara teorija
Smoluchowskog, koja opisuje kinetiku agregacije, revidirana je uvodenjem (ili upotrebom) frak-
talnog koncepta.
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