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In many processes of interest in physics, chemistry and biology small
particles come together to form large structures. The fractal geometry of
small particle aggregates plays an important role in their physical behavior
including the kinetics of the aggregation process itself. The kinetics of ag-
gregation can frequently be described by a mean lield Smoluchowski equation.
The geometric scaling properties (fractal geometry) of the aggregating
clusters determine the scaling symmetry of the reaction kernel which in turn
determines the asymptotic form of the cluster size distribution and the
growth of the mean cluster size. In most simple systems, the asymptotic
cluster size distribution can be described by the scaling form Ns(f) ~ s'af(s/S(t))
where Ni(f) is the number of clusters of size s at time ¢ and S(¢) is the mean
cluster size at time £ This scaling form can be used in circumstances where
the Smoluchowski equation does not provide an adequate representation of
the aggregation kinetics.

INTRODUCTION

Processes in which particles join together to form larger structures calledl flocs or
aggregates are important in many areas of science and technology. Because of their
practical importance, these processes have been of considerable interest throughout
this century. In recent years this interest has been stimulated by the role played by
aggregation in processes such as air and water pollution, the nuclear winter scenario
and the formation of ceramic materials with superior properties. In addition, the
realization that structures formed by the aggregation of small particles can often be
described quite successfully in terms of the concepts of fractal geometry! has generated
a renewed theoretical interest in such phenomena. Much of the recent work of fractal
aggregates was stimulated by the introduction of the diffusion-limited aggregation
(DLA) model by Witten and Sander? in 1981. In this model particles are added, one
at time, to a growing cluster or aggregate of particles via random walk trajectories
starting from outside of the region occupied by the cluster. The structures generated
in this way are random ramified clusters with a fractal dimensionality (D) substantially
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smaller than the Euclidean dimensionality (d) of the embedding space or lattice. The
DLA model is still of considerable interest; it represents a major theoretical challenge
and provides a basis for understanding a broad range of phenomena including fluid-
fluid displacement in porous media, dielectric breakdown processes, dissolution processes,
random dendritic growth and some types of biological growth processes (see references
3-5 for reviews of these applications). However, the DLA model does not provide an
adequate description of most colloidal aggregation processes. Meakin® and Kolb? simul-
taneously, but independently, developed a diffusion-limited cluster—cluster aggregation
model] that provides a quite realistic model for some fast aggregation processes, such
as the flocculation of colloidal gold particles.? In this model particles and clusters move
on a lattice via random walk trajectories. Whenever two objects (particles or clusters)
contact each other, they are irreversibly combined and the combined cluster continues
to move on the lattice. In most models the diffusion coefficient 2(s) for clusters con-
taining s particles or sites is assumed to be given by the algebraic relationship

D(s) ~ s (1)

Figure 1 shows several stages in such a simulation. For negative values of the ex-
ponent y in equation (1) the clusters generated by this model appear to be self-similar
fractals with fractal dimensionalities of about 1.40-1.45 for d = 2 and 1.75-1.80 for d = 3.
Theoretical considerations® and simulation results indicate that the fractal dimen-
sionality, D, has a very weak dependence on y in this regime.

Much earlier, Sutherland!®!? developed a ballistic cluster—cluster aggregation
model in which the particles and clusters follow linear (ballistic) trajectories. From
large scale simulations in which the cluster velocities are assumed to be given by the
kinetic theory of gases!? a fractal dimensionality of about 1.95 is obtained.!* This
model describes quite well processes such as the aggregation of very small particles and
clusters in flames and the aggregation of ceramic »nano-particles« in inert gases at
reduced pressure. It is also believed to provide a basis for understanding the early
stages of accretion in the primordial solar nebula.!

In the diffusion-limited and ballistic cluster—cluster aggregation models, the par-
ticles and clusters follow trajectories that have fractal dimensionalities (D) of 2 and
1, respectively. In the reaction limited aggregation process'®'® the particles and
clusters can be considered to follow zero dimensional trajectories. This model can be
used to describe quite a wide variety of slow aggregation processes in dense fluids.!”
In these processes, a short range repulsive barrier must be overcome by thermal fluc-
tuations before a pair of clusters can contact and become irreversibly joined. This
process can be represented by a random selection of bonding (contacting) configura-
tions between pairs of clusters with equal probabilities. The clusters generated by this
model have fractal dimensionalities of about 1.55 for d = 2 and about 2.1 for d = 3.

These simple aggregation models provide a surprisingly realistic description of a broad
range of processes.

Although interest was initially focussed on the fractal structure of the clusters
generated by these models, it was soon realized that they could also be used to explore
the kinetics of aggregation processes.!®?! In particular, it was found that the time de-
pendent cluster size could be described by the simple scaling form!®

Nt ~s~2fls/S(1)) ()
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where N,(¢) is the number of clusters of size s at time ¢ and S(¢) is the »mean cluster
size« given by
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Figure 1. Four stages in a small scale simulation of diffusion-limited cluster-cluster aggregation
on a square lattice with periodic boundary conditions. In this simulation, the cluster diffusion
coefficients 2(s) were assumed to be related to the cluster sizes (s) by 2(s) ~ s~'/2, Figures la
(upper left), 1b (upper right), 1c (lower left) and 1d (lower right) show the system in stages at
which the total number of clusters N has reached a value of 1880, 125, 40 and 10, respectively.
Figure la shows the initial stage after 2000 particles have been placed on randomly selected sites
to form 1880 clusters.
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Clusters generated by these models have also been used quite extensively to ex-
plore properties such as light scattering,???6 the aerodynamic?’ and hydrodynamic2?-3%
behavior of fractal aggregates, mechanical properties,®6-4! diffusion on fractalst?-16
(fractons) etc.?” Properties such as the aerodynamic and hydrodynamic transport coef-
ficients must be understood in order to develop a theoretical description of the kinetics
of aggregation.

In three dimensional systems, aggregation kinetics can be described quite well in
terms of the mean field Smoluchowski equation®®4® for the evolution of the concentra-
tions Cy of clusters of size k. This equation describes aggregation under low concentra-
tion conditions where only binary collisions need to be considered. Under these con-
ditions, this kinetic equation has the form

d S L
€0 = %Z K(ij) €C; - > K(G.k) CC, . 4

i+i=k i=1

The first part of the right hand side of equation (4) represents the formation of
clusters of size k from smaller clusters and the second part represents the reaction of
clusters of size k to form larger clusters. In writing equation (4) it has been assumed
that aggregation is an irreversible process (this assumption is made in the simple
models described above). However, the Smoluchowski equation can easily be extended
to include fragmentation processes.

d 1 . °° . = - %
F©=5 3 KGHCC - > KE)CC + Y, FGK) Cpp 3 3 FGDC, . G

itji=k j=1 =1 i+j=k

In equations (4) and (5), K(ij) is an element of the reaction kernel that describes
the aggregation process and in equation (5) F(i,j) is an element of the fragmentation
kernel. In general, the elements of the reaction kernel can be represented as the
product of a geometric part that describes the collision »cross-section« for pairs of
clusters of sizes i and j and a kinetic part that depends on the cluster transport proper-
ties. Both parts can depend on the fractal geometry so that aggregate structure and
aggregation kinetics are intimately related.

FRACTALS AND SCALING

In attempting to understand the properties of complex disordery systems, it is fre-

quently useful to describe their structure in terms of density correlation function such
as

C* (ryryry) = {p(r) p(rytr) p(rytry) . p(r,+r,) (6)
Here, p(r) is the density at position r and the product of densities on the right
hand size of equation (6) is averaged over all origins (r,) in the structure. For a self-

similar homogeneous fractal the correlation function C*(ry,ry- " r,) is a homogeneous
function of its arguments.

C“(}_rl‘ﬁ.rz...lrn) = A‘“"[C“(rl‘rz...rn)] [€))
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where the exponent a in equation (7) is the codimensionality (¢ = d — D) of the fractal.
In practice, the most commonly used density correlation function is the two point den-
sity—density correlation function

C(r) = {p(ro) P(ra* 1) Ve |=r €))

Here, the correlation function has been averaged over all origins in the cluster and
all orientations. This quantity is important in practice since it determines the scatter-
ing properties of the cluster (small angle single scattering) and is commonly used to
measure the fractal dimensionality of real systems (from digitized images) and com-
puter-generated structures.

Equation (7) implies that the two point density—density correlation function has
the algebraic form

Cr)~r—= 9)

For real structures, this power law behavior extends over only a limited range of
length scales and in practice it can be quite difficult to obtain a reliable estimate of &
(and consequently the corresponding fractal dimensionality D, = d—«) from the de-
pendence of log (C(r)) on log (r).

For structures of finite size the two point density-density correlation function will
depend on the overall size of the structure described by a characteristic length R as
well as the internal length r. In this case, the correlation function can be written as
C(r,R). The function C(r,R) represents the density-density correlation function
averaged over a large number of structures of the same size or characteristic length
R. If large clusters are (on average) related to small clusters by a change of length
scale, it is natural to assume that C(r,R) is a homogeneous function of its arguments
so that

C@r,AR) =417% C(r,R) (10$)
Taking a value of 1/R for 1, we have

C(r/R,1) = R% C(r,R) 1y

or
C(r,R) = R™°f(r/R) (12)

According to this scaling assumption, the density-density correlation function for sys-
tems of different sizes (R) can be expressed in terms of the scaling form given in equa-
tion (12). The function f(x) is called the scaling function and the exponent « is a scaling
exponent. If equation (12) provides a valid description of the geometric scaling proper-
ties, then plots of R*C(r,R) vs. r/R for structures of different sizes will fall on a com-
mon curve (the scaling function f(x)). This is illustrated for clusters generated using
a three dimensional off-lattice model for diffusion limited cluster—cluster aggregation
in Figure 2. Figure 2a shows the two point density-density correlation functions for
clusters of five different sizes (100, 300, 1000, 3000 and 10,000 particles). In this case,
it is more convenient to select clusters of a particular size (number of particles, s),
rather than a particular value (or small range of values), of the characteristic length
R. Since s and R are related by
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Figure 2. Scaling of the two point density-density correlation function for clusters generated
using an off-lattice diffusion-limited cluster—cluster aggregation model. Figure 2a (top) shows the
correlation functions obtained from 10,000 100 particle clusters, 1000 300 particles clusters, 100
1000 particle clusters, 39 3000 particle clusters and 13 10,000 particle clusters. Figure 2b (bot-

tom) shows how these correlation functions can be scaled onto a common curve using the scaling
form given in equation (15).

(R)~s~ VP (13)
for fractal objects equation (12) can be written as
C(r,s) = s~ D f(r/s"P) (14)
and since the exponent « in equation (14) is the codimensionality, we have
C(r) = sC-AP f(r/s1P) | (15)

In Figure 2b plots of In [s?/2 C(r)] vs. In (s r) are shown for the five different
cluster sizes. The fact that these curves overlap almost perfectly confirms the simple
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scaling assumption. This shows that both the internal density correlations and the
global scaling properties of the cluster (such as the dependence of the radius of gyra-
tion on its mass) can be described in terms of the same fractal dimensionality.

It has been known for some time that for a variety of systems the cluster size dis-
tribution evolves towards a »self preserving« form that is independent of the initial
cluster size distribution.®**? This observation motivates a scaling description of the
time dependent cluster size distribution. Here, we assume that the cluster size distribu-
tion can be presented as a homogeneous function of the cluster sizes (s) and the
»mean« cluster size (S). In most cases, S is defined according to equation (3). It is pos-
sible to use other moment ratios of the cluster size to define different characteristic
cluster sizes but care must be taken if the cluster size distribution is broad. It follows
from the homogeneity assumption that the cluster size distribution can be represented
by the scaling form

N,(t) — s~ f(s/5()) - (16)

In mass conserving systems, the exponent 8 has a value of 2.0. This can be demon-
strated by writing the total mass (total number of particles) as

M= ; s s70 f(s/S(1)) (an

in the asymptotic limit (late time and large cluster sizes), the summation in equation
(17) can be replaced by an integration

o0

M= [ 50 f(s/5(t)) ds (18)

o

and making the substitution x = s/S(¢) we have
[ -]
M =5(t2? [ flx) dx (19)

Since the integral has a constant value and M is constant, it follows that & must have
a value of 2 so that the cluster size distribution can be represented by the scaling form
given in equation (2).

This scaling form!®2% has been applied successfully to a very wide range of ag-
gregating systems involving fractal and non-fractal objects. It is said to be a »super-
universal« scaling form since it applies equally well to systems in embedding spaces
with different dimensionalities. The simple scaling behavior associated with these ag-
gregation processes reflects underlying symmetries in the kinetic equations that
describe the aggregation processes. These in turn are a consequence of the geometric
scaling properties associated with the structures of the aggregation clusters.

There are no characteristic length scales associated with the internal structure of
fractal objects. In simple aggregating systems there are generally two characteristic
length scales (apart from that associated with the particle size). One is associated with



244

P. MEAKIN

the mean cluster size and the other is associated with the mean distance separating
these clusters. The kinetics of simple aggregation processes can often be understood
in terms of these lengths, which are closely related to each other. For example, in a
mass conserving systems in which the cluster size distribution is not too broad the
characteristic length (R,) associated with the clusters is given by

R, ~SVP (20
and the number of clusters N is given by
N~s-1 21

This means that the characteristic length (R,) separating the clusters is given by
R,~ N-Yd_g-Vd_ RbA (22)

In general, for a system with two characteristic length scales, both lengths would
appear in the scaling form describing the evolution of the system. However, since R,
and R, are related by a simple homogeneous power law (equation (22)) it is necessary
to use only a single length (R4 or R,) or the characteristic cluster size S that is related
to both of them by simple power laws.

In many systems, the mean cluster size S(f) grows algebraically

S@t) ~# (23)

in the limit -+ so that equation (2) can be replaced by
N ~s72f(s/F) . (24)

It is also often convenient to express time dependent size distribution in terms of the
scaling form?!

N(t) = s~ t7% g(s/F) (25)

Here, the cluster size dependence and the time dependence of N,(#) for small values
of s/t* has been expressed explicitly in the first two terms on the right hand side of
equation (25). The function g(x) in equation (25) has the form g(x) = const. for x <<
1 and g(x) decreases faster than any power of x for x>> 1. The scaling forms given in
equations (24) and (25) are equivalent. This may be demonstrated by using equation
(25) to calculate the total mass (M) of all of the clusters.

(-]

M= 21 sN(t) = 2 s1=%w g(s/F) . (26)

s=1

In the asymptotic limit, the sum on the right hand side of equation (26) can be
replaced by an integral
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M = [ si=uog(s/r) ds @7

and making the substitution x = s/#, we have
M=t[(1-1)z - w+z] [ x'Tgx) dx . (28)
(o]

Since the total mass is conserved and the integral also has a constant value, equation
(28) implies the scaling relationship

2-1)z=w. (29)
If the cluster size distribution is not a power law, then equation (25) can be replaced by
N(t) ~ 7 g(s/¥) (30)

so that the exponent relationship

2z =w 31)

is obtained. Substituting equation (29) in equation (25) gives
N,(t) = s g(s/F%) 32)
and replacing g(x) by ™% g’'(x) we have

Ny =gl gy 33)
or
N ~s~2g(s/F) - (34)

Similarly, the scaling form in equation (24) can also be recovered by substituting equa-
tion (31) into equation (30).

CLUSTER-CLUSTER AGGREGATION MODELS

Cluster—cluster aggregation models have been used extensively to study the struc-
ture of small particle aggregates and the kinetics of aggregations. The most simple
model differ primarily in the nature (fractal dimensionality) of the trajectories used
to bring clusters together. In this section, these model are described and the applica-
tion to aggregation kinetics is illustrated.

Diffusion-Limited Cluster-Cluster Aggregation

In the diffusion-limited cluster-cluster aggregation model®":545¢ particles and
clusters are moved in a d dimensional space via random walk trajectories (D,, = 2).
Whenever two (or more) objects (particles or clusters) contact each other, they are
combined irreversibly in the contacting configuration to form a larger structure that
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continues to move as a rigid entity. In most cases simple lattice models in which the
clusters move by a single lattice unit in a randomly selected direction have been used
to explore the kinetics of diffusion-limited cluster-cluster aggregation. In a typical
simulation, a fraction p of the sites on the lattice (i.e., a total of pL? sites) are selected
at random and filled to represent the aggregating particles. Sites that are connected
via nearest neighbor occupancy are identified as belonging to the same cluster and all
of the clusters (including single particle clusters) are labelled. If p is sufficiently small,
the system will contain mainly single particle clusters with a small number of small
clusters. The aggregation process is represented by selecting clusters at random and
moving them by one lattice unit in a randomly selected direction if x < 2(s)/2D . Here,
x is a random number uniformly distributed over the range 0<x<1 and 2, is the
maximum diffusion coefficient for any of the clusters in the system. After each cluster
has been selected, the time is incremented by an amount 8¢ given by

8 = 1/(ND,,,) (35)

where N is the total number of clusters. In most cases, the cluster diffusion coeffi-
cients, 2(s), are assumed to be related to the cluster size, s, by the algebraic relation-
ship given in equation (1). Each time a cluster is moved, its perimeter is examined for
contact with other clusters and if contact is found, the contacting clusters are joined
to form a larger cluster. This model leads to the formation of clusters that have a self-
similar fractal structure (D = 1.45 ford = 2, D = 1.80 for d = 3, etc.) on length scales
up to a correlation length £ determined by the system density (o). The two point den-
sity-density correlation function at the end of a simulation when all the particles
belong to a single cluster has the form

Cr~r=« forr<< £ (36)

Cn=p forr>> ¢ 37

the correlation length & is given by

E—p Ve (38)

and the correlation function can be written as

C(r) ~ r= f(r/%) (39)

where the function f(x) has the form f(x) = const. (x<<) and f(x) — x* for x>> 1. If the
density is sufficiently small, the correlation length & will exceed the characteristic
length associated with the mean cluster size (R,) throughout all or most of the simula-
tion. These considerations indicate that for a simulation carried out using 10,000 sites
(particles) on a 128x128x 128 site lattice (o ~ 5x10-%) the correlation length (&) will
be approximately equal to the system size (L) so that the aggregation kinetics will be
essentially unaffected by both finite size and non-zero density effects until quite late
stages in the simulated aggregation process.

If the cluster size distribution is sufficiently narrow, the kinetics of the aggregation
process can be determined by course graining the system into regions of size R, where
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R, is the characteristic cluster size. The evolution of the number of clusters N(¢) is then
given by

dN/dt — —N 8§ §~¥0 s(@D-1) (40)

The term S7S-#/ in the right hand side of equation (40) represents the time required
by a typical cluster to move a distance R, and the term S%2-V js the probability that

it will encounter another cluster after moving a distance R,. Since N(f) and S(¢) are
related by :

S() ~ N~} (41)
equation (40) becomes
%~_Mw—r+l-d/ﬂ) (42)
from which we obtain the result
N ~t7% (43)
where the exponent z’ is given by
2= L (44a)
T 1-(2-d-yD)/D
or
: D (44b)

G P

Simple scaling arguments and more detailed considerations (see below) indicate
that the diffusion coefficient for a fractal cluster moving through a quiescent fluid is
given by

D(s) —s~ VP (45)

(i.e, y = -1/D) substituting this value for y and d = 3 in equation (44) indicates that
the exponent 2’ in equation (43) has a value of 1. Similarly, the exponent z describing
the growth of the mean cluster size

S(t) ~ # (46)

also has a value of 1. Figure 3 shows the cluster size distribution obtained from simula-
tions carried out using a three dimensional (cubic lattice) diffusion-limited cluster—
cluster aggregation model in which equation (45) was assumed to describe the size de-
pendence of the cluster diffusion coefficients. In Figure 3b, these cluster size
distributions have been scaled using the scaling form

N,(t) ~ s 2f(s/F) 47

since S(¢) is related to the time ¢ by equation (48), this scaling form is asymptotically
equivalent to that given in equation (2). Figure 3b shows that a reasonably good data
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Figure 3. Cluster size distributions (Ns(#)) obtained at 9 stages (times) during simulations of dif-
fusion-limited cluster—cluster aggregation on a cubic lattice with cluster diffusion coefficients gi-
ven by O(s) ~ s~1/P, Figure 3a (top) shows the size distributions and Figure 3b (bottom) shows
the results of an attempt to scale these distributions using the scaling form given in equation
(47). The data collapse is quite good at late times but at early times (¢ = 8.44, 25.9 and 79.7)
the cluster size distributions cannot be scaled.

collapse is obtained using a value for the exponent z in equation (47) that is quite close
to 1.0. Direct measurement on the exponents z and z’ from the time dependence of
S(#) and N(¢) give values for z and 2’ that are also close to 1.0. The deviation of the
effective value of 2z from the theoretical value is attributed to finite size and non-zero
concentration effects. The scaling form given in equation (2) is more convenient and,
in at least some cases, gives a better data collapse than that given in equation (47).
In general, scaling is only expected to work in the large time, large cluster size
asymptotic limit. Figure 3 shows quite clearly that the cluster size distributions at early
times cannot be described in terms of the scaling form given in equation (47).

In writing equation (40) to describe the rate of collision between pairs of clusters
it was assumed that each time a cluster visits a new region of size R, it has the same
probability of finding a second cluster. This is a mean field assumption that breaks
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down for lower dimensional systems. For the case d = 3, equation (40) appears to pro-
vide a satisfactory description of the overall aggregation kinetics. However, for d = 2,
equation (40) must be modified and the mean field description breaks down completely
for d<2. In a two dimensional system, the asymptotic dependence of the number of
new regions (for example the number of sites in an on-lattice random walk) visited by
random walkers after N steps is given by

N, = N/log(N) 48)

Since the relative trajectory followed by pairs of clusters in a diffusion-limited
cluster—cluster aggregation process is also a random walk, equation (40) must be
modified for aggregation on a two dimensional substrate. For D = d, the aggregating

system at time ¢; can be rescaled onto a system at time ¢, by changing the length scale
of the system by a factor A given by

1 = [S(t)/S(t))7P (49)

In the asymptotic regime, the fraction of space »occupied« by the clusters does not
change and equation (40) can still be used.

If D<d (as it is in the case in cluster—cluster aggregation) the aggregation process
is accelerated because the fraction of the space that is occupied by the clusters in-
creases with increasing cluster size. Under these conditions, the »asymptotic« growth
of the mean cluster size and decay of the number of clusters are given by®’

S(t) — [t In()F (50a)
and

N(t) ~ [t In(8)]~ (50b)

where z = 2z’ and 2’ is given by equation (44). Eventually, the fraction of space »oc-
cupied« by the clusters will become large, equation (50) will break down and, in an
infinite system, a cluster of infinite size will appear in a finite time (i.e., gellation will
occur). If D>d (as it is in the diffusion-limited particle coalescence model®® in which
contacting particles are combined into a single particle or site with mass conservation),
the particles or aggregates occupy a smaller and smaller fraction of the system as the
number of objects in the system decreases. This contributes to a slowing down of the
processes, which is further augmented by the inefficiency of the two dimensional ran-
dom walk in exploring »new space«. In this case, the asymptotic result

N(@) - t/In()]™ (51a)
S(t) ~ ¢1n(6)F (51b)

is obtained.

Figure 4 shows the results from a two dimensional diffusion-limited cluster—cluster
aggregation mode] carried out with a diffusion coefficient exponent y (equation 1) of
-1. Figure 4a shows the dependence of N and S on ¢ In(#). These results support the
idea that the growth of the mean cluster size is described by

S(t) ~ tIn(tF (52)
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Figure 4. Results obtained from a two dimensional diffusion-limited cluster—cluster aggregation
model. Figure 4a (top) shows the algebraic growth of S(¢) and the decay of N(¢). Figure 4b (mid-
dle) shows the cluster size distribution at ten different stages (times) and Figure 4c (bottom)
shows how these distributions can be scaled using the scaling form given in equation (2). In these

simulations, cluster diffusion coefficients D(s) are proportional to s~ .
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where z is given by equation (42) and that the decrease in the number of clusters is
given by equation (51a). Figure 4b shows the time dependent cluster size distributions
N,(?) from the same simulations and Figure 4c shows quite a good data collapse ob-
tained using the scaling form given in equation (2).

The kinetics of three dimensional diffusion-limited cluster-cluster aggregation can
be described in terms of a Smoluchowski equation. In the low density limit, only bi-
nary collisions need be considered. Since 2D +Dy>d (2x1.8+2> 3 for the three dimen-
sional case), a pair of clusters following random walk trajectories behave like im-
penetrable spheres with radii r(s) given by r(s) ~ s!/?. Consequently, the collision
between a pair of clusters of sizes s; and s, can be represented by the absorption of a
particle on a stationary surface of radius R(sy,s2) ~ sV? + s¥P. The diffusion coeffi-
cient of the particle with respect to the stationary surface is given by

D(s,,8,) ~ s7 VP + 571D (53)
and the element K(s,,s,) of the reaction kernel for clusters of size s, and s, is given by
K(s,,85) ~ (51D + sy Py~2 (5710 4 5710 (54)

The first term on the right hand side of equation (54) is a geometric term that depends
on the cluster structures and the shape of their relative trajectories. The second term

depends on the transport properties of the clusters. For the case d = 3, equation (54)
becomes

K(5,:8;) <~ (Y7 + 8¥P) (87° + 5, V7) (55)

The elements of this reaction kernel have an almost constant value (independent
of 5, and s;). However, the aggregation of large clusters with small clusters is favored
and this is responsible for the depletion of very small clusters at long times seen in
both simulations (Figure 3) and experiments. In simulations, the diffusion coefficient
exponent y need not be confined to an asymptotic value of —-1/D and the three dimen-
sional reaction kernel has the form

K(sy85) = (s + s7P) (] + s1) (56)
This form for the reaction kernel has been confirmed by direct measurements of
the rate of aggregation of clusters of different sizes in diffusion-limited cluster—cluster

aggregation model simulations.®®

Ballistic Cluster-Cluster Aggregation

The ballistic cluster—cluster aggregation process can be simulated by taking ad-
vantage of the fact that the »reaction kernel« can be written in the form

K(iy) ~ o(G)I(s; + )/58]7 . (57)

The first term on the right hand side of equation (57) represents the collision cross
section for clusters i and j and the second term is obtained by assuming that the
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cluster velocity distributions can be described in terms of the kinetic theory of gases!?
(i.e., the clusters act like giant gas molecules). The model can easily be modified to
include other velocity distributions by rewriting equation (57) as

K("J) ~o(iy): V(si’sj) (58)

where V(s;, s;) is obtained from the cluster velocity distribution. An upper limit for the
collision cross-section is given by

Q(ij) = #(R" + Ry (59)

where R;/” and R/™ are the maximum radii for clusters i and j.

In the ballistic cluster—cluster aggregation, model pairs of clusters are selected ran-
domly from a list of clusters. An upper limit for the reaction probability for the pair
of clusters is obtained from the expression

P(iyj) ~ (R + B [(s; + s;)/5:8]V* - (60)

A random number x (0<x<1) is then generated and the clusters are returned to the
list if

x> P(ij)/P, ., (61)

where P,,,, is the maximum value of P(i,j) for any pair of clusters in the system. If
the randomly selected clusters are not rejected, they are rotated to random orienta-
tions and one cluster is »fired« at the other along a linear trajectory with a center to
center impact parameter randomly selected from a circle of radius (R/™+R;™). If this
brings the clusters into contact with each other, they are combined irreversibly in their
initial contact configuration to form a rigid cluster that is returned to the list of
clusters. If they do not contact, the two clusters are returned to the cluster list. The
process described above is repeated with other randomly selected cluster pairs until a
pre-selected maximum cluster size or mean cluster size is reached.

The fractal dimensionality of clusters generated using this model is approximately
1.95.1480 The reaction kernel for this model can be obtained based on the idea that
two fractals with a dimensionality of 1.95 following a relative trajectory with a dimen-
sionality of D, = 1.0 cannot interpenetrate each other. This means that clusters of
similar sizes (s; and s;) will have a mutual cross-section given by

o (i) = (sV/? + s//P) . . (62)

For clusters of much different sizes (s;>s;), we can make use of the fact that for
D <2 the projection of a cluster onto a plane has a fractal dimensionality of D. The
collision cross-section for the two clusters can then be obtained by projecting them

onto the same plane (perpendicular to the trajectory). The collision cross-section is
then given by

o(iy) — a(ss;) N(s{/P0) (63)
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where o(s;s)) is the collision cross-section for two clusters of size s; and N(s;'/2,i) is the
number of regions of size (linear spatial extent) s;'/? needed to cover a fractal (prefrac-
tal) of size i. Since o(s,s)— s2P and N(s}/P,i) is proportional to s;-(s¥?)™2, we find
that

o(iy) = s; 771 (64)

for the case 5;>>s;. From equations (62) and (64) we can conclude that equation (64)
describes the asymptotic (large cluster) size collision cross-section in both the i = j and
i>>j regimes. The complete reaction kernel for ballistic cluster—cluster aggregation
may consequently be written as

K(ij) = s, s¥P7 (s, + 8;)/8;8]2 (i=) (65)
or
K(i)) = 5, s{¥P~%9 (iz)) (66)

The scaling of the diagonal elements of the reaction kernel can be written as

K(i,i) ~ i* 67
with
A=2/D-1/2 (68)

Figure 5 shows time dependent cluster size distribution obtained from simulations car-
ried out using the ballistic cluster-cluster aggregation model. The cluster size distribu-
tion is quite broad but small clusters are eventually depleted and a characteristic
cluster size emerges. At later times, these size distributions can be scaled quite well
using the scaling form given in equation (2).

Using arguments similar to those discussed above for the diffusion-limited cluster-
cluster aggregation model, we expect to find that the mean cluster size grows algebrai-

In|Ngtt))

In(s)

Figure 5. Cluster size distributions obtained from three dimensional off-lattice ballistic cluster—
cluster aggregation model simulations in which the cluster velocity distributions were assumed
to be given by the kinetic theory of gases. The size distributions (Ns(£)) at 9 stages obtained from
32 simulations each of which employed 200,000 particles are shown.
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Figure 6. Time dependence of the mean cluster site (Figure 6a, top) and number of clusters (Fig-
ure 6b, bottom) obtained from the three-dimensional off-lattice ballistic cluster—cluster aggrega-
tion simulations. In these simulations, the cluster velocity distributions were assumed to be gi-
ven by the kinetic theory of gases.

cally with increasing time (equation (23)) in the limit £~ and that the number of
clusters decreases according to equation (43) with z = 2’ = 1/(1-A) = 2.08. The values
obtained from simulations are in quite good agreement with this value, as illustrated
in Figure 6. In this model, a time scale can be introduced by incrementing the time
by an amount &¢ given by

8t =1/(N2P_ ) (69)

each time a pair of clusters is selected from the list (whether or not they are fired at
each other and whether or not they contact if they are fired at each other).

Reaction-Limited Cluster-Cluster Aggregation

In reaction-limited cluster—cluster aggregation, many encounters between pairs of
clusters are required before aggregation occurs. In the most simple aggregation models
considered here it is assumed that once bonding has been established the clusters are
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rigidly and irreversibly bound together. In some respects, the reaction-limited aggrega-
tion model is simpler than the ballistic and diffusion-limited aggregation models but
it was developed more recently. The most simple reaction-limited cluster—cluster ag-
gregation models are based on the idea that if the repulsive barrier that must be
crossed to bring two clusters into contact with each other is sufficiently large (i.e., if
the sticking probability, o, is sufficiently small), then the system will test a repre-
sentative sample of all possible bonding configurations between pairs of clusters before
selecting one of them at random. In this limit, the simulation reduces to the random
selection of bonding configurations from all possible bonding configurations between
pairs of clusters in the system.

An alternative approach to the simulation of reaction limited cluster-cluster ag-
gregation is to use a diffusion-limited cluster—cluster aggregation model but join
clusters together irreversibly with a small probability (¢’) each time they attempt to
overlap. In practice, it is only possible to reduce ¢’ to values of 10~ to 10~ in reasonab-
ly large scale simulation.®! However, this allows us to approach reasonably close to the
reaction limited (o’+0) limit.

A hierarchical model for reaction-limited cluster-cluster!®!® aggregation was
developed by Jullien and Kolb.!>!® In this model, 2™ particles are combined in stages
so that at each stage the clusters are all of the same size. In this lattice model, all pos-
sible ways of joining pairs of clusters are found and one of these is selected at random.
From simulations in which clusters containing up to 512 occupied sites were generated,
effective dimensionalities of 1.53+0.04, 1.98+0.04 and 2.32+0.04 were obtained for
d = 2, 3 and 4.

Jullien and Kolb also measured the number of contacting configurations C; for
pairs of clusters containing s particles. They found that C, depended algebraically on
s according to C, ~ s*, where the exponent A’ had values of 0.74, 1.16 and 1.44 for
d = 2, 3 and 4, respectively.

Brown and Ball®? developed a model in which pairs of clusters are selected and
placed at random on a cubic lattice. In this model, the selected pairs of clusters are
combined only if they are adjacent to each other but do not overlap. Depending on
how the clusters are selected, the cluster size distribution may be monodisperse (as it
is the case in a hierarchical model) or may evolve in a natural way into a polydisperse
cluster size distribution if the clusters are selected at random (irrespective of their
sizes). Using this model, a fractal dimensionality of 1.94+0.02 was found for the
monodisperse case and 2.11+0.03 for the polydisperse case in three-dimensional
simulations. For d = 2, values of 1.53+0.01 and 1.59+0.01, respectively, were obtained.
The exponent A’ was found to have values of 1.16+0.04 and 1.06+0.02 for the
monodisperse and polydisperse three-dimensional model and 0.75+0.01 and 0.73+0.02
for the monodisperse and polydisperse two-dimensional models.

A reaction-limited aggregation model proposed by Leyvraz5® which is very closely
related to the model of Brown and Ball,*? has been investigated by Meakin and Fami-
ly.51.84 This model starts with a large number (N,) of single particles. As the simulation
proceeds, a pair of particles is selected randomly and placed in contact with each other.
If the particles are contained in the same cluster, a new selection is made. If the par-
ticles are contained in different clusters, all the particles in theses clusters are moved
with the selected pair of particles when they are moved into contact with each other.
If the two clusters overlap, a new pair of particles is randomly selected. If no overlap
is found, the two clusters are combined irreversibly.



256

P. MEAKIN

45
40
35
30r
e5F
20
1.5+
10+

T

T

In[S(D)]

1 | 1 1 1 1
0 2x10°®  4x10°® 6x10"% 8x107€¢ 1x10™% 12x107°1.4x1073
t

Figure 7. Time dependence of the mean cluster size obtained from three dimensional off-lattice
simulations of reaction-limited cluster—cluster aggregation. These results were obtained from
123 simulations whit 200,000 particles in each simulation.

The kinetics of reaction-limited cluster—cluster aggregation can be simulated by in-
creasing the time by a constant amount (1/N,? is a convenient value) each time a pair
of clusters is selected in the model described in the last part of the previous section.
Figure 7 shows the time dependence of the mean cluster size obtained from three
dimensional off-lattice simulations.

In practice, it is not easy to distinguish between power law growth (equation (23))
with a large value for the exponent z, exponential growth, or gelation [S(¢) ~ (tg—t)“B]
where /; is a finite gel time. However, the results shown in Figure 7 do support the
idea®® that the mean cluster size grows exponentially.

Figure 8 shows the cluster size distribution obtained at 6 stages during similar off-
lattice simulations. It appears that the cluster size distribution can be described as a
power law with a cut off at large cluster sizes (equation (25)) with the exponent r
having a value of about 1.7.

The number of ways of combining clusters of size s; and s; is proportional to s;s;.
However, many of these contacting configurations will involve overlap between the
two clusters since 2D >d. In this case, we expect that the elements of the reaction ker-
nel k(s;,s;) describing clusters of size s; and s; will have the form

K(s,s) ~ sssf=8  for  s;z5 (70)
The quantity s,#-2 in equation (70) is a probability P(s;s;) that two clusters of size s;
brought into contact via randomly selected particles in each cluster will not overlap.
The dependence of P(s;s;)) on s; is shown for both the lattice model and off-lattice

model in Figure 9. The results in this figure indicate that the exponent 1’ has a value
of about 1.1 so that

K(sys) ~ s} (71)

where the exponent 4 has a value of about 1.1 for both the lattice and off-lattice
models.
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Figure 8. Cluster size distributions obtained at 6 stages (times) using a three dimensional off-
lattice reaction-limited cluster—cluster aggregation madel.

Ball et al% have argued that the kernel model for three dimensional reaction
limited cluster-cluster aggregation should have the form

k(sps) ~ 5] 71 (s;>> 5) (72)
and
k(s;s;) ~ sf' (s;= 5)) (73)

P(1,i)(OFF LATTICE)-"
= P(1,i) LATTICE -

In(P)

]
E-S
T

P(i,i) MODEL I (OFF LATTICE)~"

SLOPE=-0.88 =
=5r P(i,i) MODEL T (LATTICE) g
SLOPE=-093
-6+ ]
_7 1 1 1 1 1 1
0 1 2 3 4 5 6 7

In(i)

Figure 9. This figure shows the dependence of P(i,i) and P(1,j) on i for both the three dimen-
sional off-lattice and the cubic lattice reaction-limited aggregation models. Here P(i,j) is the prob-
ability that clusters containing i and j particles will not overlap after they have been brought
into contact via a randomly selected pair of particles (one in each cluster).



258

P. MEAKIN

with A = 1. This result is based on the idea that for 1 = 1, the cluster size distribution

exponent 7 should have an asymptotic value of 1.5. For A > 1, the exponent 7 rises to
a value given by5%.:67

T = (3+4)/2 (74)

In this event, A will be larger than 2 so that there will be a large number of single
particles and small clusters that can penetrate into large clusters, raise their fractal
dimensionality and decrease 1. For 1 < 1, the cluster size distribution has a peaked
shape with few very small or very large clusters. Consequently, if A < 1, the fractal
dimensionality of the clusters will decrease and this will result in an increase in 1. Be-
cause very small deviations of A from the »singular« value of 1 bring about large chan-
ges in the cluster size distribution that would tend to restore A to a value of 1.0. Ball
et al. suggest that 1 = 1. This implies an exponential growth in the mean cluster size
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Figure 10. Time-dependent cluster-size distributions obtained from the lattice version (a, top)
and off-lattice (b, bottom) of the reaction-limited cluster—cluster aggregation model with ¢ = —1/2.
In each case, the curves correspond to cluster-size distributions obtained at the stage where the
number of clusters had been reduced from an initial value of No = 200,000 particles to No/2,
No/4---No/f64 (No/2", n = 1-6).
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(in accord with both simulation results and experiments) and a value of 1.5 for the
cluster size distribution exponent .

The source of the discrepancy between the theoretical results of Ball et al. and the
simulation results (for the size distribution exponent, 7) is not well understood. The
theoretical arguments are compelling but not rigorous. A more likely source of the dis-
crepancy is a slow approach to the limiting asymptotic behavior in the simulations. A
very slow approach to the asymptotic limit with »pseudo scaling« behavior at inter-
mediate times is not at all uncommon.®®% Cluster size distribution exponents close to
1.5 have been found in a variety of experimental studies.”®’® However, values for 7
close to 2.0 have been found by Martin for the slow aggregation of colloidal silica.”™

It is implicitly assumed in the simple reaction-limited cluster—cluster aggregation
models described above that the rate at which bonding configurations are selected is
proportional to their probability of being found in the system. It is possible that in
real cluster—cluster aggregation (at least for reasonably small cluster sizes where trans-
lation is more important than internal modes), the rate at which two clusters join may
depend on the frequency with which they »collide« as well as on the amount of time
they spend together. It is also reasonable to suppose that-the collision frequency for
clusters i andj will be given by v(i,j) — D; + 2; when D, and D, are the cluster diffusion
coefficients. Consequently, reaction limited aggregation models have been developed
in which pairs of particles (i and j) are selected at random with probabilities (s# + )
where s; and s; are the sizes of the clusters containing s; and s; particles, respectively.
Figure 10 shows some of the results obtained from simulations carried out with ¢ = —1/2
(approximately —1/D) using both off-lattice and cubic lattice reaction-limited cluster—
cluster aggregation models.

NONFRACTAL SYSTEMS

Although recent attention has been focussed primarily on aggregation processes
leading to the formation of fractal structures, the general scaling approach emphasized
in this chapter is also applicable to nonfractal systems. A scaling approach is valuable
for many processes including spinodal decomposition,”> droplet coalescence, and the
aggregation of small particles to form compact (D = d) and linear (D = 1) structures.

Figure 11 and 12 show the results of three dimensional simulations of the dif-
fusion-limited aggregation of oriented rods that can stick only at their ends.”® Figures
11a and 11b show the algebraic time dependence of S(¢) and N(z) obtained from simula-
tions carried out with a diffusion coefficient exponent (y) of —1. Here, it was assumed
that, although the geometry of the rods is highly anisotropic, their diffusion is
isotropic so that 2|({) = D,(s) — s. In general, the exponents z and 2’ describing
the time dependence of N(¢) and S(¢) are given by

z=2=1/1-v) (75)

This result is not surprising since only the ends of the rods are sticky and, at a suf-
ficiently low concentration, this model becomes equivalent to the diffusion-limited par-
ticle coalescence model. In two dimensional simulations, we find that the decrease in
the number of clusters or rods is given by equation (52) and

s(t) ~ [¢/In()])* (76)
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Figure 11. Time dependence of S(¢) (a, top) and N(f) (b, bottom) obtained from a three dimen-
sional (cubic lattice) model for the aggregation of oriented rods with size dependence diffusion
coefficients given by equation (1) with y = -1.

where z and 2’ are given by equation (75).
In one dimensional simulations the exponents z and z’ are given by™®

z=2=1/(2-7) ()]

Figure 12 shows how the time dependent rod size distributions scale according to equa-
tion 2.

Another example is provided by the diffusion-limited droplet coalescence model.”?
In this model, hyperspherical D dimensional droplets follow random walk paths in a
d dimensional box with periodic boundary conditions. Whenever two droplets with
radii of R; and R; touch, they are coalesced to form a larger droplet with conservation
of mass and the center of mass.

R = (RD + RD)/P (78)
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Figure 12. Scaling of the time dependent cluster size distributions (Ns(¢)) for the simulations
used to obtain Figure 11. Figure 12a (top) shows the cluster size distributions at ten different
times and Figure 12b (bottom) shows how these size distributions can be scaled using the scaling
form given in equation (2).

where R is the radius of the combined droplet and
X = (5%, + 5,X,)/(5, + 57 (79)

where X, X, and X, are the coordinates of the combined droplet and the coalescing
droplets. After coalescence, the environment of the coalesced droplet is examined for
contact with other droplets and the coalescence process is continued until no further
contacts are found. Figures 13a and 13b show the algebraic growth of S(t) and decays
of N(t) for the cases D =d = 2,y = -1/Dand D =d = 3,y = -1/D. In this case,
there are no logarithmic corrections in the two dimensional case since both the dis-

tance between droplets and their characteristic sizes (radii or diameters) grow in the
same way.
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Figure 13. Time dependence of S and N obtained from diffusion-limited droplet coalescence mo-
dels. Figure 13a (top) shows results from a simulation of the coalescence of two dimensional dro-
plets in a two dimensional space with a diffusion coefTicient exponent, y, (equation (1)) of -1/2.
Similarly, Figure 13b (bottom) shows results from a simulation carried out withD = d = 3 and
y = -1/3.

Consequently, the entire system can be rescaled at different times by a simple
change of length scales. Figure 14 illustrates how the time dependent droplet size dis-
tribution can be scaled using the scaling form in equation (2) for the case D = d = 2,
y = 0. This scaling form is not restricted to the case D = d and works well for all
combinations of D, d and y that result in power law growth of the mean droplet size.

In general, the time dependence of the number of droplets and the mean droplet
size are given by equations (43) and (46) (with z given by equation (44)) for d>2. For
d = 2 and D # 2, logarithmic corrections appear in the time dependence of S and N.
The exponents have the same dependence on D, d and y as those associated with the
diffusion-limited cluster—cluster aggregation model and the discussion of that model,
given above, applies here also. ;
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Figure 14. Time dependent droplet size distributions obtained from diffusion-limited droplet coa-
lescence model simulations with D = d = 2 and y = 0. Figure 14a (top) shows the droplet size
distribution at nine times and Figure 14b (bottom) shows how these size distributions can be
scaled using the scaling form given in equation (2).

SUMMARY

The aggregation of small particles to form large structures is important in many
areas of science and technology. As a consequence, aggregation processes have been
extensively studied throughout this century. During the past decade, the realization
that a wide geometry of aggregation processes generate structures that have a fractal
geometry and the availability of data from simple computer models has stimulated a
renewed interest in the theoretical aspects of colloidal aggregation. Experimental studies
and computer simulations have also strongly stimulated each other during this period.

In this survey I have emphasized the application of scaling ideas to the kinetics
of aggregation processes. This is a very natural approach in the case of fractal ag-
gregates but works equally well for non-fractal structures. A general approach to un-
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derstanding the behavior of simple aggregation models has been to first carry out
simulations to delineate the qualitative behavior of the system. This information is
generally sufficient to allow a scaling model to be constructed that describes the evolu-
tion of the system in terms of a scaling form for the time dependent cluster size dis-
tributions. In most cases, simple scaling arguments, kinetic models and basic principles
such as mass conservation allow exact but no rigorous values to be obtained for the
scaling exponents. The values of these exponents, which describe the asymptotic be-
havior of the system, can then be compared with the results of large scale computer
simulations. This »scaling« approach does not, in general, lead to information concern-
ing the early time behavior and in most cases a more detailed theoretical analysis’’"®
is needed to obtain the precise form of the scaling function. This approach has been
applied with considerable success to a wide variety of kinetic phenomena. Despite
these successes, important fundamental questions remain unanswered. For example,
we still have no systematic theoretical approach to the DLA process that will allow us
to calculate the scaling properties of the clusters grown in this way. In fact, it is not
even certain what a proper scaling description of these clusters should consist of. The
structures formed by cluster—cluster aggregation processes appear to be self-similar but
again we do not have exact theoretical values for the asymptotic fractal dimen-
sionalities associated with these models.

It appears that (in the low concentration limit) three dimensional diffusion-limited
aggregation processes can be described quite well in terms of the »classical«
Smoluchowski equations (equations (4 and 5). Logarithmic corrections are needed in
tow dimensional systems and this has led to the idea that 2 is the critical dimen-
sionality for such processes. However, recent simulation results®® and theoretical
ideas®! indicate that this interpretation may be too naive. It seems that for d = 3 some
quantities may be described quite well by the mean field Smoluchowski equations
while other quantities do not show mean field behavior.

In qualitative terms, our understanding of cluster—cluster aggregation processes is
quite good. However, the study of simple models and experimental systems for which
the scaling approach works well have been emphasized and this emphasis may leave
the wrong impression. Although substantial advances have been made during the past
decade, much work remains to be done. We know little about the kinetics of aggrega-
tion in concentrated systems that are of considerable practical importance. Another
area of considerable importance that has only just begun to be investigated is the depo-
sition of fractal aggregates onto surfaces and their subsequent compactification. Such
phenomena are important in commercial processes and in areas such as geophysics.
Similarly, processes such as the sintering of fractal aggregates and their restructuring
via processes such as »ripening« and diagenesis have not yet been extensively explored.

A variety of experimental systems has been found that come close to realizing the
conditions associated with simple models such as DLA, cluster—cluster aggregation
models and droplet coalescence models. However, most experimental systems are quite
complicated and for this reason experiments are not generally the best way of testing
theoretical ideas. The results of experimental studies are of course the motivation for
all of the work described in this survey. The simple models which are the main subject
of this survey provide a foundation for the development of more complex models that
better describe the behavior of real systems. Some progress has been made in this
direction, but a systematic study of the kinetics associated with these models is for the
most part absent and I am aware of no serious attempts to compare the results of
simulations and experimental studies for these, more complex, models.
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SAZETAK
Simulacija kinetike agregacije: fraktali i skaliranje
P. Meakin

U mnogim procesima od interesa za fiziku, kemiju i biologiju, male Zestice se udruzuju i
stvaraju vece strukture. Fraktalna geometrija agregata malih éestica igra vaZnu ulogu u njiho-
vom fizickom ponasanju, ukljuéujudi i samu kinetiku agregacije. Kinetika agregacije cesto se
moZe opisati pomocu jednadzbe prosjecnog polja Smoluchowskoga. Geometrijska svojstva mjerne
skale (fraktalna geometrija) agregiraju¢ih nakupina (cluster) odreduju skalnu simetriju reakcij-
ske jezgre, koja pak odreduje asimptatski oblik raspodjele veli¢ine nakupina. U najjednostavnijim
sustavima asimptotska raspodjela veli¢ine nakupina moze se opisati pomocu skalnog oblika N(f)
~ g f(s/S(), gdje je Ns(t) broj nakupina veli¢ine s u vremenu ¢, a S(t) je prosje¢na veli¢ina na-
kupina u vremenu {. Oblik skaliranja moZe se upotrijebiti u uvjetima, kada jednadzba Smolu-
chowskoga ne osigurava odgovarajuéi prikaz kinetike agregacije.
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