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Effects of fractal structure on the magnetic resonance phenomena are
discussed. Fractal theory is a mathematical tool used to describe geometri-
cally complex disordered systems. In principle, one can get characteristic in-
formation about a fractal system via measurements of the relevant spectro-
scopic parameters, which are related to the fractal structure and fractal
dynamics. Here, it is demonstrated that the surface fractal dimension, frac-
ton dimension and the random walk dimension can be measured by means
of nuclear magnetic resonance and electron paramagnetic resonance spectro-
scopy. It is further shown that nuclear magnetic resonance relaxation data
allow determination of the non-exponential correlation functions, which
reveal the fractal structure of the potential and of the corresponding free
energy. The concept of the time fractal sequences of events, leading to the
stretched exponential correlation functions, is also discussed.

INTRODUCTION

The aim of this paper is to discuss the effects of the fractal structure on the mag-
netic resonance phenomena. Fractal theory is a mathematical tool used to describe
geometrically complex disordered systems. Geometrical description of an ordered crys-
tal structure is based on translational symmetry. The crystal is completely described
in terms of one unit cell. Less symmetrical systems do not allow such a simple descrip-
tion. However, such systems may posses dilation symmetry. This means that a part
of the object is similar to the whole object at an appropriate magnification (Figure 1).
If the resemblance is complete, the object is called a mathematical or non-random frac-
tal. In nature, however, there are many objects where similarity holds only in some
average way. These refer to such diverse examples as the shape of a cloud or a coas-
tline, sandstones, polymer melts and solutions, aggregates, lung tissue, different gels
and other amorphous systems or the mass distribution in the universe. These objects
are called physical or random fractals. A fractal object!»>® can be described in terms of at
least three different parameters, namely the dimension of the embedding Euclidean
space d, the fractal dimension d and the spectral (fracton) dimension d . For regular
non-fractal objects, all these dimensions are equal (d = d = d). The same is true if the
observation is made on a length scale R that exceeds the coherence length £ of the
fractal system, i.e., for R > & For R < &, however, d #d # d where d and d may



440 R. BLINC ET AL.

be non-integral. In fractal systems, the fractal dimension describes the geometrical
structure of the object , namely the dependence of the mass on the length scale:
m « R, where m is the mass of the sphere with radius R. The spectral dimension de-
scribes the density of vibrational states on a fractal lattice p(w) x w?-! and reflects the
topological structure of the fractal, which is in general different from the geometrical
structure: d < d (see Figure 1).

ALL LA

Figure 1. Sierpinski gasket. The fractal triangular Sierpinski gasket is constructed from a filled
triangle in terms of a recursive procedure. At each step, all the central triangles are removed,
as shown. After an infinite number of iterations, the remaining object? will have the fractal di-
mension of In 3/In 2 = 1.585 and the fracton dimension of 2 In 3/In 5 = 1.365, the latter being
close to the value for an infinite percolation cluster d = 4/3.

In irregular, but self-similar systems, there is no translational invariance but scale
invariance and dilation symmetry. Scale invariance for a fractal system implies that
if m « R? then for a change of scale R - A R one has

m@AR) = A m(R). (1)

In addition, the fractal dimensionality of a random walk? constrained to the fractal is
d =204 (2)

Fractal Potentials

If one observes thermodynamic quantities in a fractal system at the proper scale,
the structure of the thermodynamic potential may also be fractal. Diffusion of a par-
ticle in a fractal system can be modified by the fractal structure of the potential. An
illustration of a random fractal potential is given in Figure 2, where each potential well
is a microstructure of larger wells. The fractal potential, therefore, consists of an in-
finite number of local minima and the fractal dimension of a potential is defined by
the following relation

N(e) x e, (6))

where ¢ is the length scale and N(e) is the number of local minima observed on scale
e. Here scale ¢ is a parameter characterizing the potential, and the above relation is
valid only in a limited interval of ¢. However, in such an interval, one may have mo-
lecular motion which accounts for the magnetic resonance relaxation.

The fractal dimension of a random potential d, can take on any value between 0
and 1. For the description of motion in a fractal potential, it is essential to know the
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Figure 2. Random fractal potential. Each potential well is made up of smaller wells that are si-
milar to the original one. Here, small wells at level j-1 (see insert) are joined together into a
larger well at level j. The wells at level j make together a larger well at level j+1. On a very
short length scale, the potential barriers become smaller than the average thermal energy kT.
Thus, the particle does not feel the details of the potential and the level is denoted as j=1.

potential relief. In the case of a scaling fractal potential, the potential barriers are de-
scribed by the scaling relation

UxU, e, 4)

where U, is a constant and v is the scaling exponent. In this case, one deals with a
mountainlike potential relief.

Therefore, such a potential, has a hierarchical structure of local minima and dif-
fusion proceeds from the largest wells down to the smaller ones. At a given tempera-
ture T, cutoff is made so that the potential is smooth for the distances where the po-
tential barrier U, is smaller than the thermal energy kT. The potential wells are
labelled by subscript j which takes on value 1 at the smallest wells and value j for larger
wells which are made up of the subwells labelled by j-1 (see Figure 2). The lifetime

of a particle in a given potential well at level j is expressed in terms of the lifetime in
the subwell at level j-1 as

7; < 7;_, exp(U/kT). (5)

Here, relaxation times are independent of the fractal dimension, only the potential
barriers are important. Taking into account the lower cutoff wherej = 1, the relaxa-
tion time 7; can be expressed as
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J

T; % 7, exp z U /kT (6)
n=1
or
1(e) < 7, exp(U_e/kTv) . @)

Then, the mean square distance for long times v where U, >> kT is given by

2/v
L lnti) , ®)

) = (U

o

whereas for shorter times, where the potential appears flat, the mean square distance
is proportional to time .

Time Fractal Behaviour

Another example of fractal behaviour is the case of fractal time stochastic proces-
ses, where the time sequence of events is fractal. This model is used in the case of
dielectric relaxation in amorphous materials. Here relaxation is treated in terms of the
defect-diffusion model, governed by a fractal time stochastic process, where the mean
duration between defect movements is infinite.> Let us consider a process where the
time between events is a random variable and y(?) is the probability density that an
event occurs at time 9 after the previous event. Here, 9 is a dimensionless time, defined
as the ratio between the real time ¢ and a given time constant ¢,. The mean time be-
tween events is

@ = [ dp@) a0 9)
0

and the median time ¥,, is defined as

0m
[ v a0 = % (10)
0

If (J) is finite, a natural time scale exists in which we can measure time events () =1).
If (9) is infinite, no natural time scale exists, though events do occur and 1, is finite.
In this case, the time sequence of events occurs in self-similar clusters, like points in
a Cantor set (Figure 3). Such a self-similar time event probability density is, for in-
stance, a sum of Poisson terms:

y(d) = Q—;ﬂ > pri™ exp(-1" 9), A<p<1. 11
n=1

Here, 4 is the inverse expectation time (9)~! for the first random process (n = 1), which
occurs with the probability 1-p. 1 is also the ratio of the time scales for the random
processes where the difference in n equals 1. An order of magnitude longer duration



FRACTAL EFFECTS IN MAGNETIC RESONANCE 443

between events (A" versus 1*-!) is by an order of magnitude less probable (p" compared
with p"-1). This mirrors the spacings of a Cantor set.

In Laplace transform space one finds the relation

= s? ool of -
B ] s 2w ) L om0
This scaling equation has the solution’
*(s)=1+s*K(s) + (1 - = ; a=Inp/lni (13)
Px(s) (s) +( p)ngll‘l’ /N

where K(s) is an oscillatory function periodic in In s with a period In 4. If 0<a <1, then

ayx(s=0) _

i as

(14)

and a has the role of a fractal time dimension.

It has been recently realized that for many glasses, polymers and other random
media, the time decay of the correlation function follows the same stretched exponen-
tial law

&(®) = exp[ —(v/7,)] , (15)

i.e. the correlation function has the Kohlrausch-Williams-Watts form. Here the ex-
ponent a equals the time fractal dimension a. The above form of the auto-correlation
function has been derived for:

(i) Direct excitation transfer from donor to receptor (defect) on a fractal structure;
(ii) Hierarchically constrained dynamics, where relaxation occurs in stages and the

constant imposed by a faster degree must relax before a slower degree of freedom
can relax;

Figure 3. Three iterations on the Cantor bar. If the spacing between the remaining bars is con-
sidered to represent the time between events in a process, then a self-similarity of event times
is introduced. After an infinite number of iterations of the Cantor bar, the remaining Cantor set
will have a regular self-similarity and a fractal dimension of In 2/In 3.
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(iii) Fractal time defect diffusion, where migrating defects trigger relaxation of e.g.,
frozen dipoles on a fractal, self-similar structure;

(iv) The dynamics of a random Ising model.

Spatial Fractal Dimension

While the physics behind these models is very different, the underlying unifying
concept is a scale invariant distribution of relaxation times.

Spatial fractal dimension is usually determined by measuring the length, surface
area or volume of the object on different length scales. For natural objects, the relation
m « R? holds only in a limited length scale interval. An example is the measurement
of the fractal dimension of a coastline. Here, the line is more or less rough so that
the apparent length is larger if measured on a smaller scale. If the fractal dimension
of the coast is d, then its length is proportional to R% where R is the length scale.
One can define a d — dimensional volume Lz = N(R) R? which is a constant but cannot
be measured directly. Instead, one measures the length at different length scales:
L(R)=N(R)R where R is the length of the measuring stick and N is the number of
sticks that can be placed on the object. Since the number N(R) is of the same order
of magnitude for one dimension as for d dimensions, L(R) is proportional to R!~? and
d can be determined from the slope of the logarithmic plot of L(R) versus R. In this
way, fractal dimensions of different coastlines have been measured.! The value is be-
tween 1 and 2, depending on the roughness of the line.

Fractal dimension can also be measured by means of nuclear magnetic resonance®
(NMR) and electron paramagnetic® (EPR) techniques. The rest of the paper is devoted
to the analysis of the effects observed in magnetic resonance arising from the fractal
nature of the systems studied.

THEORY OF NMR IN FRACTAL SYSTEMS

Fractal geometry produces a number of unconventional effects in magnetic resonance
(MR) experiments which can be exploited to reveal the fractal and fracton dimension
of the system. These effects can be classified into four different groups, namely
() non-exponential magnetization decay or recovery in systems where the spin-lattice

relaxation rate is caused by dipolar interactions, revealing the fractal dimension d,
(i) anomalies in the frequency and temperature dependence of the spin-lattice relaxation
rate produced by the fractal effects, revealing the fracton dimension d or the time
fractal dimension «,
(iii) anomalies in magnetic field gradient NMR and EPR self-diffusion measurements
revealing the fractal random walk dimension d, = 2d/d,

(ivy NMR imaging at different scales revealing the fractal dimension via m « R2.

Determination of the Fractal Dimension from the Magnetization Recovery in
Systems where the Spin-Lattice Relaxation Rate is Determined by Dipolar
Interactions

Contrary to the small-angle scattering techniques conventionally used to charac-
terize the geometrical arrangement of the fractal systems via an analysis of the scat-
tering intensity in reciprocal space, NMR is capable of determining the mass-to-dis-
tance relation in real space, m(r) « 4, with d being the fractal dimension. In the NMR
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experiment of Devreux et al.,” a magic angle spinning (MAS) NMR probe has been used
to eliminate spin-diffusion between 2°Si nuclear spins of the fractal silica aerogel sample,
so that the recovery of the °Si magnetization is left to reflect the spatial repartition
of the 2%Si nuclear spins which relax to their equilibrium polarization by dipolar flip-
ping with paramagnetic ions diluted in a fractal lattice. In the absence of other contri-
butions to the relaxation, the magnetization at time ¢ after saturation relaxes towards
the equilibrium value as

©

M) f [1 - exp(—At/rG)] p(r) dr. (16)

0

Here, p(r)dr is the equilibrium 2°Si magnetization within a small slice at a distance r
from an electronic spin of the paramagnetic ion. The nuclear spin relaxation rate due
to direct dipolar coupling with a fixed paramagnetic impurity located at a distance r
is given as

YT, = A/S, an

where constant A is independent of r. Hence, as the time constant for the dipolar cou-
pling relaxation increases with the distance as r® (17), the recovered magnetization at
time ¢ after saturation will be that of the spins contained within a sphere of radius
r = (Af)!/%. The exponential function under integration is assumed to take the value
zero inside the sphere and 1 outside the sphere. The recovered magnetization is, thus,
proportional to the equilibrium magnetization M,(r) inside the sphere of radius r:

M(t) = M, [r = (AD)V5]. (18)

The equilibrium magnetization M,(r) is proportional to the number of spins inside the
sphere and, hence, to mass m(r):

M(r) < m(r) « ¥ = (A)¥5. 19
In view of (18), the magnetization recovery M(f) will show the time dependence
M(t) « t¥5, (20)

Measuring the magnetization recovery over a long period of time, enables one to deter-
mine the fractal dimension d, provided the effect of spin-diffusion can be eliminated.

The measured 29Si magnetization recovery in aerogels and alcogels is found to ex-
hibit a power law behaviour (20) over a very large time range up to five orders of mag-
nitude, which reflects the mass distribution m(r) «< r4, providing information about the
fractal dimension d. In particular, a value d of 2.2 is found in agreement with that de-
termined by small angle X-ray scattering.”

Spin-lattice Relaxation in Fractal Systems

Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)
relaxation in a disordered system exhibit some peculiar characteristics. Since the high
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energy vibrational states of the system are highly localized fractons, one expects a
broader distribution of the relaxation rates leading to a non-exponential magnetization
decay. In crystals, where the vibrations of the lattice are described with phonons, the
nuclear or electron spin relaxes via direct (one phonon) or Raman (two phonon)
processes. In the Raman process, the electron or nuclear spin relaxes by absorbing one
quantum of vibrational energy at w; and emitting another quantum at w; so that their
energy difference equals the Larmor energy, h(w; — ;) = hoy.

In electron paramagnetic relaxation, the Raman process is faster than the direct
process when the temperature is high enough to populate the vibrational states with
energy higher than the Larmor energy. The corresponding temperature is usually a
few K. On the other hand, in the nuclear spin-lattice relaxation, direct processes will
be generally dominant for overdamped modes, whereas for underdamped modes
Raman processes will dominate.

In disordered systems, the same description can be applied if the phonons are
replaced by localized oscillation states, known as fractons. This leads to changes in
temperature and Larmor frequency dependence of the spin-lattice relaxation rates.
Here, two different cases should be distinguished:

Direct Processes

The spin-lattice relaxation rate for the underdamped modes is proportional to the
temperature and some power of the Larmor frequency. The calculation of Orbach et
al® gives the following expression

= N(w;) w¥~! coth Tty q=d,d/d (21)
T, R kT’ g%

where parameter d, describes the range dependence of the fracton wave function:
® o« exp(—r4®). The value of d, can be greater than 1 due to the fact that an exponen-
tial decay on the fractal is distorted in real space, but it cannot be greater than dimen-
sion d;, of the shortest path between the two points. d;, is defined so that the
shortest path between the points at a distance R is proportional to Rmin and it is
usually not greater than the fractal dimension. For phonons, g = d, = 1. An example
of the fractal system is a three dimensional percolation network where d = 4/3 and
g = 0.74. Other fractal systems can generally be characterized by non-integer values
of the above parameters. In the high temperature approximation kT >> hwp, relation
(21) is simplified to

—xTo2+d-3, (22)

Raman Processes

Raman processes at low temperatures can reveal information about the fracton
dimension of the system. At low temperatures, below the Debye temperature, the EPR
spin-lattice relaxation rate is proportional to some power of temperature

1

= 3+2d
T, T (23)
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if relaxation between time reversed magnetic states of half integral spin takes place
(Kramers process). Here, d is dimensionality of the sample. The low temperature EPR
spin-lattice relaxation data on different biopolymers® were explained by non-integer
dimensions of d between 1 and 2.

However, in this case, the localization of the fracton wave function should also be
taken into account so that the above expression for disordered systems is in fact given by!°

1 -
o 49-1+2d
TI“T~ o (24)

It means that the non-integer exponent reveals the fractal nature of the observed sys-
tem, but this is not sufficient for the determination of the fracton dimension. How-
ever, one can test two different hypotheses, viz. that the vibrational states can be
described classically (@ = 1) or that the fractal dimension takes the value d = 4/3,
which is characteristic of a large class of fractal objects.? Here, the ratio d,/d can be
determined for both values of the fracton dimension d. The correct value of the frac-
ton dimension is chosen so that the ratio d,/d is smaller than one and larger than 1/d.

It is worth noting that the exponent for non-Kramers processes is the one calcu-
lated above minus 2. This type of behaviour has indeed been observed for nuclear
quadrupolar relaxation in glasses.!%!!

Since the above equation (24) connects three different fractal parameters, one
should measure two of them separately in order to determine the remaining one.

Time Fractal Sequences of Events

The spin-lattice relaxation rate T;~! depends on the spectral density of the auto-
correlation function g(zr) at the nuclear Larmor frequency wy:

Ti « J(w) =2 [ cos(wt) g(r) dt . (25)
1 0

In the case of organic glasses, the stretched exponential correlation function (15)
8(z) = exp[—(7/7,)"] (26)

can be used. In the fast motion regime, where w;7,<<1, one finds
10
Jo) =27 T(/a), wrF<<l. @n

Here, T is the Euler gamma function. On the other hand, in the slow motion regime,
where w; 7, >> 1, one finds:

T = griaraT@sin( 5], o<a<t. (28)
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For the intermediate case, one cannot find an analytical expression for J(w,) for a ge-
neral value of a. Thus, the value of a can be determined by measuring the Larmor
frequency dependence of the spin-lattice relaxation rate in the slow motion regime.

Fractal Dimension and the Collapse Transition in Gels

The fractal dimension can be measured in a system that changes the length scale
during observation. Gels'? can change their volume and, thus, also the length scale
very rapidly due to a small change in external conditions. Gels consist of a polymer
network immersed in a liquid (e.g. water). The water prevents the polymer network
from collapsing and the network prevents the water from flowing away. Drastic chan-
ges in volume can be obtained by small changes in temperature, electric field, pH or
in some cases simply by detaching the gel from the test tube surface. Such a change
is termed a collapse transition.

The increase in the surface to volume ratio at the collapse transition of gels can
be exploited to allow an NMR determination of the fractal dimension of the gel surface
in the liquid state, where this quantity is hard to measure with other techniques. In
this approach,'!3 one measures the ratio between the spin-lattice and the spin-spin
relaxation times T';/T; of the liquid component (e.g. water), and the ratio of the masses
or volumes of the gel before and after the a collapse transition.

The method is based on the fact that in the fast exchange two site model the
knowledge of all the relaxation rates allows determination of the bound water fraction
which is proportional to the surface area of the gel. Namely, in this case, the observed
relaxation rate is a weighted average of the relaxation rates for a given phase:

1 I 1
=T ey 29)
Ti g Ti,b ( ’7) Ti,f

Here, i can be either 1 or 2, denoting the spin-lattice relaxation and the spin-spin
relaxation, respectively. The bound water fraction 7 is determined as the number of
bound water molecules divided by the number of all water molecules present in the
system. Subscripts b and f stand for the relaxation rates of the bound and the free
water phases, respectively. If one measures the relaxation rate 1/7, of the gel, the
relaxation rate 1/T;, of the bound water phase and the relaxation rate 1/T;, of the
free water phase, the bound water ratio 7 can be determined directly from (29). If the
bound water layer is uniformly distributed over the gel surface, the bound water frac-
tion 5 is proportional to the surface area S

KS
1= 30)

where V is the volume of water inside the gel and K is the thickness of the adsorbed
water layer. Since water occupies almost the whole volume of the gel, the water volume
can be assumed to be three dimensional and

n <« RPs—Dy 31)

where Dy is the unknown surface fractal dimension and Dy is the water volume dimen-
sion which is assumed to be 3. Since the volume of the water is also proportional to
its mass, one can determine the surface fractal dimension Dg by measuring the change
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in the bound water ratio 7 and the change in mass m at two different scales (i.e. at
the collapse). The surface fractal dimension is then given as

In(n,/n,)
Dg=D, [1 = Trlm?/—mg] : (32)

Here, 5, and m, are quantities measured before, and 7, and m, are those measured
after the collapse transition.

In the actual experiment, the bound water relaxation rates are difficult to measure,
so they are calculated by means of the BPP approximation for the relaxation with a
single correlation time.!* The surface fractal dimensions for fibrin gels, blood and plas-
ma clots have been determined in this way making use of the collapse transition.!%1?

Stretched Exponential Correlation Functions Observed by NMR

Relaxation in organic glasses depends on the correlation functions for the charac-
teristic motions of the system. The details about the correlation function can be
revealed by the temperature dependence of the NMR lineshape and the spin-lattice
relaxation. The lineshape can be expressed with the help of the correlation function
g(v) as!t

I(w) = } G(t) et dt (33)
E(w)(; G(t) €“°", (34)

where
G(t) = exp [-wg } t -1)g,( dr] 35)

0

with @,2 = (w?). Measured lineshapes can be fitted to the above expressions. In the
experimental case where the lineshapes of the organic glass COANP have been fitted
for a large temperature interval,!> the best agreement has been obtained with the
stretched exponential correlation function g(r) (15,26) for @ = 0.28 and a thermally
activated correlation time 7, = 7, exp(E, /kT) with E, = 1.39 eV and 7,, = 5-107's.

NMR and EPR Self-Diffusion Measurements and the Fractal Random Walk
Dimension

NMR and EPR self-diffusion measurements are usually performed by means of
pulse field gradient (PFG) technique. The nuclei or electrons are labelled by their Lar-
mor precession frequencies in a spatially varying magnetic field and one observes sig-
nal attenuation due to translational self-diffusion. The magnetic field gradient is ap-
plied in the form of two pulses of magnitude G, duration J and separation A, which
thus represents the diffusion time. The field gradient pulse sequence is superposed on
the Hahn spin echo sequence. The translational self-diffusion coefficient
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D=3 [ @Opw)a (36)
0

and the ensemble averaged mean square nuclear or electron displacement in the direc-
tion of the field gradient (x?) are conventionally determined from the echo attenuation

A(G)/A(0) = exp(— 3 7% G2 8% (%) @7
or
A(GY/A(0) = exp[-y* G D 8% (A — ¢/3)] . (38)

Here, the magnitude of gradient G or duration & can be varied in order to determine
the diffusion coefficient D. Here, v is the velocity of the particle and y is the gyromag-
netic ratio.

In a continuous wave (cw) field gradient experiment, where the field gradient is
on for a time ¢, the echo attenuation is given by

A(GY/A(0) = exp(—y* G2 D £/12) . 39)

The above expressions are correct only for classical unrestricted diffusion at times
that are long on a microscopic scale.

The relation between the mean square displacement (x2) and diffusion time ¢ for
long time is given by the Einstein relation (x2) « ¢%4w (t-c), where for Euclidean
space d =d and d, = 2. For a fractal system with R <&, on the other hand, one has

d, = 2 d/d, where the spectral dimension d is generally smaller than the fractal
dimension d, so that d, = 2.

From the Einstein relation, the apparent self-diffusion coefficient can be defined as
146 o
D) = 7o ! - (40)

For Euclidean geometry (d, = 2), the self-diffusion coefficient D is obviously not time
dependent. On the other hand, for a fractal system, the apparent self-diffusion coef-
ficient can be time dependent, if R < £, but it becomes time independent for very long
times when a crossover to Euclidean behaviour occurs (R > £). The time dependence
of the echo attenuation and the random walk dimension d, is determined by fitting
the self-diffusion coefficient to the power law D « ¢%dw -1,

NMR Imaging at Different Scales

The simplest way to determine the fractal dimension by NMR is to use NMR im-
aging at different scales. Such a study has been recently performed in hydrating ce-
ment pastes where NMR imaging at different scales was used to determine the volume
fractal dimension Dy, whereas the surface fractal dimension Dg was determined from
the spin-lattice relaxation induced by the internal surface of the cement gel.16
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Figure 4. Dependence of the apparent self-diffusion coefficient D on the diffusion time A for a
polyethylene melt!” at T = 434 K (polyethylene molecular weight My, = 28900).

SOME EXPERIMENTAL RESULTS AND DISCUSSION

The first evidence for the fractal behaviour of matter detected by MR came from
EPR measurements of temperature dependence of the spin-lattice relaxation time in
various proteins.® Since that time, many different techniques for measuring the fractal
properties by MR have been developed. For example, the fractal dimension of gels can
be measured by inducing the collapse transition of the gel. The surface fractal dimen-
sion of different fibrin gels, blood clots and plasma clots have been measured in this
way.!213 The results show that the measured relaxation rates allow characterization
of the state of water leading to determination of the gel surface area ratio before and
after the collapse transition. The fibrin network in blood and plasma clots forms a self-
similar porous fractal structure characterized by a surface fractal dimension of 1.7 to 1.9
in plasma clots and of 1.3 to 1.7 in blood clots, respectively. Since the fractal dimension
is smaller than 2, the structure is rather open despite of the fact that it prevents the
water from flowing away.

Surface fractal dimension can also be measured in materials devoid of a collapse
transition, such as aerogels, as demonstrated by Devreux et al..” An example of such
a case is the use of the MAS NMR spectroscopy, which allows determination of the
fractal geometry in real space on a microscopic scale and, in particular, determination
of the fractal dimension. Fractal dimensions obtained in this way are in good agree-
ment with small angle X-ray scattering (SAXS) results. The values found are close to
three for dense samples as expected, while they are between 2.1 and 2.3 for fractal
aerogels. This is in agreement with the SAXS result, where a fractal dimension of 2.3
has been found. The volume fractal dimension has been recently measured in hydrat-
ing cement pastes by NMR imaging.
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In addition to the fractal structural information illustrated above, one can also ob-
tain dynamic information about fractals by measuring the self-diffusion. Thus, PFG
experiments have been carried out and have shown!” that d,, >2 in molten polyethylene
(Figure 4), while paraffin melts behave classically (d, = 2). Also, in polyethylene melts
for long diffusion time A, when R >&, D(A) crossed over to a constant value (D # D(A))
as expected. Dynamic information can also be obtained by measuring the frequency
and temperature dependence of the NMR spin-lattice relaxation time, which is con-
nected to the vibrational spectrum of the system.!819

CONCLUSIONS

The fractal geometry of matter influences also the measured spectroscopic properties.
Magnetic resonance is a convenient tool for the measurement of both the fractal
geometry and the fractal dynamics. We have shown in particular that:

(1) The surface fractal dimension can be measured either by observing the non-expo-
nential magnetization recovery in a system where the spin-lattice relaxation is caused
by dipolar interactions or with the help of the collapse transition in gels;

(ii) The random walk dimension can be determined by an NMR or EPR self-diffusion

experiment. Thus, independent determination of the fractal dimension reveals also
the value of the fracton dimension;

(iii) The fracton dimension can be determined from the temperature and frequency de-
pendence of the spin-lattice NMR or EPR relaxation rates;

(iv) Stretched-exponential correlation functions are consistent with the fractal structure
of the potential and of the corresponding free energy;

(v) The volume fractal dimension can be measured by observing the mass-length rela-
tion m « R? by NMR imaging with different magnifications.

The field is just being opened and many more new applications of magnetic re-
sonance in the study of the fractal geometry of matter are being developed.
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SAZETAK
Fraktalni efekti u magnetskoj rezonanciji
R. Blinc, G. Lahajnar i A. Zidansek

Raspravlja se o utjecajima fraktalne strukture na fenomene magnetske rezonancije. Frak-
talna teorija jest matematicki alat koristen za opisivanje geometrijski kompleksnih neuredenih
sustava. Mjerenjem relevantnih spektroskopskih parametara na¢elno se mogu dobiti karakteri-
sti¢ne informacije o fraktalnoj strukturi i dinamici. U radu je pokazano da je s pomoéu nuklearne
magnetske rezonancije i elektronske paramagnetske rezonancije mogude mjeriti povrsinsku frak-
talnu dimenziju, fraktonsku dimenziju i dimenziju slu¢ajnog hoda. Takoder Je pokazano da nu-
klearno-magnetski relaksacijski podaci omogucavaju odredivanje ne-eksponencijalnih korelacij-
skih funkcija, koje otkrivaju fraktalnu strukturu medumolekulskih potencijala i odgovarajucde
slobodne energije. Raspravljen je koncept vremensko-fraktalnih sekvencija dogadaja, koje rezul-
tiraju eksponencijalnim korelacijskim funkcijama.



	scan439
	scan440
	scan441
	scan442
	scan443
	scan444
	scan445
	scan446
	scan447
	scan448
	scan449
	scan450
	scan451
	scan452
	scan453

