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Understanding of the processes in molecular collisions is of great impor-
tance for many areas of research. In chemistry and molecular astrophysics,
there is great interest in calculating reaction rates. For elementary particle
and nuclear physics, it is of interest to find fundamentally new concepts un-
derlying the mechanism of collisions. And for some, the molecular collision
problems are interesting on their own. The most elementary process that is
usually studied is a binary collision. If this encounter is brief, we talk about
direct collisions. However, if during an encounter, the species are stuck to
each other for a long time, we talk about collisions mediated by a long lived
state. The theory of collisions mediated by long lived states is very complex
and only few basic principles were given in quantum theory; a central place
being given to resonances. However, as it will be shown, the theory of such
collisions is far from being completed and, in fact, is in its infancy. It is the
purpose of this paper to review what is known about the subject and locate
the problems.

1. INTRODUCTION

One of the most important and interesting theoretical problems in chemistry and
molecular astrophysics is the prediction of molecular reaction rates. Of common in-
terest to both these fields are reactions in gases which, in many cases, can be under-
stood in terms of binary encounters of molecules. However, originally this was not how
reactions in gases were analyzed. Since the chemical reactions are controlled in bulk,
it was natural to analyze them in terms of the two parameters that were readily avail-
able: concentrations and temperature. On the microscopic level, however, these para-
meters have no meaning and the reactions are described in terms of much more spe-
cific parameters. The aim of the theory is, therefore, to understand binary collisions
and their relevance to bulk processes. This relationship can only be achieved if, in a
particular environment, we are certain that binary collisions are the dominant proces-
ses. Although one expects this to be the case of the gas phase, this is not always so.
In order to get a better understanding of the nature of gases, we will review a few facts
about them.
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We can assume that the molecules of a gas move freely between collisions. The
collision frequency of a single molecule ina gas at room temperature and one atmos-
phere pressure is typically between 10° and 10'° encounters per second which sug-
gests that the molecule moves freely for 10 10 seconds. On the other hand for an
averaged relative velocity of the molecules! of the order of 1000 ms™! and a typical in-
teraction distance of 1A, the collision time is of the order of 107!3 seconds or shorter.
This is a conservative estimate because when molecules are close to each other, their
relative velocity is increased by their potential, which can be considerable. This col-
lision time is much shorter than the time between encounters and when reaction oc-
curs in short times, we can safely assume that the bulk properties are dominated by
the binary collisions. Such reactions are normally called impulsive reactions and as a
bulk process, they are very well described by the rate equation2

dA)ydt = -k [A][B] (V)

where [A] and [B] are the concentrations of the reactant molecules in reaction A

+ B — anything. k is the rate coefficient. Arrhenius described empirically that the

reaction rate increases with temperature according to the relation k = exp(-E«/kT),

.where E« is a parameter with a dimension of energy. This relation is the basis of

statistical theories of chemical reactions, of which the transition state theory is the

best known®%, It also provides a link between the descriptions in terms of binary en-
counters and bulk behaviour, although within statistical arguments.

A much more accurate relationship between rate constant k and the yarameters
that describe binary encounters is for the reaction A+B - C+D given by™

k(T) = f dE op+p->c+p P(E) @

where P(E) denotes the velocity distribution in gas and o, 5., p is the reactive scat-
tering cross section. The relationship (2) is valid when the binary collisions are the
predominant mode of reaction in bulk media.

The are, however, reactions in which the time for the completion of a binary col-
lision is much longer and in these cases we say that the collision is mediated by a long
lived state. There are several reasons why this happens7 but usually it is because the
relative kinetic energy of molecules A and B becomes distributed among the internal
degrees of freedom of the merged species (A+B) and is not necessarily immediately
available as relative translational energy of the separating species, whether A and B
or C and D. Such a state will live as long as this relative translational energy is un-
available and one of the objectives of collision theory is to determine the lifetime of
such long lived states. If the lifetime is comparable with the time that molecules move
freely between collisions in the gas phase (ca. 10710 s),then there is a great chance that
the long lived state will experience a collision with another molecule. In such a case,
we talk about three-body collisions, or in general, multiple collisions. Such collisions
definitely alter the outcome of binary collisions and, therefore, the simple relationship
between k and the cross section, given by (2), will no longer be applicable. Also, the
relationship (1) becomes questionable because the rate of chemical reaction becomes
pressure dependent when sufficiently long lived states are formed. The reason is that
increasing the pressure effectively shortens the time between collisions and, therefore,
enhances the chance of multiple encounters.
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In molecular clouds, the densities are much larger than in typical chemistry ex-
periments with gases, apart from molecular beam experiments where special care is
taken not to have other than binary colhslons In that space environment, the frequen-
cy of collisions, for a typical density of 10 molecules/m in dark molecular clouds,
is so low that two molecules encounter each other in approximately 11 hours. To talk
about three body collisions, even for long lived intermediaries, is academic. Therefore,
the rate coefficient of chemical reactions in that environment is given with a good con-
fidence level by (2).

Figure 1 shows schematic diagrams of several important cases of binary collisions.
The pictorial representation has been borrowed from elementary particle physics
where, by convention, the star designates the long lived state.

(b)

(c) A+B —=B"—C +D (d) A+B=(A+B)—=(A+B)+ hY

Figure 1. Typical examples of binary collisions. a) collision without intermediate long lived state,
b) collision mediated by a long lived state, c) dissociation process mediated by a long lived state
and c) photon recombination process.

The list includes a fast reaction (Figure 1a) and a reaction mediated by a long lived
state E" (Figure 1b). The collision induced dissociation reaction in Figure 1c is also
referred to as a unimolecular process. The process in Figure 1d, in which a photon is
emitted, is called radiative recombination. The list in Figure 1 is not complete; for in-
stance, photodissociation processes are not included.

Two important types of three body collisions are shown in Figure 2. As we have
already mentioned, they are important for understanding the bulk properties of reac-

tions when the binary collisions are mediated by long lived states, as in the case shown
in Figure 1b.
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(a) (b)

Figure 2. Examples of three body collisions that occur in gases when reaction is mediated by a
long lived state.

Great interest in a detailed understanding of long lived states was initiated by
development of large and fast computersg'll. Before that, very little was known about
their properties and most of that knowledge was derived from statistical models, such
as Slater’s!? or Lindemann’s models'®. By using computers, it is possible to test these
models and also to learn the properties of long lived states that were not envisaged.
Classical mechanics is normally used for this purpose, which is a help in understanding
the processes that lead to the formation of long lived states. A more practical reason
for using classical mechanics in the analysis of long lived states is that the few bodies
collision problem is very difficult to solve in quantum theory. Even nowadays, solving
a simple reaction collision problem in quantum description requires resources of a
large computer. Strictly speaking, the molecular collision problem requires quantum
description. As we will show, the use of classical mechanics for a description of long
lived states may produce meaningless results because, in such cases the uncertainty
principle may be violated. However, there is the problem of how to define a long lived
state in quantum theory. A resonance has such an attribute!? but we will show that
it does not have properties consistent also with the properties of a long lived state in
the classical description.

We have so far described only one aspect of long lived states and this is their ap-
pearance as intermediaries in collisions. Very often by a long lived state one means a
decaying state, of which there are many examples. An o decaying y238 nucleus, with
the half-lifetime of = 4.5 10° years, would not be considered as an intermediary in
collision. A He atom in its 2 S state has such a long lifetime that it can be measured
in terms of hours rather than fractions of seconds. Muon is called a »stable« particle,
although it has a lifetime of v =~ 107° sec., because it is measured against the lifetime
of other elementary particles that decay via strong interactions. In the fragmentation
processes of molecules (e.g. photodissociation) or clusters, examples of decaying states
can be found, although their lifetime is considerably shorter than in the examples
mentioned earlier. A common feature of all of them is that the decay probability of
unstable species shows exponential form. Such behaviour is traced to the existence of
what is called the resonance or a complex energy eigenvalue of the Hamiltonian of the
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system. Since resonances are also found in collision events, it was natural to associate
them with the long lived states, which was further supported by the calculation of time
delay in these processes. Straightforward calculation showed that the decay time of an
unstable species is half the appropriate time delay in collisions, which confirmed our
intuition that decay is half an appropriate collision event. In this review we shall not
discuss decays but only the long lived states in collisions.

The purpose of this article is to give a review of the work that has been done in
this field together with the problems arising in a description of the long lived states.

2. GENERAL REMARKS ON LONG LIVED STATES

There are two conceptually different approaches to the analysis of the collisions
of molecules. One is the approach of classical mechanics (based on Newton’s equations
of motion) and the other is the quantum theory approach (which is based on Schré-
dinger’s equation). Strictly speaking, all molecular collisions should be described by qu-
antum theory, but under some circumstances classical mechanics provides equally good
results. When and why both of these approaches give nearly the same results has been
discussed in the literature!®® and we shall not do it here. Later, we shall discuss this
in the context of long lived states.

In the case of long lived states, we have a good idea of what they are. We say that
a long lived state is formed when two colliding molecules are stuck to each other for
a period of time before the composite system fragments. This picture is entirely clas-
sical since it implicitly incorporates the notion of the trajectory. It is relatively easy
to observe when such a state is formed in a classical description. It is sufficient to fol-
low the relative coordinates of atoms in time'®!?!8, If their values are smaller than
some typical distance (say five times the diameter of molecules) for a period of time
which is much longer than the time for free molecules to travel the same distance, we
say that a long lived state is formed!!. Figure 3. shows a schematic description of a
typical collision in which a long lived state is formed.
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Figure 3. Pictorial representation of the formation of long lived state in collision of molecules
A and B.
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In a strict sense, we define a long lived state using the notion of time delay. The
time required for two molecules to come together (when they travel a distance Rp) to
interact and for the products to fly apart when they travel Ry, is the absolute travel
time. If from this time we subtract the time which the particles would travel Ri and
Rr, with the assumption that the potential between the molecules is zero, we obtain
a quantity that measures how long the two molecules interact. This quantity is called
the time delay v 1819 From its definition it can have positive and negative values. If
the time delay is positive, then a long lived state is formed. In the case when the poten-
tial between molecules is nearly all repulsive, one can show that the time delay is
usually small and negat:ive20 There are other criteria for long lived state but this clas-
sical criterion is easily generalized in quantum theorY while the others rely more or
less on a knowledge of the classical trajectory 1011171821, o

Long lived states in the quantum treatment are more difficult to define since there
is no trajectory. In order to see the problems involved in such a definition, we shall
review certain basic principles of quantum theory. At the root of the quantum descrip-
tion lies the concept of probability. What this means is that, at any instant, the posi-
tion of a particle has a certain probability, which is a result of the inherent inability
to measure its position and momentum accurately. The uncertainty in the position and
the momentum of a molecule depends on the circumstances. For instance, the uncer-
tainty in position of a molecule in the gas phase could be its mean free path. The un-
certainty in position of a molecule in a molecular beam experiment is given by the area
of the nozzle aperture and the length of the pulse defined by the product of the time
the beam chopper stays open and the velocity. The probability distribution of finding
a molecule near a certain averaged position may have various forms but, in general,
its mean extent is much larger than the size of the molecule, e.g. in the case of a mo-
lecular beam experiment. At different instants, the probability distribution moves, at
a speed that is related to the averaged velocity of the molecule. The time evolution of
this distribution is obtained as a solution of the quantum dynamic equation, i.e. the
Schrodinger equation. The equation applies to the probability amplitude (the wave
function) from which the probability distribution is obtained by squaring the modulus
of the wave function. The form of the wave function that reproduces the probability
distribution is also called a wave packet. Instead of the trajectory in the classical
theory, we work with wave packets in quantum theory. Likewise, the time delay which
is defined for a trajectory in the classical description must be appropriately defined for
a wave packet in a quantum description. From the value of such a time delay we should
be able to determine the lifetime of a long lived state in the quantum treatment.

The time delay, in the quantum treatment, is obtained by initially fixing a specific
point on the wave packet and seeing when this point comes out of the interaction
region. However, we have a problem here because the wave packet before collision is
in principle localized along the line of impact between the two particles (its delocaliza-
tion in the molecular beam experiment is related to the opening time of shutter and,
therefore, can be controlled), but it is entirely delocalized perpendicular to this line.
Thus, it can be assumed that along the line of impact the wave packet has an certain
shape but orthogonal to it, it is uniform, and hence when we choose a point along the
line of impact we are in fact choosing the whole plane that is perpendicular to it. This
plane can coincide with the maximum of the wave packet, for example, when 1ts shape
is a Gaussian functxonzg, or it can be the plane at the front of the wave packet which
is called a wave front. Gaussian type wave packets are rather artificial but they are



ATOM-MOLECULE COLLISIONS 95

used primarily because they are mathematically convenient so one should be wary of
them. For example, since the beginning and the end of the pulse are not distinguished,
there is no way one can study the onset of the scattering process from the zero value
of the probability amplitude to the full plane wave situation.

A more appropriate form of a wave packet is the one which is produced in a mo-
lecular beam experiment and it is shown in Figure 4a. Point P defines the wave front,
i.e. the plane which is perpendicular to the line of impact. As the time progresses, the
whole wave packet moves together with the wave front. It should be noted that when
the wave packet moves freely, it does not retain its shape and its extent. Figure 4b
shows what the wave packet in Figure 4a. looks like after certain length of time. This
point will be discussed later.

In order to measure the time delay involving a wave packet, we fix initially its dis-
tance from the target. The wave front is followed and after collision, its arrival time
at some fixed point relative to the target is measured. The time delay is now obtained

¥
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(b) .

Figure 4. Typical wave packet produced in molecular beams (a) and its shape at a later time (b).
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in the same way as for a trajectory in the classical description; from this time we sub-
tract the travel time of the wave packet to the target and from the target to detector.
It might appear that this time delay is the same as in the classical description. How-
ever, this is not quite so because the wave front (the plane defined by P in Figure 4.).
though initially straight, may have various shapes after a collision. Figure 5a. shows
an example of the scattered wave front in the case of elastic atom-atom collisions. The
wave front is shown in two dimensions since the system has cylindrical symmetry.
Before collision, the wave front Pj is shown by the broken line and after collision, it
is shown by the full and broken-dotted line P. The scattered wave front progresses
radially from the target T.

R, Ry

-0
o

(a) (b)

Figure 5. Scattering wave front in elastic collisions (a) and in more complete collisions (b). Initial
wave front is indicated by OP1 and scattered by P. The target is indicated by T. The broken-dotted
line is also P but is a mirror image of the full line.

We notice that a point R, the arrival of a single point of the wave front is expected
and, therefore, the time delay at this angle is the same both in the classical and quan-
tum theories. However, at point Ri, we expect the arrival of three points, P1, P2 and
P3, of the wave front, which correspond to the atom scattering at three different im-
pact parametersa4,15,20. The definition of time delay at Rj is, therefore, different in
quantum theory from that in the classical theory because the former does not have a
unique value.

For more complex collisions, the scattered wave front may have a very complicated
shape, as shown schematically in Figure 5b. The thick sections of the scattered wave
front in this figure will be discussed later.

The meaning of the quantum time delay is, therefore, different from that in the
classical description. In quantum theory, it is associated with the arrival time of the
wave front and, thus, it is a multivalued function, while in the classical theory it has
a single value because it is associated with a given trajectory.
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3. CLASSICAL DESCRIPTION OF LONG LIVED STATES

Fundamental in any classical description of collisions are Newton’s equations of
motion, which for a given set of N particles are

r; = F; ; 1=1,2,...N 3)

dt2

where m;, is the mass of the i'" particle, E| is the force that acts on the i** particle and
r; is its coordinate. The coordinate function r;(¢) will be called the trajectory of the it"
particle. The set (3) represents the initial value problem meaning that given a set of
values for the coordinates and velocities of particles at some given time ¢,, the solution
of (3) gives their values at any later (or earlier) time ¢. However, the initial conditions
for (3) cannot be directly measured for the system on the atomic scale since the coor-
dinates and velocities of particles are not observables. Information about these initial
conditions can be obtained form the quantities which can be directly measured experi-
mentally (observables), and these are for example the vibrational energy or the rota-
tional angular momentum of molecules. These observables give only one half of the
initial conditions for the integration of (3).!°

The other half are arbitrary due to the uncertainty principle, and are referred to
as the set of phases P;. Therefore if we are interested in state-to-state transitions be-
tween the initial observables O;' and the final ones O.F then the set of phases which
connect them is specified, but not necessarily unlquely . Finding all these sets of pha-
ses is the most difficult task in the classical description of collisions. It is particularly
difficult to find these sets when long lived states are formed because they usually ap-
pear in a large number?S. However when all of them are found, then the cross section
for the transition O - Oif is proportional to the inverse of the Jacobian'®

Oolsof ~ z (Det | Z—(}))?- I) -1 (€))

where the sum includes all the sets of phases which connect the initial and the final
states. We can, therefore, define the partial cross sections so that (4) can be written as

Golot = 3 B o )
‘ P

For each set of phases P; and observables O' the relevant trajectory, obtained by
the integration of (3). has a time delay. This time delay, as discussed in Section 2., is
the most relevant for the study of the long lived states in collisions, and can have any
value between a small negative or some large positive time delay. It is, thus, relevant
to ask what happens if the sum in (5) is replaced by a sum that includes only the trajec-
tories of a certain time delay. We obtain the time dependent cross section, which in
principle can also be measured since the time delay is a well defined quantlty (such a
cross section appears under different names e.g. the complex decay curve?’. The value
of this cross section is given by
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oolsoF (T,) = obl . oF (6)

P(75)

where now the sum extends over all sets of phases for which the relevant trajectories
have a time delay r,. Obviously, such a cross section carries more information about
collision than (4).

General features of cross section (6) can be obtained by analyzing the time depend-
ence of the difference between two trajectories. This difference is designated ¢; and is
assumed to be small. By definition

g =ri(?) — ri(®) ‘ W)

and if only the first order terms in ¢; are retained, then the equations for (7) are

ma=- S (%) ViV (8

=1

where V is the potential. This set of equations, though appearing to be linear, is cou-
pled to the set (3) via the potential V and, therefore, it does not have an analytic solu-
tion. However, in the neighborhood of the reference trajectory we can assume that V
is given by an expansion up to quadratic terms in r. In such a case, the matrix of the
second derivatives (the Hessian matrix) in r is constant so that (8) can be written in
a general form

W":_—Z i & ®

where ¢; is now a scalar and designates one of the components of (8). In matrix form,
this set has a general solution

e = sin(UY2¢) A + cos(UY2¢t) B (10)

where the matrices A and B are determined from the initial conditions.

The properties of solution (10) are determined by U2, Two cases in particular
are distinguished. In one U is positive definite, i.e. all its eigenvalues are positive, and
in the other at least one eigenvalue is negative. In the first case, solution (10) oscillates
within certain bounds and we call it the stable solution. In the second case the solution
is unbounded and is called an unstable solution. This means that in the first case two
close trajectories remain permanently so but in the second case they separate exponen-
tially. On this basis, we distinguish two kinds of systems, which we shall call stable
and unstable. In the stable systems, solution of (10) oscillates within certain bounds,
but in the unstable systems it diverges exponentially. A typical example of a stable sys-
tem is the set of coupled harmonic oscillators, for which (9) is the exact solution. How-
ever, if at least one harmonic force is replaced by a repulsive linear force (the inverted
harmonic oscillator), U is not necessarlly positive definite and the systems goes into
the unstable regime. Slater’s model'? of molecules (developed for describing unimole-
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cular reactions) is an example of a stable system, while most other real systems are
unstable?® 30 For unstable systems, there is the estimate

e =~ exp(t [4] %)

(11)
which is valid only locally because globally the trajectory passes through the regions
of stability and instability. Therefore, A in (11) can be considered as an »effective«
eigenvalue. It should be pointed out that the term »stable system« does not mean that
the system is stable, i.e. that it has infinite lifetime, and vice- versa for the unstable
system. In our context, these two terms describe systems that behave differently when
the system of equations (8) is solved.

From (11) an estimate of the cross section is obtained. A small change in the value
of the initial phases causes a change in OF of the same order as in (11). The Jacobian
is, therefore, of the same order of magnitude and the partial cross sections are calcu-
lated by the expression

IoLaoF(r) =~ exp(—7|4] "/

) (12)
which indicates that they are small for the long lived states. It appears, therefore, that

sum (3) is rapidly convergent, and that the long lived states have little influence on
state-to-state cross sections.

For Slater’s model, the estimate of the partial cross sections is different from (12).
The trajectories do not have the exponential separation rates and the partial cross sec-
tions are approximately of the same order of magnitude for all time delays. However,
neither Salter’s model nor entirely unstable systems are truly representative of real
systems. The estimate of the partial cross sections for real systems lies between these
two limiting cases and, generally speaking, the more the system behaves like a stable
one, the greater will be the contribution of the long lived state.

One question of great interest from the point of view of the statistical theory of
chemical reaction rates is how the total collision energy is distributed among the de-
grees of freedom of the long lived state. In particular, it is of interest for unimolecular
reaction rates to know whether this distribution is random of not’*®. Classical theory
should be able to answer this question, but one is immediately confronted with a puz-
zle; how is one going to answer this question? For one thing, given an initial and a
final state, there is no intermediate state in the unimolecular rate theory (in Figure
lc. it corresponds to B, and the lifetimes for these intermediate states range from al-
most zero to a very large value. Furthermore, when long lived states are formed, then
at certain gas pressure multiple collisions of the form shown in Figure 2. start to play
arole, as explained in the Introduction. Multiple collisions alter the distribution in the
long lived states and make the task of its determination impossible by simple analysis.
Even when an isolated long lived state is studied, it is not clear how to determine
whether the distribution of its internal states is random or not. Randomness is not a
uniquely defined entity and various criteria of randomization have been suggested3l'33;
among which the most attractive is that the unstable systems are also ergodic34. This
possibility comes from the analysis of bound (infinite lifetime) systems, but the long
lived states, by their very nature, do not have infinite lifetimes and, therefore, this
criterion is only of limited applicabilityls.
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TABLE 1

Systems for which the classical long lived states have been investigated

0 + CO?5:58 c(1D) + HI°® H + HY

NaBr + KCI'° K + NaCl?® F + H*

o(D) + H.%® H + 1C1*° HY + Hp?"68
C(ID) + HZGG Ar + Arn11 rare gas + COz69

Ar + ArNNAr'®

There has been a number of classical studies of long lived states in collisions. A
partial list is given in Table I. and a few of them should be briefly mentioned.

Collision O +CO is one of the earliest attempts to analyze vibrational predissocia-
tion (decay) of (OCO)* as a »half collision« problem. This and the analysis of reaction
NaBr+KCl pointed to two specific characteristics of long lived states. One is that there
is a severe loss of numerical accuracy of the trajectories with long time delay and the
other that the final values of observables of these trajectories change very rapidly with
the initial phases. The explanation was found in the exponential separation of two
close trajectoriesl5'29. This was a direct implementation of the ideas already developed
in the study of chaos in the bound systems and one of them is that the exponential
separation of trajectories is direct evidence of the ergodic behaviour of the system34.
The same idea was tested on the example of long lived states in the reactions K+NaCl
and H+ICl. However, there is as yet no conclusive evidence which would indicate this
relationship.

On the example of Ar+Ary collisions it was shown that time dependence of cross
section has an exponential decrease with the increasing value of time delay for trajec-
tories. No conclusions were drawn which would indicate that this time dependence of
cross sections is a result of the exponential separation of trajectories. However, it was
indicated that there was no evidence of energy randomization.

Of particular interest is the reaction H+Hg (and similarly F+Hg), with various
combinations involving D. It is usually believed that a necessary condition for the for-
mation of long lived states is that the atom-molecule potential should have a well. In
such a case, an incoming atom is trapped in this well provided it has been able to
transfer most of its kinetic energy into the internal energies of molecule. However, a
long lived state can be formed without this condition being fulfilled. The H+Hgz poten-
tial is nearly all repulsive and yet it was found that a long lived state can be formed.
The mechanism of its formation is an interplay of two factors; large energy transfer
of the incoming atom into the molecule (H atom is equal in mass to the atoms in Hy
molecule) and the fact that the H3 breakup is not possible. Therefore, it can happen
that for a particular phase of Hg the kinetic energy of the incoming atom is transferred
into vibrations of Hg in such a way that the system H-Hzg is in a stretching mode of
vibrations leading to breakup. Since this is not possible, the system will vibrate until
its internal energy is redistributed to allow a normal dissociation to the products
H+Hpy. It is obvious that such states can only be relatively short lived and in fact they
are rather rare events.

Another example of a long lived state, where it is not necessary for the potential
to have a well, is random walk. Take a cluster of n fixed and separated hard spheres
and shoot a projectilesg. Most of the time the projectile recoils from the spheres but
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for certain initial conditions it penetrates the cluster and is trapped until it finds its
way out. A long lived state is formed, but such a state is not typical of atom-molecule
collisions but more of a diffusion process.

Most of the research of long lived states involved reactions. There have been rela-
tively fewer studies of much simpler systems although they allow a more thoroug$h
study of long lived states, without loss of generality. In the elastic collisions of atoms®®
(where the long lived state is also called orbiting), they did not attract too much at-
tention because it is assumed that they have not been studied in great detail, but it
is believed that they are short lived!®. Figure 6. shows a long lived state in the rota-
tional excitation of Liz by atom®’. Between the two bounces of the He atom, the
molecule made 41 rotations. On the other hand, long lived states in vibrationally in-
elastic collisions may have a much longer lifetime®®.

Figure 6. Long lived state in the rotational excitation of Li;(A'S molecule by He atom, at the
collision energy of E=1 meV. Between the two collisions the molecule made 21 rotations.

A classical description of atom and molecule collisions is valid only if certain con-
ditions are met, and one of them is related to the uncertainty principle. Thus principle
says that the phase space of a system with N degrees of freedom cannot be fragmented
into the volume elements smaller than the N-th power of Planck’s constant, i.e. AV
This means that any two trajectories with initial conditions from the same smallest
volume element cannot be distinguished experimentally, even in principle.

Let us consider a one dimensional case and the corresponding area dxdp in the
phase space. This area can be larger than Planck’s constant and corresponds to the
uncertainty in preparing the initial conditions for the particle. As the time progresses,
the area slowly changes its shape and for a free particle it will spread uniformly in
the x coordinate. In reality though (i.e. when calculated from the quantum theory), the
shape of the area along the x axis is as shown in Figure 4b. When the particle en-
counters another particle, the shape of the area changes far more dramatically. Dif-
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ferent parts of the phase space are now affected differently and for complex collisions
the area can even split into fragments or increase its size. What happens if a small
element of the original area, smaller than h, increases its size much beyond h? In prin-
ciple, we would be able to distinguish various trajectories within the enlarged area
whose initial conditions are in an area much smaller than h. In other words, we would
have a »microscope« that would enable us to »look« into the elements of the phase
space which is smaller than h, thus contradicting the uncertainty principle. However,
this is exactly what happens in the case of the exponentially separating trajectories in
the unstable systems. Their separation is so rapid that very fine selection of the initial
conditions is necessary in order to distinguish various final states. As a result, the clas-
sical cross sections become meaningless. Nevertheless, classical theory is very often
adequate for many systems in which long lived states are formed simply because the
short lived states dominate the cross section by virtue of estimate (12).

4. QUANTUM DESCRIPTION OF LONG LIVED STATES

The basis of the quantum description of collisions is the time dependent
Schrédinger equation

L
in 5o =Hy (13)

where H is the Hamiltonian of the system and y is the wave function. The square of
the modulus of the wave function gives the probability density of finding system in a
certain state at a certain time. The time evolution of the wave function is specified by
the value of ¥ at an initial time, say ¢=0, which we designate y,. The value of y, is
determined (except for a phase factor) by the initial probability distribution of the sys-
tem which, in turn, depends on the experimental circumstances. For the collision of
two molecules, say A and B, we assume that their internal states are given by ¢, and
¢g, while the translational wave function for their relative motion, in the centre of mass
coordinate system, is . If the initial probability distribution is p, then g, is given by

9o = Vpexp(ip.R/h) , 14

where p, is the relative momentum of the two molecules and R is their relative separa-
tion. The phase factor gives the non-zero probability current in the direction of p,. The
initial wave function is, therefore,

Yo = PAPB Po (15)

If ko = po/h is parallel to the z axis and if it is assumed that the extension of the

wave packet in the x and y direction is infinite (for molecular beams this reflects the

. —faet that the nozzle is much wider than the size of molecules), then ¢, is a function
of only the z coordinate. An example of the modulus of ¢, is shown in Figure 4a.

S+luti0n of (13) is given in the form of the integral

p = [ Pro AKK) e 1B (16)
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where A(k) is the amplitude determined from the initial condition (15) and ¢y is the
solution of the time independent Schrédinger equation

Hyp, =E ¢ an

The boundary condition on pk determines the solution . For scattering problems,
this condition is given when the molecules are infinitely separated. If, for simplicity,
we assume that there is rearrangement of the atoms during collision and only energy
is transferred between the two molecules, then this boundary condition, for R, is
given by

. 1
Pr ~e"'p pp + Y etuRp, o fru(©P) (18)

m

where the initially molecules A and B are in states A, and B, respectively. The wave
number for the relative momentum of molecules is k,. The second term in (18)
describes the spherical waves emerging from the colhslon region. Function f,, , is also
called the scattering amplitude and depends on the scattering angles © and ®.

As we are, usually interested in the intensity of the wave packet (or probability
distribution) far away from the collision region, we can replace ¢ in (16) by (18). We
obtain two terms for y; one corresponds to the non- scattered wave packet [it is
described by the first term in (18)] and the other is the scattered wave packet, which
is given by

Uso=3 D panpu, | ERerl-EAL AK) 19

from which it is easy to obtain the cross section in a particular state.

Integral (19) can be calculated by the method of the stationary phase, which ap-
plies to the integrals of a general form

I= f dz F(z) e¢® (20)

We shall briefly review the main points of the method since they are essential for
later discussion. According to the method, most of the contribution to integral (20)
comes from around the vicinity of points z, for which dg/dz=0. They are called sta-
tionary points of g(z). We can write

£0) = 8() + 5~ 2)°8°(z)
(21)

F(z) = F(z))

in which case integral I is approximately
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I= 2 5@ Fz) [ dz e 266" 22)

Depending on the sign of g”’(zj), the integration path is now rotated around each
z, by +x/4 into the complex z plane. In this form, the integral can easily be evaluated
and we obtain that most of the contribution comes from the interval |Az|j < |gl

The stationary phase method rests on several assumptions that limit its ap-
plicability. These assumptions are: a) the radius of convergence for the expansion of
g(z) around each stationary point should be much larger than |Az|j, b) no two station-
ary points should be close to each other, otherwise the next term in the expansion of
£(2) in (21) should be considered and c) within radius | Az|j the function F(z) should
be analytic and nearly constant, and definitely not as rapidly varying as e'8. If one of
these three conditions are not fulfilled, the method cannot be applied, not even as an
approximation.

We shall now evaluate integral (19) by formally applying the stationary phase
method. If we assume that A(k) is a slowly varying function of k2 (which is usually,
though not necessarily always, the case) and if we write

fan = |fn| €%mn (23)

where J,, , is the phase of the scattering amplitude, then integral (19) is formally in
the form (20). By applying the stationary phase method to (19), we obtain an equation
that gives the time when a characteristic portion of the wave packet arrives at a point
from the scattering region. If from this time we subtract the time the free wave packet
travels the same distance, we obtain the time delay, given by!®1°

d
= h Zz9ma @4)

However, it should be recalled that this formula was derived formally, without ta-
king into account the conditions under which the stationary phase method is appli-
cable. One of the conditions says that the modulus of the scattering amplitude should
not be a rapidly varying function of energy. Though in some cases (such as some elastic
atom-atom collisions”" this condition may be satisfied, this is not generally 3039, as it
will be demonstrated in the case of resonances.

Mathematically, a resonance is associated with a complex energy eigenvalue of the
Schrédinger equation, or equivalently with a complex energy pole of the scattering
amplitude. Therefore, near a resonance, the scattering amplitude parametrizes as

fm,n = E —,E (25)

where E, is a complex eigenenergy, E, =Ey — il". The imaginary part I is small and al-
most always positive (an exception to this rule was found in atom-surface scattering?®’,
and is a measure of the resonance width. Quantity b,, , is a complex function of energy
and, for brevity, we shall call it the residue, though by definition a residue is constant.
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If for the moment we assume that bmn is constant, then the phase Smn in (23) is

(26)

)

r
= —tan—!
Spmn = —tan (E—-ER)

and if (24) is formally applied, then the time delay for E=Eg is r=hI'-l. This result
is a formal proof that at a resonance energy, the wave packet is delayed by 7, meaning
that a long lived state is formed. However, the modulus of the scattering amplitude is

fon| =[(E - Ep)2 +T2] 772 @n

which is a rapidly varying function near E=Ey and, therefore, the basic condition (c)
in derivation of (24) is not satisfied. In fact the module (27) has a pole and a branch
point in the vicinity of the stationary point.

In this example we have shown that a rapid change of the phase of the scattering
amplitude is a necessary but not sufficient condition to ensure formation of a long
lived state. Indeed, it has been confirmed numerically that the time delay in the
presence of a resonance is not affected by r*, The time delay is only affected by the
change of phase of the residue, which has been disregarded here. The true value of
time delay is given by (24) but dm,n is now the phase of the residue.

We have demonstrated that it is a common feature of the scattering amplitude that
its modulus is a rapidly changing function of energy. Therefore, the first step in a
study of long lived states is to find a convenient parametrization of the scattering
amplitude that would allow the use of the stationary phase method. The simplest
parametrization is to represent fmn as a sum

r=3 10 (28)
J

where the indices m and n have been omitted for convenience. It is important to note
that, though the sum extends over an unspecified number of indices J, relation (28)
does not correspond to the partial wave decomposition of the scattering amplitude (in
which j plays the role of angular momentum).

Resonances are always present in the system and, thus they are a source of rapid
change of the modulus of the scattering amplitude. Each resonance affects all f(') in
(28) and, therefore, we must further parametrize the partial amplitudes f(’) in the form
of (25). For a single resonance we write

_ 0 @)
_E—ER

) 29)

where now the modulus of b9 is a non-rapidly varying function of E. As we have seen,
the time delay is now entirely determined by the phase of . For a large number of
resonances, the parametrization is more complicated, but it will always be the phase
of residue that determines the time delay and the properties of long lived states.

The aim of quantum theory is to find all 59 in (28), if they exist, or to find another
form of parametrization for f. This problem is still unsolved, but there have been
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varlous attempts to solve it. One is based on the concept of complex angular momen-
tum!®42 (called the Regge method), which parametrizes f in the forms of (28) and (29).
The method has been quite successful in explaining the orbltmg phenomenon in elastic
collisions?®44, It can be extended to inelastic processes15 but it still needs further
testing. However, there is no reason to believe that this is the only method or, for that
matter, the best suited one for parametrization.

A time delay 7, can be associated with each f(’) in (28) and they do not necessarily
have the same value. In this respect, these amplitudes are analogous to classical trajec-
tories. However, each partial amplitude represents a separate wave packet emerging
from the interaction region and not a single trajectory. These wave packets arrive at
different times and if we fix the wave front of the initial wave packet, then the same
wave front after collision will appear as in Figure 5b. The thick regions in this figure
correspond to the relative stability of the wave front and thin regions to its instability,
i.e. two close points on the initial wave front are also close on the scattered wave front
for the thick sections while for thin sections they are not.

There have been no quantum studies of long lived states, except in the case of elas-
tic collisions of atoms. Resonances have been investigated, but, as we have seen, they
cannot represent long lived states of the sort that are found in the classical studies.

" A partial list of systems for which resonances have been analyzed is given in Table II.

TABLE II

Systems for which resonances have been investigated

F + Ho"! H + FH73 F + HBr78
He + Hpt 72 H + co’® Ar + CH4™®
Cs + Hp"® H + H'%7 He + Liz(A')¥

.

Again, a special case is the H+Hg. system. A rapid change of the phase of S-matrix
was observed and was associated with a resonance. This, however, does not necessarily
mean that a classical long lived state should be found. This can only happen if the
phase of the »residue« changes rapidly, a fact that needs investigating.

5. CONCLUSION

Much theoretical research has been done into the properties of long lived states
in molecular collisions, but very little using quantum theory, if we exclude the study
of resonances®6

As we have seen, resonances and long lived states are different phenomenal5.
Resonances are of interest for analyzing decaying states, like in predissociation and
in those cases where they are observed in scattering experiments. The latter is quite
a difficult task and resonances have been observed only in a few instances ek

Other theoretical studies of long lived states have involved the classical theory.

The amount of research in this field is considerable but the question that has not been
addressed is what is the relevance of these results to the real (essential quantum) sys-

~ tems? We have shown that for long lived states in predominantly unstable systems the
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classical approach loses its meaning. One reason why this question has not been
answered lies in the fact that very complex systems are usually investigated and quan-
tum calculations are almost impossible for them. An exception is the famous H+Hz
»resonances, investigated both classically and quantally®

Experiments on long lived states are difficult for several reasons. In order to see
this, one should compare them to somewhat similar experiments in elementary par-
ticle physics. Long lived states in elementary particle physics are produced in collisions
of stable particles (e.g. proton or electrons) and they are relatively easy to observe
since they leave a visible trace in, say, a bubble chamber. Neutral particles, such as
the neutron, are difficult to see but they can be observed indirectly, through their in-
teractions. In molecular collisions, such experiments are not possible. Firstly,
molecules are much larger than elementary particles, so that a gas, let alone liquid,
cannot be used to observe the path of molecular long lived states. Secondly, the
velocities of molecules are much smaller than those of elementary particles, so that
during their lifetimes the latter travel much longer distances than as molecules. An
elementary particle with a lifetime ca. 1078 sec., which travels near the speed of light,
leaves a trace 3 m. long. On the other hand, a long lived molecular state of the same
lifetime would leave a trace only 10 m. long if it traveled at 1000 m sec’!. These
states are usually observed in an indirect way57 61, or directly but only as decaymg
states (unimolecular processes)

Research into the properties of long lived states is only in its infancy and many
questions are as yet unanswered. Some of these questions are of a fundamental nature
and concern the general theory of collisions. Some questions are more practical, such
as calculations of chemical reaction rates, or at least understanding their orders of
magnitude. In this respect, this contribution has aimed at highlighting some of the
problems involving long lived states in collisions.

Acknowledgement. — The author wishes to thank Professor H. Kroto for many discussions
concerning this article and general aspects of this subject.
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SAZETAK
Dugo-zivuéa stanja u sudarima atom-molekula
S. Danko Bosanac

Razumijevanje procesa u molekulskim sudarima je od velike vaznosti u mnogim podrudjima
istrazivanja. U kemiji i molekulskoj astrofizici veliko se zanimanje pokazuje za ra¢unanje brzine
reakcije. Za elementarne Cestice i nuklearnu fiziku od interesa je pronaéi nova naéela kojima se
objagnjava mehanizme sudara. Za nekoga su molekulski sudari zanimljivi sami po sebi.

Najjednostavniji proces koji se najéesée istrazuje jest dvojni sudar. Ako je taj susret kratak,
govori se o direktnom sudaru, medutim, ako se tijekom susreta &estice zalijepe jedna za drugu,
govorimo o sudaru koji je posredovan dugo-zivuéim stanjem.

Teorija sudara posredovana dugo-Zivuéim stanjem vrlo je sloZena pa su dana samo neka te-
meljna nacela u vrijeme najveéeg razvoja kvantne teorije. Medu tim nadelima sredi$nje mjesto
dano je rezonancijama. Medutim, kako je pokazano, teorija takovih sudara jos je daleko od toga
da bude zavrena, u stvari jos je u zadetku. Namjera je ovog ¢lanka dati pregled $to je znano o
tom podrudju i gdje su problemi.
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