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The paper deals with the intersurface forces in a system composed of
two charged (membrane) surfaces immersed in a uni-uni valent electrolyte,
effected by addition of an infinitely long, flexible polymeric chain carrying
charges of the sign opposite to the one fixed on the surfaces. The conforma-
tion of the polymeric chain as a function of the intermembrane separation
clearly displays the onset of an adsorption transition of the polymer charac-
terized by a bimodal polymer segment distribution function. Polymer adsorp-
tion in a confined system leads to formation of bridges between the boundary
surfaces that, in turn, contribute an attractive force component to the in-
tersurface forces. This bridging attraction couples with the usual electros-
tatic double-layer forces in such a way that the total intermembrane force
can become attractive or can even show two-phase equilibria.

INTRODUCTION

Stabilization of colloidal dispersions is an important field not only in chemistry
but also in biology, where different self-assembly mechanisms, generating aggregates
of different geometry, such as membranes, micelles or vesicles, are dependent on the
nature of the interactions between the aggregates.! These interactions are usually sub-
summed under the heading of the DLVO theory where they are thought of as being
composed of an attractive van der Waals component and an often repulsive double-
layer electrostatic component.? The latter is held to be the major stabilizing factor for
these systems. Only recently, it has been realized that the DLVO theory misses an im-
portant facet of the (bio)colloidal interactions connected with the flexibility of the in-
teracting surfaces, as is the case of e.g. a system of suspended planar membranes under
osmotic stress.® The thermally excited undulations of the interacting membrane sur-
faces usually lead to drastic modifications in the nature of the intersurface forces, in-
troducing an additional stabilizing interaction into the total force equilibrium. This in-
teraction is seen as stemming from the sterical exclusion of all thermal undulation
modes of the apposed membranes which would violate the impenetrability of the in-
teracting surfaces. It leads to novel features in the intermembrane forces, of which the
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most important one is the prediction of the so called unbinding transition for a stack
of suspended membranes under vanishing external (osmotic) stress.

In this contribution, we shall further extend the framework of the DLVO theory
by considering modifications in the intersurface forces, brought about by exchanging
(point) counterions confined between the interacting surfaces with a flexible, charged
polyelectrolyte chain. Flexible polymers are usually thought of as conferring additional
stability to the (bio)colloidal systems® in somewhat the same vein as the steric inter-
action between the undulating membrane surfaces enhances the repulsion provided by
the double-layer electrostatic (or, equivalently, hydration) forces. This stabilizing effect
of confined polymers is again a consequence of the steric exclusion of polymer con-
figurations that would violate the impenetrability of the bounding (membrane) surfa-
ces. However, with polymers bearing charges of the opposite sign to those residing on
the bounding surfaces, an attractive component to the total interaction may also be
introduced because the polymer segments can adsorb to the surfaces, thus enabling
formation of bridges between them. The magnitude of this bridging attraction can be
significant if compared to the van der Waals attraction or the double-layer repulsion
and can, thus, alter the force equilibria in a colloidal system.

The case of a flexible polyelectrolyte chain confined between charged surfaces has
been treated by various authors on different approximation levels starting from the
seminal work of Wiegel® where and adsorption transition of the charged polymer was
clearly established. The different approaches mainly belong to the continuous chain
models in external field,” lattice self-consistent field (SCF) theories® or computer simu-
lations.® In order to formulate the problem in a language that would be close to the
Poisson-Boltzmann formulation of the confined electrolyte problem, we recently intro-
duced the self-consistent field Poisson-Boltzmann approximation for polyelectrolytes
(SCF-PBP),!? being essentially a continuous chain SCF method that allowed us to com-
pare, in a most direct manner, the double-layer forces with and without the presence
of long, flexible polyelectrolyte counterions. Thus, we were able to assess the conse-
quences of the intramolecular forces (polymer flexibility) on the interactions between
macroscopic colloid aggregates. In what follows, we shall mostly follow the detailed
presentation given in ref. 10 where the reader can find all the relevant formal details
presented in unabridged form.

BASIC MODEL AND AN OUTLINE OF THE SCF THEORY

A combined model is utilized to specify the system under study, Figure 1. The uni-
uni valent electrolyte is described in terms of the primitive model with ionic charge
ey, dielectric constant ¢ and bulk activity {. For the level of subsequent approximations,
the hard core radius is not important. The polyelectrolyte chain is described in the
frame of a modified continuum version of the Baumgértner model!! with the proper
inclusion of the polyelectrolyte-ion interactions. In this framework, the polyelectrolyte
chain is described in terms of freely joined links of charge t per bead of length [, with
a total contour length equal to NI. The electrolyte as well as the polyelectrolyte chain
are confined between two impenetrable surfaces of surface area S separated by 2a and
each carrying a surface charge density o (presumed negative) of a sign opposite to 7.
All the electrostatic interactions are mediated by a Coulomb potential of the form
u(r,r’) = 1/4mee, |r-r’|. The configurational part of the Hamiltonian for this model
system can be written in the form
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Figure 1. The model system. Two charged surfaces (surface charge density o) at a separation 2a
with a uni-uni valent electrolyte and a charged polyelectrolyte chain (charge per bead 7) in-be-
tween. The dielectric constant ¢ is supposed to be the same in all regions of the space. Surfaces
are impenetrable to ions as well as to the polyelectrolyte chain. The sign of the charges residing
on the polymer beads is opposite to the sign of the fixed charges on the bounding surfaces.

N 2
3kT dr 1
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In the above equation, n runs over all the polymer beads with coordinates r(n) along
the chain of a length N. Indices i and j run over all polymer beads (e; = 7), all anions
(e; = —€¢) and all cations (e; = €;). ¢,(r) is the external electrostatic potential due to the
charges on the surfaces. In the above form of the Hamiltonian, the possibility of dis-
crete surface charges, as well as the presence of dielectric discontinuities, was disre-
garded since they rarely have any qualitative effects.!?

The statistical properties of a system specified by the above Hamiltonian were in-
vestigated in the framework of the SCF theory with an additional proviso that the poly-
meric chain is infinitely long and the ground-state dominance ansatz is applicable.!
We shall not dwell on the formalities of the SCF theory, which have been described
in all the relevant detail elsewhere.!® Let us just note here that the SCF equations are
derived in the form of three coupled equations. The first of them is a modified Pois-
son-Boltzmann equation that, besides a term corresponding to the local charge den-
sities of electrolyte ions, also contains a term proportional to the local charge density
of the polymer. The second equation is a diffusion type equation for the polymer Gre-
en’s function in the mean electrostatic potential. The third equation is an electroneu-
trality constraint in the form of a boundary condition for the derivative of the electros-
tatic potential at the charged boundaries.

The basic information on the statistical properties of the polymeric chain is con-
tained in the polymer Green’s function specifying the probability that a chain starting
from r will arrive to r’ after N segments (polymer links). In plan parallel geometry it
can be represented in the following form!®

G(r,x’;N) = G(z,2’;N) = p(2)y(2’)e EnN
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where z is the transversal coordinate limited to |z| < a, while Ey is the part of the
total free energy of the system stemming from the polymer configurations alone. The
sign of Ey determines whether the polymer is in the bound state or not. ¢ is the »den-
sity field« since in this representation the polymer segment density is given simply as

pl2) = %1/;2(’) with f tz ¥?(2)dz = 1. Due to the impenetrability of the boundary surfa-

ces, one must furthermore demand that y(z = *a) = 0. The SCF equations can also
be viewed as »equations of motion« for the polymer Green’s function in the mean elec-
trostatic potential mediated by the electrolyte ions, as well as the charges residing on
the polymer beads.

We shall now dwell on some particular solutions of the SCF equations for different
limiting cases. General properties of the solutions have been described elsewhere.!? In
the case of vanishing electrolyte concentration ({ - 0), we were able to derivel® the
following form for the »equation of motion« of the polymer Green’s function that go-
verns the statistical properties of the polymeric chain

162 dz;pz(zz) + E\w(2) i f |22’ |y?(2)dz'y(2) = L

It has the form of a one dimensional Hartree equation, where the range of the SCF
potential, defined as V(z2) = fjaa |z=2’|¢?(2")dz’, is the same as the dimensions of the

system. This makes it quite difficult to solve it in general since the SCF potential can-
not be approximated by its zero-th Fourier component as is often the case.!* We were,
however, able to find an approximate analytical solution to the above equation in the
limit where the linearization of the SCF potential is possible.! A numerical solution
is, nevertheless, needed to assess the soundness of the approximate analytical results.

The Hartree equation is solved numerically after introducing the dimensionless

variables y = % and x = A}®2, where A= —L In terms of these variables, the

total surface free energy density of the system (F/S) can be obtained as

F N 2 2
5= kTE, vgt g Pl ;;:? V(%) +x) = foy (¥(%p) +,) @)

where we took account of the electroneutrality condition, r% = o, while xy = 1}1{3a. The

2
second term in the above relation [i'e—oa clearly takes account of the electrostatic self-

energy of the system.

The numerical solutions for this particular limiting case are now presented in Fig-
ure 2. The forces between the bounding surfaces are clearly seen to be either repulsive
(at small intersurface separations) or attractive (at larger intersurface separations). Ap-
proximate analytical form of the intersurface forces was given elsewhere!? and is ap-
parently quite accurate for small and intermediate separations, if we compare it with
numerical results of Figure 2. The most important characteristic of the system is ob-
tained if one monitors simultaneously the conformation of the polymeric chain be-
tween the surfaces and the forces. The inset to Figure 2 shows the position of the max-
imum of the segment density distribution function (wpna) as a function of wy. When
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Figure 2. The dimensionless surface free energy density fL’ where f = & and fy are defined in
0

S
Eq. (2), as a function of dimensionless separation wy = ).B/3 a. The dimensionless pressure is de-
il 2% S
fined as p* = e }.’i . Positive pressure corresponds to repulsive intersurface forces and ne-
o \/o

gative pressure to attractive forces. The inset shows the position of the maximum of the segment
density distribution function (wy,,) as a function of wy. When wp,,, = 0, the density distribution
is monomodal with a single maximum in the middle of the intersurface space and depletion layers
in the vicinity of the bounding surfaces. On the other hand, when w, . # 0, the distribution of
the polymer is bimodal with two maxima located close to the bounding surfaces at w = *wg,,
and a broad depletion layer in the middle of the intersurface space.

Wna = 0, the density distribution is monomodal with a single maximum in the middle
of the intersurface space and depletion layers in the vicinity of the bounding surfaces.
This means that the conformation of the polymeric chain in this region of the inter-
surface separations is mainly governed by the steric exclusion of the polymer from the
regions close to the bounding surfaces located at w = *w,. On the other hand, for
sufficiently large intersurface separations when wp. # 0, the distribution of the
polymer is bimodal with the maxima located close to the bounding surfaces at w =
*Wpa and a broad depletion layer in the middle of the intersurface space. Thus, the
electrostatic attraction between the charges on the polymeric chain and those fixed to
the bounding surfaces promotes a soft adsorption of the chain to the surfaces. While
most of the chain is now in the vicinity of both bounding surfaces, those parts of the
chain that span the intersurface region act as polymer bridges that, due to their con-
nectivity, pull the surfaces towards each other. The adsorbed (or surface bound) con-
formation of the polymeric chain is, thus, the physical cause for the (bridging) attrac-
tion between equally charged surfaces. The transition from the monomodal (unbound
polymer) to bimodal (surface bound polymer) distribution function shows all the char-
acteristic of a second order phase transition where the order parameter is the location
of the maximum of the segment density distribution. The role of the temperature is
played by the separation between the bounding surfaces. This conformational transi-
tion of a confined charged polymer bears considerable similarity to the coil-stretch
transition in the bulk, studied by Mansfield,!®> which is accomplished by varying the
strength of an external field stretching the polymer. In our case, this field would cor-
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respond to electrostatic interactions between the charges on the polymeric chain and
those fixed on the two bounding surfaces.

The connection between the conformation of the polymeric chain between the sur-
faces and the nature of the forces (attraction or repulsion) does not seem to be direct,
as it was claimed on the basis of an approximate numerical solution of the Hartree
equation.!® From Figure 2 it is apparent that the pressure changes sign at w, = 2.0 while
the conformational transition of the polymeric chain sets in at wy, = 2.8. The origin
of this discrepancy is simple to track down. At the midpoint of the intersurface region,

the SCF potential can be obtained in the form V(z—+0) =(z) = 2fg uy?(u)du and it

is not in general equal to zero which, however, was the case for the linearized form
of the SCF potential used to obtain an analytical solution.!® Should we, thus, subtract
V(z=0) from V(z) in the Hartree equation, we would obtain that the value of wy, at
which wp., bifurcates from branch wp, = 0 to branch wp, # 0, coincides with the
minimum of the total free energy or, equivalently, with the point where the intersur-
face pressure changes sign. This observation would then lead to the general conclusion
that the change from repulsion to attraction is driven by the conformational transition
of the confined polymeric chain between two different states, characterized by mono-
modal and bimodal forms of the polymer segment density between the surfaces. This
transition enables creation of polymer bridges between the surfaces and, thus, promo-
tes effective attraction between the bounding surfaces.

The emergence of bridging attraction in this system is not the only thing that sets
it quite apart from the usual DLVO behavior.? One could argue that the peculiarities
of the interaction forces described above are due to the vanishing of the electrolyte
concentration and that, at finite values of electrolyte concentration, more standard
double-layer repulsive forces would overwhelm the attraction due to the electrostatic
polymer bridge formation. We have shown that this is not the case for a very broad
range of the system parametres.!’ Polymer bridging and the associated attractive for-
ces appear to remain the salient feature of the system’s behavior but they do not show
distinctive peculiarities in different regions of the parameter space. One of them, con-
nected with the existence of a »two-phase« equilibrium, will be given separate atten-
tion later on.

In the case of non-vanishing electrolyte concentration, there are additional effects
that govern interactions between the charged bounding surfaces of the system. Here,
the SCF theory with the ground-state dominance ansatz leads to a set of two coupled
non-linear equations for the local mean electrostatic potential ¢(z) and the polymer
»density field« y(2z)

2d
ELY s Bu-prow =0 @®)
and
2
eg, % - 2fe,sinh(Beyp) + 7 %1/;2 =0. 4)

Impenetrability of these surfaces to polymer beads is again reduced to the bound-
ary condition y(z = *a) = 0, while the appropriate boundary condition for the elec-
trostatic potential can be deduced from the electroneutrality condition. Clearly, in the
absence of the polymeric chain, the above two equations reduce to the standard Pois-
son-Boltzmann equation fro a uni-uni valent electrolyte.!? Also, for vanishing
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electrolyte concentration (¢ - 0), they reduce to Eq. (). With the polymeric chain
present, we can view Eq. (4) as a modified Poisson-Boltzmann equation, where the de-
pendence of the polymeric charge density on the mean electrostatic potential has to

be determined self-consistently, via the dependence of the polymer »density field« y(r)
on the electrostatic potential.

It is quite straightforward to deduce that the solution of Egs. (3) and (4) is
governed by the value of dimensionless separation wy = (ka), where « is the inverse

Cﬁe%

Debye screening length for a one-one electrolyte, viz. k2 = =" the value of the

Bewo

dimensionless surface charge I' = e , the value of the electrostatic coupling between

the polyelectrolyte chain density and the mean total charge density A = ﬂ—oi— g an nd the
product «l. The solution of the SCF equations is quite complicated in the space defined
by these parameters and we shall delimit ourselves only to a very special case, a
general analysis of the solutions being available elsewhere.!® The free energy of the
system described by Egs. (3) and (4) can be obtained analogously to the case of vanish-
ing electrolyte concentration Eq. (2) in the form

F N

< = kTE N + Fy, (%

where Fy is now the electric double-layer free energy? that has exactly the same form
in terms of the mean electrostatic potential ¢(z) as in the standard Gouy-Chapman

theory, except that the mean electrostatic potential is not a solution of the Poisson-
Boltzmann equation but of Eq. (4).

The consequences of the above two equations in terms of the forces between the
charged bounding surfaces are varied and have been described in detail.!° The upshoot
is, however, the same as in the simpler case of vanishing electrolyte concentration, viz.
that the polymer bridge formation introduces an additional attractive component into
the total force that can, for a fairly broad range of the system parameters, overwhelm
either the polymer steric exclusion forces or the more familiar double-layer repulsion.
There is an additional facet to the presence of the polymer chain in the confined
region, which we address below.

The scaling behavior of various components of the total interaction with respect
to the separation between the bounding surfaces is different.!? The steric exclusion of
the polymer at the surfaces has the scaling form of p(a - 0) ~ a-%.> The polymer bridg-
ing attraction was shown to have an approximate limiting form of
p(a + ») ~ —e~onsta”" 10 while the double-layer repulsion has the standard Gouy-Chap-
man limiting form p(a - ») ~ —e22.2 A glance at the scaling forms of these three com-
ponents of the total interaction pressure opens a possibility for a case where the in-
teraction could go from (steric) repulsion at small separation to (bridging) attraction
at intermediate separations and then back to (double-layer) repulsion at very large
separation. Such a behaviour has indeed been observed in numerical solutions of Egs.
(3) and (4) and is presented in Figure 3. The dependence of pressure on the intersur-
face separation has a form similar to the isotherms of a van der Waals gas, if we iden-
tify A (the dimensionless polymer charge) as the parameter playing the role of tempera-
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ture. This formal similarity of the force curves with the van der Waals isotherms opens
a possibility of thermodynamic equilibrium for the polymer system characterized by
the fact that it can show stable minima at two different separations for the same value
of intersurface pressure.

The pressure corresponding to this equilibrium, p.,, can be obtained from the Max-
well construction (see Figure 3) applied to the pressure curve between separations wg
and wg or by analyzing the dependence of the free enthalpy (chemical potential) on
the pressure.!® The form of the free enthalpy as a function of pressure is shown in
the inset of Figure 3 and clearly exhibits a loop structure typical of a first-order phase
transition. Thus, we could say that at p,, we have a coexistence of two »phases« in
thermodynamic equilibrium.

The first one, corresponding to a range of separations wy < wg, is characterized
by the fact that the total interaction between the surfaces is dominated by steric ex-
clusion of the polymers at the two bounding surfaces. Disregarding a region in close
proximity of peg, the scaling form of the pressure in this »phase« is p(a) ~ a™®. The
polymer is in the unbound conformation (monomodal density distribution) and is,
thus, mainly concentrated in the middle of the intersurface space, leaving depletion
regions close to the boundary surfaces. The second phase, wy > wp, is characterized by
the dominating contribution of the double-layer repulsion between the surfaces to the
total interaction pressure. The scaling form of the total pressure is p(a) ~ a-2 but its

Figure 3. Dimensionless pressure p* = P where p= B and pg = ssoxz for a system
: % aw, (S 0 e

with nonvanishing electrolyte concentration as a function of dimensionless separation wy = xa.

The free energy densityg for this system is defined in Eq. (5). The values of parameters A and

Iare: A = 2.5 and T’ = 5.45, corresponding to a surface charge density of one electron charge
per 2 nm? and k! = 1.2 nm.!° The van der Waals like form of the pressure curve is clearly
displayed and the Maxwell construction between separations w, and wg determines the equili-

brium pressure g .q at which a first order transition between the two »phases« sets in. The log-
scale displays the exponential behavior of the pressure in the region wg > wg. The inset show

the dimensionless free enthalpy (g*) as a function of the dimensionless pressure. The crossing
}Joint of the loop is equivalent to the equilibrium pressure obtained from the Maxwell construction.
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magnitude depends on the length of the polymer confined between the surfaces (i.e.
on A). The longer the polymer, the smaller is this effective double-layer interaction (see
Figure 4). This is a simple consequence of the fact that in this »phase« the polymer
is in the bound configuration (bimodal density distribution) and, thus, effectively
screens the fixed surface charges, diminishing them in overall magnitude. The contri-

bution of bridging attraction in this »phase« is not large enough to overwhelm the
double-layer repulsion.

Just like in the case of van der Waals isotherms, the pressure-intersurface sepa-
ration curves show a »coexistence region« where the first order transition from
w, to wp can take place, Figure 4. The necessary condition for the emergence of the
»coexistence region« is that the pressure at wy -+  is repulsive. This means that the
dimensionless surface charge I' has to be above a certain minimal value!® and, in fact,
the larger I the larger is the interval of A values that defines the »coexistence region«.
One can conclude that the first order phase transition, characterized by a discontinu-
ous change in the intersurface separation, would be present for a wide range of 1
(polymer charge) if only the fixed surface charges were large enough.

Also, it is exactly in the region w, < wo < wp that the confined polymeric chain
goes from a unimodal to a bimodal configuration. The structure of the w, -~ wp tran-
sition is quite extraordinary. First, we have a first order transition between two
»phases« characterized by two different values of intersurface separation. On top of
this, we have a second order of transition of the polymeric chain between a confor-
mation described by a monomodal segment density distribution and a bimodal density
distribution. This is indeed quite a complex state of affairs, brought about simply by
the connectivity of the polymeric chain and the interaction of its charges with the
charges residing on the bounding surfaces of the system. It has no relation to the for-

aosr~‘
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Figure 4. Dimensionless pressure (see Figure 3) as a function of the dimensionless separation
for T = 5.45 and 2.0 < A < 3.0. The coexistence region of the p* — w, diagram, where the first
order transition between the two »phases« described in the main text can take place, is bounded

by the dashed curve. It corresponds to values of 4 such that 2.25 < 1 < 2.6, the larger the di-
* mensionless surface charge I', the larger is the region of 1 values where one can observe this
first order phase transition. The similarity with the van der Waals isotherms is apparent while
the value of temperature is played by parameter A (dimensionless polymer charge). The pressure
decays exponentially with wg in the limits of large wy but its magnitude depends on the value of
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ces that are usually incorporated into the ordinary DLVO theory. It appears that poly-
mers can confer a much more varied behavior to colloidal systems than provide them
solely with a means for simple steric stabilization.

CONCLUSIONS

Attraction promoted by the bridging of the polymeric chain between the two
bounding surfaces appears to be the single most important feature of the system under
study. It has no correlates in the standard forces entering the DLVO theory and is sole-
ly a consequence of the connectivity of the polymeric chain.

In general. there are three tendencies that govern the interactions between
charged surfaces in the presence of a confined polyelectrolyte chain. First of all, there
is the entropic contribution of sterically excluded polymer configurations, amounting
to a repulsion between the surfaces. Direct electrostatic interactions between the sur-
faces correspond to the changes in free energy due to the electrostatic double-layer
overlap on approach of the two charged boundaries. Lastly, the soft adsorption of the
polymeric chain to the surfaces also stems from electrostatic interactions between the
polymeric charges and the charges fixed to the walls. However, in spite of the electros-
tatic nature of this effect, it promotes (bridging) attraction between the bounding sur-
faces, which can in certain cases overwhelm the other two repulsive contributions.

Finally, one should add a note on the experimental situation. At this point we were
not able to find any systematic investigation of forces between charged surfaces in the
presence of polyelectrolytes that could be used for a direct comparison with our theo-
retical predictions. However, investigations of the short range order of silica particles
in the presence of cationic polymers!® or direct measurements of forces between mica
surfaces in the presence of polypeptides!” do suggest that strong attractions exist be-
tween charged particles in a solution of oppositely charged polyelectrolyte. Further-
more, a study of the forces between mica surfaces in the presence of Poly-(2-vinylpyri-
dine),'® which is fully charged in acidic solutions, gives strong support to the bridging
origin of attractive interactions. Polyelectrolyte bridges were inferred from the force
curves following surface adhesion and were seen to disappear for shorter polymer
chain lengths. More systematic investigation of the behavior of a colloidal system in
the presence of charged polymers should provide us with sufficiently varied experimen-

tal data that would enable a detailed comparison with theoretical predictions described
in this contribution.
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SAZETAK

Konformacijski prijelaz nabijenoga polimernog lanca izmedu dviju
suprotno nabijenih povrsina

R. Podgornik

Prouéavane su medupovrsinske sile u sustavu sastavljenom od dviju nabijenih (membran-
skih) povrsina uronjenih u 1:1 valentni elektrolit, 5to je postignuto dodatkom vrlo dugog fleksi-
bilnog polimernog lanca, ¢iji su naboji suprotnog predznaka onima fiksiranim na povrsinama.

Konfiguracija polimernog lanca kao funkcija medumembranske udaljenosti jasno otkriva po-
stojanje adsorpcijskog prijelaza polimera, koji je karakteriziran bimodalnom raspodjelnom fun-
kcijom polimernog segmenta. Adsorpcija polimera u omedenim sustavima uzrokuje stvaranje mo-
stova izmedu granié¢nih povrsina, $to predstavlje jednu komponentu medupovrsinskih privla¢nih
sila. Ta »mostovna privlaénost« spreZe se s uobi¢ajenim elektrostatskim silama dvostrukog sloja,
tako da ukupna medumembranska sila moZe biti privla¢na ili moZe pokazivati ¢ak dvofaznu rav-
notezu.
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