CROATICA CHEMICA ACTA CCACAA 65 (1) 29-54 (1992)

ISSN 0011-1643
UDC 451

CCA—2039 Original Scientific Paper

Methodological Aspects of the Solvation Models
Based on Continuous Solvent Distributions

Jacopo Tomasi

Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35,
I-56126 Pisa, Italy

and
Rosanna Bonaccorsi

Istituto di Chimica Quantistica ed Energetica Molecolare CNR,
Via Risorgimento 35, 1-56126 Pisa, Italy

Received July 17, 1991

Some general aspects of the solvation models based on an effective Ha-
miltonian and a continuous solvent distribution are presented and discussed.
The emphasis is placed on the versatility of the approach. The computational
procedures may range from very sophisticated quantum-mechanical formula-
tions to simple classical expressions based on the use of rigid atomic charges.
The model may be applied to the study of very different phenomena, by in-
troducing minor changes in it. The necessity of complementing this approach
with others of a different nature, to get an efficient progress in our under-
standing of the chemical behaviour of systems in solution, is also stressed.

Examples are drawn by applications of our model, but the discussion is
valid also for other computational models.

1. INTRODUCTION. THEORETICAL MODELS FOR SOLUTIONS:
FROM PHYSICS TO CHEMISTRY

In the recent evolution of theoretical methods addressed to the study of matter
in the fluid state, it is easy to detect a progressive tendency of the models towards
»molecularization, i.e. a tendency to pay more attention to a realistic description of
the molecular aspects of the model. In other words, these methods are acquiring a
more evident chemical flavor.

Chemistry has a complex relationship with physics. Methodological and conceptual
tools of theoretical chemistry are derived from physics, as it is well known, but theo-
retical chemistry has been able to preserve and to develop the essential aspects of the
chemical approach to the study of matter. The chemists understand quite well the
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meaning of the expression »chemical approach«, a concept not easy to reduce to a
short and comprehensive definition, but in which we may identify, for our present sco-
pes, the close scrutiny of the differences in behaviour of portions of matter exhibiting
small differences in composition and/or in other analogous parameters.

The quantum mechanical model for molecules, elaborated by physics, was recast
several decades ago into formulations more appropriate to the specific needs of che-

mistry and gradually developed into a new branch of chemistry, molecular quantum
chemistry.

In these last years, there has been a similar appropriation by chemists of the phy-
sical models for liquids. This appropriation is made easier by the natural evolution of
models and methods towards a description of finer aspects of the problems under ex-
amination. Finer descriptions also pay more attention to the molecular details of the
constituting elements. At a given moment, the evolution assumes the aspect of a qua-
litative change: from that moment any further progress of the model is no more ruled
by considerations on the physical relevance of the modification but it is addressed to
a better study of chemistry in solution.

Computer simulation may be taken as an example. A very large amount of infor-
mation on fluid systems has been obtained by applying simulation methods to very
simple material models (c.g. hard spheres). The evolution of the research has lead to
consideration of more complex material models (e.g. disks, soft spheres, spheres with
a dipole, efc.) and eventually to models including detailed descriptions of the geome-
tries and properties of the molecular components of the fluid. At this point of its evolu-
tion, the approach is ripe for chemical use. However, this evolution has not been a
mere deterministic effect of the laws of increasing complexity operating in all human
activities: it has been purposefully guided with foresight and determination by a limi-
ted number of persons. In the case of computer simulations, the leading man has un-
doubtedly been E. Clementi;! his stimulus has excited innovative contributions by
others,? and nowadays computer simulation is the main road to theoretical and com-
putational studies of chemistry in solution.

2. THE CONTINUUM MODELS

In the process of chemical reformulation of theoretical models for fluids which,
in our opinion, is still in the initial stage, the approaches based on the continuum des-
cription will presumably play an important role.

The continuum models, in their original definitions formulated two generations
ago,’® were excellent exemplifications of what is a physical model. The molecular
structure of the solvent was completely neglected, the structure of the solute reduced
to the minimum (a point charge, a dipole), the interactions extremely simplified. These
models have been of extremely high importance for the progress of our understanding
of matter in condensed phases, and are still instrumental in elaborating preliminary
formulations for new interpretative models. There has been, however, a parallel evolu-
tion of the continuum approach towards realism, with more attention paid to the
molecular aspects of the model, and ultimately towards chemistry.

The beginning of the »chemical« evolution of the continuum approach is quite
recent. In the middle of the seventies, the efforts addressed to this scope were cul-
tivated by a handful of men, a few of which, Claverie, Rivail, Tapia®® have largely con-
tributed to the evolution of the model in the eighties. At present, the computational
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procedures operational or proposed are of the order of one or two dozens, and the
number has rapidly increased in the recent years. In addition, methods derived from
the Kirkwood-Onsager continuum model have merged with methods having their
origin in the supermolecular approach. So, the number of available computational
methods that look similar is large and it is not easy for a potential user to select among
them the variant that best satisfies his needs of accuracy, generality, computational
cost, efc.

A classification of the various methods could be of some help. Recently, we made
an attempt to classify the continuum-derived methods in ref. [9]. The classification was
based

a) on the distinction between the classical and quantum-mechanics methods, the latter
making explicit use of a Hamiltonian and then of a Schrédinger equation

b) on the distinction between the methods limited to the use of a isotropic infinite con-
tinuum medium and the methods allowing the use of structured media, of other kinds
of molecular interactions efc. In both cases, classical and quantum versions are pos-
sible.

Even more recently,'® we have suggested a further particularization of the main
heading under which various methods could be collected and compared. This heading
is identified by the abbreviation EHCD which stays for Effective Hamiltonian methods
using a Continuous Distribution. This concept was already present in our preceding
classification,? but it seems convenient to use this last abbreviation. The category of
the EHCD methods is, in fact, larger than that of the continuum methods and if used
as a non-rigid taxonomic criterion, it may permit to unify and to appreciate the dif-
ferences of many methods. Emphasis may be placed on the Effective Hamiltonian, lea-
ving in the shade the Continuous Distribution, thus permitting grouping of methods
like the solvaton one''? or the more recent revised versions.'3'® Emphasis may be
placed on the quantum description of the Effective Hamiltonian, or, in contrast, on
its classical reddition, with quantum mechanics in the background, as a Jjustification
of the properties of the molecular quantum description (we call them »classical« met-
hods)."26 Mixed methods, in which »quantum motifs« are defined as interacting with
»classical motifs« and continuous distributions supplement the discontinuous ones,27-30
also belong to EHCD. Methods which recover concepts of the continuum approach via
discrete models®! may represent an interesting link between EHCD and other appro-
aches.

This listing could be further expanded by adding new methodological variants that

may be regrouped under the heading EHCD, but what has been said is sufficient to
transmit to the reader that the number and the variety of methods is really large.

3. THE POLARIZABLE CONTINUUM MODEL (PCM)

To continue our discussion, we shall refer now to the EHCD method developed in
Pisa (or better, the set of methods) often indicated by the abbreviation PCM.

The passage from general considerations about the need of a classification of a
number of related but considerably different methods, expressed in the preceding sec-
tion, to the examination of a single method could seem to be a too abrupt jump, re-
quiring at least the presentation of the classification as an intermediate step.

There are at least two reasons to pass from general considerations on EHCD met-
hods to the examination of the PCM one. First, an attempt at motivated classification,
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with bibliography, has already been made in ref. [9] for the continuum methods, and
an enlargement to other EHCD approaches would exhaust all the space available. Se-
cond, the examination of a single specific method may add something to our general
and methodological considerations, and the PCM method seems to us quite appropri-
ate for this scope.

The first PCM version was published in 1981%2 and was expressed in the ab initio
SCF formalism, using an isotropic description of the medium characterized as a con-
tinuous dielectric.

We may consider this as the basic (or primitive) version of the model from which
to start in different directions. We may consider, in fact, the basic version as a small
region in a many-dimensional space put at the centre of a reference frame where each
axis corresponds to a different aspect of the whole problem: exploration of a set of phy-
sical phenomena and contemporary elaboration of the appropriate models.

The level of the description of the system is one of the most important metho-
dological aspects. We propose here introduction of two »axes« regarding the levels of
description 1) of the molecular Hamiltonian Hy®, 2) of the effective interaction ope-
rator Viy,.

Another aspect regards the complexity of the phenomena under examination: we
shall not enter in a detailed description, but at least a few distinct »axes« must be men-
tioned 1) the complexity of the solute, i.e. of the part M of the liquid to which the
Hamiltonian Hy° refers; 2) the nature of the phenomena occurring in M under dif-
ferent but specific conditions (e.g. chemical interactions, interactions with the light,
interactions with the medium, etc.); 3) the complexity of the whole system, reflected
in the introduction of boundary conditions (e.g. the occurrence of a surface limiting
the liquid phase, ctc.).

Coming back to the first couple of »axes«, regarding the level of description of Hy®
and V,,, we remark that the primitive model is rather sophisticated, at least when
compared to physical models. The Hamiltonian is treated at the ab initio SCF level,
as already said, and Vj, is described in terms of the apparent charge distribution o
spread on the surface Sy of a cavity Cy accurately modelled on the shape of M. Simpler
versions of the continuum electrostatic model are, of course, possible.

A methodological consideration is appropriate here. When one studies a physical
model (i.e. a reduced and incomplete description of the actual physical effects active
in the objective counterpart of the material model, see ref. [33] for more details), it is
extremely convenient to be free from the limitations imposed by the mathematical for-
mulation selected to build up the model. Even when the primary goal of the researcher
is to obtain a cheap and rapid algorithm, it is convenient to start from descriptions
in which the physical model acts at its best.

The literature of theoretical chemistry offers a large number of counter examples.
Limiting ourselves to the case of molecular interactions, akin to the problem of solvent
interactions considered here, many »conclusions«, reported in the past years about the
limits e.g. of the electrostatic approximation, suffer from the use of an inadequate met-
hod for describing the molecular wavefunction (many semiempirical methods are not
able, for example, to describe non-covalent interactions) or from the use of atomic
charges, instead of the full charge distribution via the molecular electrostatic potential
(MEP) or from the use of a poor basis set. Analogous considerations could be made
for many other aspects of the interpretation of chemical phenomena in theoretical
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chemistry. We thus need a method able to treat the molecular problem on a large va-
riety of models, from correlated wavefunctions to rigid atomic charges, The ab initio
SCF method stays just in the middle.

The same holds for the expression of Vi,,. The primitive model avoids the use of
multipolar expansions, which are in principle incomplete, in favor of a numerical in-
tegration over the cavity surface. The integration grid may be refined ad libitum in
test calculations to ensure the degree of reliability of the numerical results. The num-
ber and location of points we have selected for routine calculations®* give numerical errors
within chemical accuracy. Other devices have been introduced to account properly for
related phenomena of different kinds, like the effect of self-polarization on the pola-
rization charge o, the effects due to the finite size of the solvent molecules (solvent
excluded volumes and solvent accessible surface). efc. Details may be found in the ori-
ginal papers™"* and have been mentioned here to emphasize that the mathematical
elaboration of the model does not introduce additional approximations, hidden or evi-
dent, with respect to those stated at the beginning: a SCF treatment of M inserted in
a cavity with well defined boundaries of a medium at constant permittivity.

We may shortly resume the main points of the primitive model. There is a Schro-
dinger equation to solve:

Hy Wr= (H, + V) WM = ENpf (1

in which the effective interaction operator V, is actually a function of the solution WF,
The implicit equation is solved iteratively with an algorithm which splits the calcula-
tion into two nested cycles. This splitting is the starting point for other versions of
the model placed at lower levels on the axis of complexity.

V» which replaces the more general operator Vi, is the electrostatic potential of
the surface charge distribution of(s)

a (s)

V(1) =f Ea ds” (2)

The surface charge distribution is, in turn, related to the difference in the normal com-
ponent of the polarization vector on the cavity surface:

c(s)=P_n-P, -n 3

The polarization vector at the interior (P_) or at the exterior (P,) of the cavity is re-
lated to the gradient of the potential V

P, =—%(ei—1)VVi (s) (4)
V, is composed of two parts
Vi=Vy+V, 5

the first component derives from the charge distribution of M, and it is its MEP func-
tion. If we solve the Schrédinger equation (1), dropping out the V, term

Hy W° =E° e (6)
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we obtain the solution for the system in vacuo, and then V%, i.e. the MEP function
is not affected by the solvent.

Using this constraint, Viy° fixed or, in other words, the solute charge distribution
I'y® kept rigid as it is in vacuo, our problem is reduced to the classical electrostatic
problem of solving the Poisson equation

VIV(r) = —4al(r) )]

with the usual boundary condition at the cavity surface

Vi(s) = V_(s) ®)

= a% (V(s))y = —2_ % (V(s))_ 9

This is the inner cycle of our iterative procedure. Putting in (5) V, = 0, we obtain a
first guess of o(s) as applied in eqs. (4) and (3); this value is called g®(s). Using now
eq. (2), we obtain V,*° which may be placed now in eq. (5), etc. At the end of the cycle,
we have a definition of surface polarization charge 0°/(s), always referred to fixed Iy®.

We are now in a position to start with the outer cycle. V,°f is put in eq. (1), and
a new wavefunction W!, and the corresponding charge distribution I'y! are obtained.
The outer cycle, applied again, gives a new value ¢'’. The second cycle is applied until
self-consistency, and the final value of the operator V,/ gives, via eq. (1), the answer
we have asked for.

It is evident that no additional approximations have been introduced in this cycle.
In actual calculations, the surface integral (eq. (2)) is replaced by a finite summation.
The process converges quickly, generally in three iterations for the outer cycle and
three iterations for each passage in the inner cycle.3

The quantities derived from this procedure, Ef, W' and V,, are the starting points
for the theoretical analyses. The attention in theoretical studies on molecular solutes
is usually directed to the differential effects produced by the solvent, tacitly consider-
ing the theoretical analyses of the corresponding systems in vacuo as already done.
This is generally not true, and it will be less true in the future, when good quality
EHCD methods will be routinely used; the in vacuo and in solution descriptions are
obtained at the same time and both must be interpreted. Parallel interpretation of
molecular properties in vacuo and in solution may lead to some innovations in the
usual technique of analysis. New analytical tools may be drawn, for example, from
Ve These tools may be also used to shed light on the intrinsic properties of M in vacuo.

4. THE »ENERGY« OF THE SYSTEM. FREE ENERGY
AND ITS ELECTROSTATIC CONTRIBUTION

The mathematical elaboration for the primitive model has been guided and con-
trolled by many checks. Some of these checks are of the internal nature, and it is not
possible to discuss this matter here, others tend to the numerical evaluation of quan-
tities for which there is an experimental value available. When this direct comparison

is not possible, the judgment on the success of the check must rely on the physical
plausibility of the results.
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In quantum mechanics, the checks on a computational method start from the
energy. We shall follow the same line, even if things in solution are not simple as in
vacuo,

The energy E' obtained as solution of eq. (1) does not play the principal role. It
may be interpreted as the work spent in putting nuclei and electrons (in a quantum-
mechanical description) of M into the cavity Cy of a dielectric already polarized to the
right extent. The use of E' is thus limited to a specific model intended to describe phe-
nomena in which the change in energy of the surrounding medium is not important.

In general, the work spent on polarizing the dielectric must be accounted for. The
quantity of direct use, provided with a clear physical meaning, is the following:

1
Gy=E'-5 [ V,dr (10)

E'"is the total energy, containing also nuclear repulsion terms, and [y is the total
first order density matrix, containing also nuclear contributions. G, has the status of
free energy and corresponds to the free energy change from a system composed of non-
interacting nuclei and electrons plus a non-polarized infinite dielectric with a cavity
Cu of appropriate shape, to that of a system in which M is built in the cavity and
solute-solvent reciprocal interaction energies are taken into account.

The physical meaning of G is clear, but this quantity is far from the quantities
actual experiments may measure.

A quantity nearer to actually observahle quantities is
AG, =G, -E° (11)

E° is the total energy of the system in vacuo (i.e. with V; = 0). AGy is the electros-
tatic contribution to the solvation free energy AG,,° which is a quantity accessible
by experimental measurements.

Several »errors« introduced in the calculation of G, and E°, due to the limitation
of the basis set, to the neglection of electron correlation effects, etc., are considerably
compensated in the difference which defines AGy,.

AGq is not accessible to experiments. We have to add other terms to get a better
description of the solvation energy.

The standard state used to define G (eq. (10)) is rather unphysical because it con-
tains a cavity in the medium with a predetermined shape. It is more satisfactory to
start from a continuous medium and to consider the free energy necessary to form the
cavity: G.ay.

Definitions (10) and (11) tacitly imply that the cavity is centred at an unspecified
but fixed point within the solution. The selection of this point is immaterial because
the medium in this model is infinite and isotropic but, anyway, the selection of a fixed
point limits the possibility for M to wander inside the whole solution. This point has
been carefully discussed by Ben Naim® and taken as the key point for his interpreta-
tion of transfer processes. It is sufficient to remark that the release of this constriction
gives origin to an entropic contribution to the free energy, called »liberation free ener-
gy« related to the changes in the momentum partition function of M in passing from
the gaseous state to the solution.
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Following the line of analysis exposed in the preceding page, we have shifted from
purely molecular models — deterministic in the quantum mechanical meaning of the
term — to statistical models. The last step to be added actually regards the partition
function of M, which may be safely factorized out, in regular solutions, from those be-
longing to the other molecular components of the liquid system. The correct expres-
sion of AG,° must thus be supplemented by terms related to changes in the vibrati-
onal and rotational partition functions, g, and .., due to the passage of M (at a given
geometry) from the gaseous state to the solution. Also, changes in the vibrational zero
point must be included, as well as the so called »cratice term depending on the ther-
modynamical standard states one has selected,’78

Even in this simple extension of the primitive model considered here, other factors
must be taken into account. The interaction between M and the solvent has been as-
sumed to be exclusively electrostatic in nature. We know from the study of two- or few-
body interactions that dispersion and repulsion terms play a not negligible role in in-
termolecular interactions.

The basic primitive model is not equipped to treat these terms, and they may be
added in some way. There are several ways to do it, and we have selected two different
methods which preserve both the hasic features of the PCM approach, i.e. the use of
a detailed description of the molecular surface, an explicit expression for the solvent
distribution (constant and isotropic in the basic formulation) and the use of surface
integrations.?” We shall not enter into details.

The final expression may be given in the following form

AG:ol = AG(‘I + Gdisp gt Grcp + G{‘HV + A(PV) = (12)
—RT [In(V*! / V&%) + In(g%% / ¢*) + In(g™2 / q%)]

The most direct comparison with experimental energies comes out from this expres-
sion. Derived quantities are, in our computational scheme, the enthalpy, computed via
the Gibbs-Helmholtz theorem,"” and by difference the entropy.

We will present some results below but before passing to numerical comparisons,
we shall make a few comments.

We have selected the solvation free energy as the first test for the model because
AGyy° is the experimental quantity more directly related to the basic outputs of the
EHCD methods. In spite of this, we have been obliged to resort to a quantum-mechani-
cal statistical treatment and to introduce new concepts, and new energy contributions
into the relatively simple original picture. An effort has been made, even if it is not
manifest in this concise summary, to build up the new elements within the framework
of the original theory. So, zero-point energy contributions are evaluated by a straight-
forward extension of ab initio Born-Oppenheimer SCF calculations at the PCM sche-
me; the same holds for the vibrational contributions, evaluated in the harmonic ap-
proximation except for low frequency motions for which a numerical evaluation of the
population of the states has been performed and, except for X-H fragments of M, in-
volved in hydrogen bonds with the solvent, for which the corrections suggested by our
previous experience of these interactions have been introduced. It has been necessary,
however, to include a further modellistic assumption to describe the hindered rotation
of M (similar to those introduced by Nemethy and Scheraga'!) and to resort to the
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RSM theory'®* to evaluate G.,,. These two last points could be somewhat refined by
new data derived from computer simulation or other methodological approaches.

We would like to stress this last remark: even for the simple problem of the evalua-
tion of AG,,°, the combination of different approaches makes the study easier, or pos-
sible. In passing to more complex problems, the necessity of a coordinated use of dif-
ferent approaches becomes more and more compelling.

Let us consider now some methodological questions arising in the development of
the method.

Eq. (11) regards a free energy change, and the two quantities on the right side
should he physically comparable. E° is actually free energy, corresponding to the work
necessary to put together electrons and nuclei at 0 °K to form M in vacuo (clamped
nuclei approximation); G, is an analogous work in which, however, the temperature
plays a role, being G, parametrical dependent on e which is a function of the tempera-
ture.

Gq and E° parametrically depend on the nuclear geometry (Ry). The dependence
on the nuclear geometry is usually treated in the framework of the Born-Oppenheimer
approximation: there are no questions, apart from the validity of the Born-Oppen-
heimer approximation, when the quantity in question is the internal energy. Here, we
have to make a further step, and to introduce Potential Free Energy Surfaces, defined
on the nuclear coordinate space. This extension has aroused some discussion, which
seems to us definitively settled by the analysis and definition done by Laidler and
Polanyi."! We shall need, as it will be shown later, further extensions of this definition.

We may pass now to some numerical comparisons. To save space, we do not report
AGg° values computed with basis sets of increasing complexity. Some data have been
reported in preceding papers’® and it is sufficient to state that the influence of the
basis set is remarkable, but that with 6-31G” or better basis sets the result seem to
be stable (at least for solutes of small and medium complexity).

The first line of Table I reports the linear correlation expression between the ex-
perimental and computed AGg,° values (gas - water, T = 298 K) for a set of esters,
ranging from methyl formate to propyl propanate.

The correlation is quite good, the computed values are a little more negative than
the experimental ones, and this systematic trend seems to be almost completely cor-
rected by correlation energy contributions (vide infra).

It is not easy to select many other sets of related chemical systems for which AG,°
is known with good precision for a significant number of components. The results avai-
lable refer to collections of systems with a lower statistical impact, or to solvent trans-
fer energies, for which the number of data — even if often at a lower precision - is
large. The ab initio calculation of solvent transfer free energies is an easier job, and
it will not be considered here. The results, on the whole, are of the same quality as
those reported in the first column of Table L1718

Quite interesting, for our modellistic interests, is the comparison between the ex-
perimental AG,,° and computed AG,, values reported in the second line of Table I and
referred to the same set of compounds as in the first line. The correlation is almost
as good as in the first comparison. In other words, the non-electrostatic components,
numerically important and depending, to some extent, on the nature of the solute, are

almost constant in the set. This characteristic has been confirmed by the other checks
we have performed.
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TABLE I

Linear correlation equalions y = a + bx for some selecled examples. R: regression coefficient;
n: number of solules. Values in keal/mol

Solute Solvent ¥ X a b R n
esters water AGsol(calc) AGsol(cxp) -0.328 1.028 0.998 16
esters water AGel AGsol(exp) -4.790 1.089 0.995 16
esters water AGel AGsgol(calc) -4.442 1.060 0.996 16
amides water AGe| AGgol(cale)  -10.408 0.900 0.989 7
heterocyclics water AGel AGsal(calc) -4.416 4.287 0.994 15

Line 3 of Table I compares AG,,°(cale) and AG,, for the same set of molecules
again, line 4 reports the same comparison for a set of amides and line 5 for a set of
two-ring heterocyclic systems. In these last cases, a few comparisons are possible with
experimental AG,, values: the agreement is similar to that shown in lines 1 and 2.

To conclude, it seems that with a computational time not exceedingly larger than
that necessary to get E° values in vacuo (for rigid molecules the computational time
is larger by a factor near 3), the PCM method gives estimates of AG.,° of appreciable
quality, and for most of the chemical applications the computed value of AG,,° may
be replaced by the AG,, value with a computational cost comparable with that of a sin-
gle-geometry calculation of E° in vacuo (time larger by a factor 2-3).

5. MORE CHECKS ON THE PRIMITIVE MODEL?

The long exposition reported in the preceding pages concerning the control of just
one of the primary quantities coming out from the calculations shows the complexity
of systematic implementation of a computational procedure.

Even the conclusions reached at the end of the preceding section are of limited
validity. We have not considered, for example, charged systems, molecules subjected
to important structural changes when passing in solution, complex systems with many
local conformational minima, etc. The analysis must then be extended to other ener-
getic quantities (enthalpy, entropy), to the energy of excitations to other electronic sta-
tes, to a representative set of physical observables, still remaining at the level of the
primitive approach. It is a hard and somewhat tedious task that we have performed
in the past ten years (to be frank, without much alacrity). For some of the questions
mentioned above, we have sufficient material to support almost definitive conclusions,
but we prefer to be less systematic here and to pass to a different, though related sub-
ject.

The point we shall consider here has been selected by its methodological relevance.
It shows that even in fields that seem completely assessed, there is always the pos-
sibility of »surprises«. Good models should always provide some »surprises« in their
applications. Models, in fact, are intended to bring in evidence something not so evi-
dent to the user before the application of the model. Models without surprises are dull
confirmations of the foresight — or of the limitations — of the model builder.

As said in section 2, the physical model is clearly set. Actually, there is a quantity
which could be considered as a free parameter, the geometrical definition of the cavity.
There are strict limitations on this parameter. The most accurate definition is given
in terms of spheres centred on the solute nuclei, even if several tests have shown that
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for simple groups (e.g. CHz, CHj) a single sphere is sufficient. The radii of such spheres
should be near to the van der Waals radii. This indication is not dictated by considera-
tions based on the definition of the van der Waals radii, but rather on the analysis of
the decomposition of the interaction energy in molecular clusters, a work done before
the implementation of the PCM, showing that the evaluation of the rigid electrostatic,
ES, and polarization terms, PL (we refer here to the interaction energy decomposition
schemes’*”) at a distance near to the van der Waals radius or a little larger were able
to reproduce the whole electrostatic contribution, and that this distance was not too
sensitive to the geometry or size of the cluster. These considerations, of course affected
by the poor basis sets used at that time, were used by us as starting points and, after
a few additional controls, performed on the comparison of the reaction field at the
nuclei obtained with the PCM and with Monte Carlo snapshots, recast into a recipe
saying that the cavity is formed by the van der Waals spheres multiplied by a factor
f=1.2

The calculations presented in Table I were performed using this factor. We have
later had other indirect indications that f = 1.2-1.1 is a fair value, but other people
interested in the PCM (Miertus®!, Olivares®?) have developed more refined techniques.
The general idea in both cases is of relating fy to the electron distribution of atom k
in the molecule. We shall not enter into details here, suffice it to say that the values
of AG, are not greatly affected by this change of the definition of the cavity.

Recently, during a joint research with Olivares del Valle, we experienced one of
the »surprises« mentioned above. The research project involved the implementation
of the PCM at a higher level, including electron correlation via perturbation theory.??
To do it, it was convenient to divide AG,, into separate contributions according to the
order of the perturbation and to the number of bodies. This partition was tested for
a small number of molecules using cavity radii defined according to the rules elabora-
ted in the two groups: the two cavities for the water molecule are superimposed in Fig-
ure 1. In the general agreement of the values obtained for the two cases, a striking
difference in the zero-body and one-body zeroth order contributions came out.

Let us resume the formalism of the decomposition of AG., into orders (lower
index) and bodies (upper index). The SCF expression contains only the zeroth order
and first order contributions

AG(SCF) = AG, + AG, (13)

The zeroth order contribution may be split into zero- and one-body contributions. In
total, one has

AG(SCF) = AGS + AG! + AG, (14)

From a more detailed study involving a systematic variation of the two radii, Ry and
Ry, defining the cavity for water (a more complete report will be published by Olivares
del Valle and Aguilar’!) we have drawn the results reported in Figures 2 (a,b,c,d).

Figure 2a shows the SCF values of AG, (calculations with a 6-31G** basis set):
point A corresponds to Pisa’s definition of the cavity (i.e. with f = 1.2) point B to
Badajoz definition (fo = 1.41 fj; = 0.76). As anticipated, AG, is almost the same for
points A and B.

Figure 2b reports the zeroth order zero-body contribution, AG,®, Figure 2c the
zeroth order one-body contribution AG,! and, finally, Figure 2d the first order contri-
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Ix case A

Figure 1. Superimposition of the sections of two definitions of the molecular cavity for H20. A:
cavity based on van der Waals radii, multiplied by a factor f = 1.2; B: cavity based on the rules
presented in ref. [52].

bution AG;. The trend of AG, (as well as that of AG, = AG,® + AG,!, not reported
here) is similar to that of AG(SCF), while for AG,® and AG,' the values at A and B
are completely different. AG,' (Figure 2¢) is strictly related to the solvent-shift of the
orbitalic energies; Ag; = (eq) — Evacki

1
NGy = 3 20e-5 [ py Vodr (14)

e : 1 : ;
(note that only the electronic contribution to integral 3 f I}y V,, dr, see eq. (10), is con-

sidered here). Actually, with the two cavities we found very different estimates of the
Ae values (Table II). Solvent effects on the orbital energies have been often invoked
in qualitative discussions on the solvent effects on the reactivity, and more quantita-
tive estimates (see e.g. refs. [55,56]) have given quite reasonable results. On our part,
we have recently published fairly good correlations between Ae¢; values and V, or F,
(solvent reaction potential and solvent reaction field, respectively).*® The sensitivity of
Ag;, to the cavity shape was not detected before, and so now the problem must be con-
sidered again from this point of view. As a first step in this new set of analyses, in a
domain already considered as settled, we publish here the maps of V, of water within
the cavity for the two cases A and B (Figure 3). The changes are numerically important
and evidence the importance of the shape of the cavity (cases A and B correspond to
two cavities of almost equal volume). We have, of course, hypotheses for the explana-
tion of this finding, but the subject will be treated with appropriate care on another

occasion. Suffice it to conclude here that this is an additional reason for continuing
checks on the primitive model.
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Figure 2. Maps of some energetic quantities related to the solvation of H20 (in water) in fun-
ction of the radii of the spheres centred on the nuclei of O and of H. a) AGel(SCF) values; b)
zeroth order zero-body contribution AGo"; ¢) zeroth order one-hbody contribution AGo!; d) first
order contribution AG:'. Calculations performed with the 6-31G”" basis set. Distances in A, va-
lues in kcal/mol. From ref. [54], with permission of the Authors.
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TABLE II

Orbitalic energies of waler in vacuo and in solulion for two different
definitions of the cavily (case A and case B). Values in harlrees
(1h = 627.5095 9 kcal/mol; calculalions with the 6-31G" basis set

Casc A Case B
g=1 -20.55708 -20.55708
lag g.= 1785 -20.56214 -20.54574
Ae —0.00506 0.01134
g=1 -1.33600 -1.33600
2a1 £ =T858 -1.34115 -1.32520
Ae -0.00515 0.01080
= 1 -0.71373 -0.71373
1he g =786 -0.71747 -0.70118
Ae -0.00374 0.01255
€= -0.55758 -0.55758
3a; g =785 -0.56G938 -0.55284
Ae -0.01180 0.00474
g=1 -0.494184 -0.49484
1by £ =785 -0.50390 -0.48800
Ar -0.00906 0.00684

Figure 3. Maps of Vy for H20 in water computed: a) with cavity A of Figure 1;. b) with cavity
B of Figure 1. Values in kecal/mol.

6. UP AND DOWN THE AXIS OF THE MOLECULAR LEVEL

While checks on the primitive version are continuing, an extension of the ap-
proach along the several axes mentioned above is in progress. The methodological ap-
proach to implementing a new model cannot be too methodical and cautious. A correct
compromise must be found, and there are no general rules to suggest for doing so: each
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type of model has its own characteristics, and the strategy elaborated, e.g. for EHCD
models, is surely of little value for models addressed to other problems e.g. supercon-
ductivity. However, a bold and hurried extension of a model with frail bases quite easi-
ly leads to disastrous errors, and a correct appreciation of the weak points of a model
comes out when it is stressed and extended.

Up

We have already mentioned in passing some extension of the PCM model up the
axis of the methodological level. The set of papers of the electron correlation in the
PCM model® is not yet finished, and we think that going on with our analysis we will
eventually arrive at a more detailed and satisfactory comprehension — and prediction
- of the mechanism of mutual interaction hetween correlation and solvent effects.
Both have their origin in the molecular structure of the solvent and we have tried to
develop a formalism able to decouple these non-linear effects.

In the past years, theoretical chemistry has been engaged in elaborating more ef-
ficient methods to describe the properties of a molecule, including electron correlation.
It is our impression that the time is ripe now to extend this activity including also the
simultaneous effect of the solvent. The main road followed by theoretical chemistry
in its evolution, i.e. describing with care a significative element, considering other ele-
ments or factors and looking at the effect they have on the original description, may
be further pursued, taking the solvent as an additional element introduced in the ana-
lysis.

Obviously, this study requires dissection of the effects and the analysis of the vari-
ous components of the electron correlation is the solution. Other studies require this
level of description of the system as the starting point without component analysis,
the investigation being addressed to other scopes. We mention as an example the mec-
hanistic studies of reactions which often cannot be properly performed at the SCF
level. In Pisa, as well as in other Laboratories, there are working versions of the PCM
algorithms or of other EHCD methods, able to give MCSCF, MRCI or MBPT results
without much analysis of the intermediate effects. The progress of the research requi-
res both approaches.

Down

In the past years, we paid more attention to the extension of the basic model down
the axis of sophistication in the description of the solute rather than up. This has also
been the main trend for other groups involved in similar activities. EHCD methods
are in fact approximate in nature and their primary task is that of providing chemists
with computational models able to satisfy their needs with reasonable accuracy. Che-
mical problems of actual interest are too complex for sophisticated theories and so the
primary goal is that of exploiting the information and the confidence gained with the
basic ab initio SCF model to develop simpler models.

The effect of motivations related to the preceding history of our research group
has been even more important. The decision to try a new version of the continuum
solvation model was prompted by our studies on the semiclassical model, and on the
role played in chemistry by the classical molecular electrostatic potential and related
physical quantities.*”*® The continuum approach makes it possible to use quantities
and concepts quite familiar to us in a different field. Among these concepts, there were
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the simplified description of the first order density matrix of a molecule and the effect
of these approximations on some observables, like the molecular electrostatic potential
and field (MEP and MEF), which play a prominent role in the continuum solvation
theories (see Section 3).

We shall summarize now a set of approximations, starting from the basic version
of the PCM, looking at the total charge distribution I'y to the two auxiliary quantities
Vm and V,, which all have an explicit and well defined role in the PCM, and finally
to the solvation free energy. In the following discussion we shall neglect changes in
the internal geometry of M: a feature which complicates the analysis, but which will
be, anyway, satisfactorily dealt with, and which gives, in appropriate cases, a remark-
able contribution to our knowledge of the system.

A1) The basic SCF version of the PCM gives us a f{irst order density function of M mo-
dified by the solvent effect:

)= [t ylr, MU oo B domi i EZué(rl—r”) (15)

and the corresponding MEP

Vo) = Be)tir—riht do (16)

The solvent reaction potential is an implicit function of I'y," and V,y', as detailed

in the section, as well as from other parameters (dielectric constant, cavity, sha-
pe, etc.)

viF= Vi 1y, W) an

We have used a two-index notation as reminder that the final result comes out
at the end of a two-cycle iteration process. The first index indicates the outer cy-
cle (i.e. the SCF cycle on Wy)), the second index the inner cycle (i.e. the polari-
zation of o at fixed I'y,(r)). The solvation free energy is given by eq. (11), and it
is here rewritten, for convenience, with the following notation

AG(Al) = AG,, = G, - E° (18)

A2) The level theory is the same of Al. The only difference is in the expression of the
solvation free energy

AG(A2) = %f vl ar (19)

This formula, simpler than eq. (18), is based on neglection of the differences in
the mean kinetic energy in vacuo and in solution,

A3) Neglection of the solute polarization induced by the solvent corresponds to the use
of the molecular density and MEP computed in vacuo. The quantities of interest are:

() = f‘l’“ (EiFo s DV (o s o drg e o dr, + 2 ZA(ri-ry (20)

@

Var) = f Tar)(lr =) dr @1
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Vol(A3) = VO(AB) dr (22)

The outer cycle is no more necessary. The solvation free energy (eq.11) is directly
done by the expression:

AG(A3) = AGY = 3 [ I3ViAR) dr 23)

A4) It is well known that the electronic wavefunction may be suhjected to arbitrary non
singular linear transformations, leaving the electronic change distribution unchan-
ged. We are interested in transformations giving origin to lucall_ized subunits. The
different criteria in use produce almost equivalent descriptiuns."9 A simple formal
partition of the atomic charges allow us to define charge distributions for chemical
groups g within M, the sum of which is exactly equivalent to the original I'v function.
This procedure may be applied both to the I, and I'y,° functions defined at
points Al and A3, but we shall make use of the quantities defined in vacuo:

Iam = > v (gM) (24)

gEM

The notation emphasizes the fact that the quantities on the right side of eq. (24)
refer to the description of the g groups inside M.

The electronic contributions of the group description have relatively small »tails«
on the other groups of M, which make the dependence of the y(g,) distributions
on M more explicit.

A »deletion of the tails« means replacing the y(g,M) functions with the y(g,M)
ones (note the bar put on the function). y(g,M) is described in terms of the basis
set AOs spanning the whole molecule M (basis set y,, while y(g,M) is described
in terms of the AO subset spanning the atoms of g Oy € Xpp)

There is no more complete equivalence between the original functions [y and
Vy" and their counterpart written in terms of strictly localized group distributions

W= D P EM) @25)
g
Bs 3 T @
g

It is still convenient to perform the inner optimization cycle in the definition of

V(I
VolAd) = VI (15, V vmn) @7

1 To yof

AG(AY) = 5 [ I3, Vi (Ad) dr (28)

This step in the sequence of approximations is not computationally convenient
but it is the starting point for other approximations.

A5) y(g,M) differs from the description of the charge distributions of the same functional
group ¢ in a different molecule or in the same molecule at a different non-equivalent
position. The differences between the various descriptions are not large (the concept
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of chemical group has a well established empirical evidence) and it seems reasonable
to introduce a reference description (a paradigm, or an archetype, for persons loving
words of Greek origin) ¥(g,0) defined as the mean of several ¥(g,M) descriptions.
Thus, we may build up a library of y(g,0) functions not connected to specific
molecules but related to a well defined basis set. The y(g,0) functions are subjec-
ted to changes due: to a) their insertion in the molecule M, b) the solvent effect
acting on M.

The semiclassical model reduces both changes to the classical polarization chan-
ges, under the influence of F(M/g) and F, i.e. the field of the groups of M other
than g, and the solvent reaction field. We have developed a technique in order
to take into account these polarization effects without resorting to polarizability
functions, which seem to us harder to manipulate. The details may be found e.g.
in ref. [60]. When both effects a) and b) are in action, symbolically we have:

FM/@)+F,
g0 —  y@Mo) (29)
The double asterisk indicates that there are two polarization processes in action.

In this approximation, the sum of the two fields is used. In analogy with the pre-
ceding approximations, we may write:

Ty = S, 7@ M, 0) (30)
g
Vii= > V'@ M, o) @1)
g
Vi (A5) = VI (T, Vi) (32)
1 ey res
AG (A5) = 5 [ TRVy (A5) dr (33)

AB) Using again the library of ¥(g,0) functions, but discarding now the solvent polariza-

tion effect, we have:

FM/g) _

v(g 0) — r'(g M, 0) (34)
Ty= > (e M,0) (35)
V=S Vg, M,0) (36)

g
Ve (A6) = VI (Ty, Vip) 37)
AG (AG) = % [ T3V (A6) dr (38)

This approximation is an equivalent to approximation 3 in the sense that the so-
lute is not polarized by the solvent, but instead of a SCF calculation of the density
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function of M, we have a by far computationally simpler juxtaposition of library
functions modified by the molecular field.

AT) A still simpler use of the group function library consists of the summing up of y(g,0)
functions without any other manipulation

Ty (0) = > 7(g,0) 39)
.
V(@)= 3 V(g 0) (40)
s
VI (AT) = VAT (T4(0), V,,(0)) @1
AG(AT) =% [ Ty(0) V(AT dr (42)

This approximation, apparently quite crude, works surprisingly well not only for
the solvation energy but also for the description of the details of the form of
V, into the solvent cavity. This quantity may be used for the interpretation of
several solvent effects;®! a detailed example is given in ref. [46] and the corre-
sponding approximation A7 in ref. [62].

A8) We have thus far used descriptions of the various portions of the molecule based on
the expansion of the density function over a LCAO basis. These descriptions are more
accurate, in short range, than multipolar expansions but are also more costly in com-
putation time. We shall extend now the sequence of approximations leaving out the
LCAO expansion. Several years ago,” % we found that a fairly good description of
the MEP originated by y(g,M), y(g,M) and y(g,0) distribution functions is done by an
expansion in terms of a limited number m of unit point charges, placed at appropriate
positions (the number m is lower that the total number of electrons). The y(g,0) di-
stributions could thus be replaced by the corresponding charge distribution. We may
dispense with writing here expressions formally analogous to those reported above
(eqs. 41-44). Expansions based on limited multipole multicentre expansions have be-
en extensively employed to get approximate values of the MEP (for a recent view see
ref. [64] and, potentially, are of interest for the calculations of solvent effects at the
A8 level of approximation.

A9) As the last step in the reduction of the quality of the solute description, we pass to
the description in terms of atomic charges. There are many definitions of atomic
c:harg'e'ar and probably one more definition may be added. The best results we obta-
ined refer to the »potential derived« atomic charges (PDAC) in the versmn given by
Kollman et al., but the quality of the results is far from being exceptional.®” Another
least square ﬁt based on the reproduction of the value of VVar - n on the cavity sur-
face (see eq. 4) could perhaps give better results,

At the end of this description, the reader surely expects some numerical result as il-
lustration. Instead of doing so, we refer the interested reader to a recent review®® and
to the papers quote therein for numerical examples. The reason for our decision of avo-
iding a display of numerical results is the excessive space required by a sufficiently de-
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tailed exposition. The second reason is that we have no new unpublished material in
a quantity sufficient to document all the approximations mentioned above.

It is preferable to use the space so spared for sume comments. We have exposed
one of the many possible sequences of approximations, the only one we have employed.
Other rescarchers have developed other techniques and other different approximations
of similar nature. The number of approximate methods will probably increase in the
near future because there is a large experience in the field of bimolecular non covalent
interactions to exploit.

Our sequence of approximations contains some intermediate steps of little, if any,
practical use. Their importance relies on the documentation they give on the effect of
the various approximations. It is advisable to supplement the approximate method one
has selected for routine applications with the possibility of looking at intermediate le-
vels. The controls should be performed in case of necessity, i.e. when there is a sus-
picion that something does not work properly. To do this for every case would be a
waste of time and energy.

7. UP AND DOWN THE AXIS OF THE SOLVENT DESCRIPTION
Up

This is a delicate and crucial point in our objective of studying real chemistry in
solution by using EHCD methods.

The number of problems for which the basic approach seems sufficient is surpris-
ingly large and it is still increasing. Our initial objective was that of finding the limits
of the continuum approximation and then proceeding further; we are still exploring
new fields in which the continuum models give reasonable or quite good results. This

finding may be classified under the category »surprise« that we have introduced ear-
lier.

It is not our scope, however, to emphasize here the merits of the primitive model.
Some improvements, or steps »upwards« along the axis concerning the description of
the solvent involve inclusion of non-electrostatic terms in Vj,.. The most important
contribution is the dispersion term. We have selected an empirical formulation which
uses again a surface integration and a continuous distribution. The dispersion energy
is expressed in the form of atom-atom contributions (the repulsion contributions to
the free energy are treated in the same way).*® Other methods of computing Gy;, con-
tributions have been added to the basic PCM computational framework by other Labo-
ratories, Badajoz® and Bratislava.®® We cannot analyze here the merits and limitations
of the various approaches: it is sufficient to say that for this subject, as well as for
many others, there is no unique valid solution, and that it is convenient to explore in
parallel different approaches. The functional form selected in Pisa makes it easier to
define quicker approximate algorithms (and this is, to be frank, a step down on the
solvent description axis). It also facilitates the use of continuous non isotropic solvent
distributions (cybotactic region), obtained from computer simulations, by RISM calcu-
lations or by experiment.” Cybotactic effects are also present in the electrostatic con-
tribution: these effects are collected under the headings of dielectric saturation and
electrostriction. The research work we are doing in this area has not yet produced defi-
nitive results, but the progress is steady and the publication of some new protocols
dealing with saturation and electrostriction in the PCM should be not too far in time.
A computational model able to treat also cybotactic features was elaborated several
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TABLE 111

Sludics on malerial models involving a liquid separalion surface

Surface proximity effects on the solvation frec-cnergy
a) at a liquid-air interface (planar)
b) at a liquid-liquid interface
¢) at a liquid-solid interface
d) at the surface of a drop (spherical)

Solute crossing of a planar, liquid-liquid interface

Partial desolvation of a solute in proximity of a biologically active site

years ago’! and recast in a slightly different and more efficient form by a Japanese
group.”™ In this model, the dielectric is divided into non-overlapping portions, each ha-
ving different physicochemical properties (in particular, different dielectric constants)
and separated by sharp boundaries.

The liquid systems with limiting boundaries are of wide occurrence and present
interesting problems, in which chemistry may be related to biology, physics, engineer-
ing. Some specific problems that we have recently studied, or for which we have per-
formed the first steps, are collected in Table III, to show the importance we attach to
this subject.

More refined descriptions of the solvent distribution, like those considered in the
last sentences, and others of almost equal importance not yet considered by our group,
cannot rely on the EHCD method alone for the definition of some features of the mo-
del. We may stress here a concept valid for all the problems of doing theoretical che-
mistry in solution, namely that a complementary use of different approaches is neces-
sary. A simple example may clarify the point. The EHCD approach alone is unable to
describe the features of a liquid/liquid separation surface. In some cases, this surface
is sharp and almost flat, in other cases the separation between the two liquids is good
but there is formation of filaments of one liquid protruding in the body of the second
(a phenomenon sometimes called »fingering«), in other cases the separation is diffuse
and without a sharp boundary. Computer simulation, or experiment, may indicate the
appropriate model for the case under consideration. The EHCD models, and the PCM
in particular, are, in contrast, by far more efficient than simulation to evaluate the de-
pendence of the free energy in function on the position and orientation of a solute near
the separation surface,”

Down

Dispersion and repulsion free energy contributions act at a decidedly shorter
radius than the electrostatic term. Thus, it has been a relatively easy task to define
cutoff values for the local contributions to Gy and Gye,.”! The calculation of these con-
tributions may be noticeably accelerated without detriment to the quality of the
results: the computational time increases linearly with the solvent exposed surface.

Things are more complex with the electrostatic contributions present in the basic
model. Reduction to a local effect as in the preceding case, and as it is implicitly as-
sumed in the solvaton'>! or related models,!! is not correct. The evaluation of the
reaction potential, and of the electrostatic solute-solvent interaction energy, requires
two sets of basic calculations (see Section 3). The first correspond to the calculation
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of the molecular potential at all positions of the cavity surface selected for the numeri-
cal integration, the second to the calculation of the V, potential at the same points
on the cavity surface. Let us suppose, for the sake of clarity, that the solvent charge
distribution is described by a set of M distinct point charge distributions, and that the
number of points of the cavity surface is N.

In approximate methods, M may be considered roughly proportional to the num-
ber of atoms m (formally, and in exact expansions, it is equal to the number of distinct
elementary charge distributions y,x, over the molecular basis set™). It is just M = m
if only atomic charges are considered and, in general, it will be M = km with k = 1.
N is related to the number of atoms lying on the solvent accessible surface; in small
molecules this number will he almost equal to m, but it decreases for larger and com-
pact solutes. Let us call n the number of atoms lying on the surface. In the current
version of PCM, the number of points on the surface will be quite near N =n-f-G0,
where [ is the fraction of the surface exposed to the solvent (0 = f = 1). Each atomic
sphere is in fact divided into 60 equivalent portions, or tesseras, a part of which will
contribute to forming the outer molecular surface.

We have, thus, to compute 2N values of solute MEP (two values are sufficient to
evaluate VV), - n) i.e. 2N .M distances, if the charge is expressed in terms of point
charge. This quantity is proportional to m? for solutes of small size.

The second set of basic computations regards the calculations of 2 - {V_(%—_T)_ dis-

tances, a number again proportional to n%. More than 90% of the computer time for
the calculation solvation energies resides in these two sets of calculations.”® In Section
6, we have considered some ways of reducing the computation times for the first set
of calculations, and now we shall consider the second.

The largest contribution to the self-polarization contributions to V, came, for each
portion of the surface, from the charge o distributed on that portion. This quantity
must be computed accurately, even when the surface of each portion is reduced (and
then the number of equivalent tesseras is larger than 60). The iterative expression ma-
kes it possible to write the contributions from the other tesseras in a closed form.
Moreover, the quantity to be computed, VV, - n, makes unimportant surface charges
unable to give a sizable contribution to the perpendicular component of V, at the site
under consideration. Portions of surface almost parallel to that under consideration
could be neglected.

These are simple considerations about possible reductions of the computational
times which we have not yet tested. Another possibility of reducing the number of
points on the surface has been suggested by Miertus and coworkers.”” We have so far
felt no necessity of reducing computation times. These considerations make us confi-
dent that it will be possible to make PCM calculations at short computational times,
even for very large molecules, Other computational methods, derived from the PCM,
introduce more compact formalism for this part of the program.2372247 Some among

them also introduce further approximations which help in reducing computation
times.

8. APPLICATION TO CHEMICAL AND PHYSICO-CHEMICAL PROBLEMS

We have centred our exposition on problems of methodology. In the application,
and extension of the approach to specific problems, other problems of methods arise.
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The elahoration of methodological questions is more gratifying to the researcher when
addressed to specific applications rather than to the set-up of the basic method, since
every progress is felt as a real improvement in the description and understanding of
the behavior of molecular systems. We guess that, for the same reasons, it is more in-
teresting to read a relation concerning the difficulties found in the different applica-
tions, the devices developed to overcome them, the future prospects based on the ex-
perience gained in such a way, than an exposition of the set-up of general purpose
methods.

Our exposition of the general part has been quite long and, therefore, we feel obli-
ged to stop here.

The variety of problems treated with the PCM approach in Pisa or in other la-
boratories begins to be considerable. See e.g. Table III in ref. [9] and ref. [51b] The
progress of the research and the refinement of the approach increase the number of
cases in which there is a surprisingly good agreement with the description given by
computer simulations, and with the experimental data. The exposition of these cases

ilﬂo.u. €-5

L w £=78

L

- o T ety 1 110 A} L L 145 L R 2'10 L B oy r.(A]-

Figure 4. Proton transfer free energy profiles in vacuo and in two solvents at different permit-
tivity. From refl. [79], with permission of Elsevier Science Publishers BV.



52 J. TOMASI AND R. BONACCORSI

could support the assertion made in the introduction that there is a shift of solution
models towards chemistry.

The only exception we made to our decision of cutting short the examples is to
honor prof. HadZi, to whom this paper is dedicated. Prof. HadzZi realized very early the
potentialities of the PCM approach, for applications of large chemical and biochemical
interest. He was the first, to our knowledge, to publish convincing examples of the
reversal in the minimum positions in A---H- - -B systems produced by the solvent. An
example is reproduced in Figure 4 taken from ref. [80].

More studies on proton transfer will surely follow, using more refined techniques
and considering finer aspects of the problem as the dynamical ones. We are curious
to see up to which point the EHCD methods will be of real use in this field, as well
as in the many other fields of interest to chemistry. What now seems certain is that
the EHCD methods have already demonstrated their utility, in specific cases and we
may add that we have not yet found their intrinsic limits.
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SAZETAK

Metodoloski aspekti solvatacijskih modela utemeljenih na
kontinuiranoj raspodjeli otapala

Jacopo Tomasi i Rosanna Bonaccorsi

Prikazani su i raspravljeni solvatacijski modeli utemeljeni na efektivnom hamiltonijanu i
kontinuiranoj raspodjeli otapala. Naglasak je na fleksibilnosti pristupa. Racunski postupci sezu
od vrlo sofisticiranih kvatno-mehanickih formulacija do jednostavnih klasi¢nih izraza utemelje-
nih na upotrebi krutih atomskih naboja. Model se moZe usmjeriti na studij vrlo raznolikih feno-
mena uz uvedenje neznatnih promjena. Naglagava se i potreba za nadopunom ovoga pristupa s
drugima, koji su razlicite naravi, kako bi se postigao napredak u razumijevanju kemijskog po-
naganja sustava u otopini. Navedeni su primjeri primjena opisanog modela, ali rasprava vrijedi
i za druge racunske modele.
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