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This paper takes the form of a review including some original contribu-
tions. A new generalized optimization criterion, which is an extended appli-
cation of the basic principle of maximum overlap, is employed to obtain a set
of generalized equations for constructing various kinds of optimum orbitals.
The generalized equations and the generalized conclusion obtained in this pa-
per are useful not only for the construction of optimum symmetry orbitals,
but also for direct construction of delocalized molecular orbitals and other
problems. The obtained generalized conclusion on the symmetry properties
of optimum orbitals shows that for a pair of bonding orbitals expressed in
linear combinations of all the AOs in a molecule, so long as the criterion of
maximum overlap is satisfied, the bonding orbitals must be the symmetry or-
bitals belonging to the same row of the same IR of the point group, i.e. they
are symmetry-adapted. But it is uncertain whether the symmetry-adapted or-
bitals satisfy criterion of maximum overlap.

INTRODUCTION

In 1931, Pauling and Slater initiated the basic idea of maximum overlapping of
bonding orbitals in the region between two nuclei." Later, the principle of maximum
overlap was developed. Mulliken et al.>¢ examined the chemical bond strength by using
the criterion of maximum overlap. Murrell was the first to propose a general maximum
overlap matrix method’ to construct systematically hybrid orbitals of the central atom
in molecules of the type M-(L;, Lg,..., Ly). Since then, this method has been applied
and further developed by many others.?-55

Of the developed maximum overlap methods, many were used just to construct the
best hybrid orbitals (HHAOs) for a molecule of a known structure, but the iterative max-
imum overlap approximation (IMOA) method, 2632 proposed by Maksi¢ et al., could be

* Dedicated to Professor Linus Pauling on the occasion of his 90th birthday.
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applied not only to construct systematically the best HAOs but also to determine mo-
lecular geometries. The IMOA method has been employed to connect the s character
of hybrid orbitals and bond overlap integrals with many physico-chemical properties,
and to successfully work out the structural properties, such as bond lengths, bond ang-
les, strain energies, heats of formation, spin-spin coupling constants across one bond,
stretching frequencies, thermodynamic proton acidities and intrinsic bond energies, of
a large number of molecules.’? All these results are better than those of some semi-
empirical methods and are in good agreement with the experimental data. Hybrid or-
bitals constructed by using the maximum overlap method have been applied not only
to explain localized molecular properties, but also in a wider field, 3334 such as ratio-
nalizing PES spectra, ab initio calculations®® and the PCILO method.38% All these
show that the basic principle of maximum overlap has played a very important role
in the discussion of molecular structure and properties.

Recently, the maximum overlap method has been extended to construct the sym-
metry orbitals,®!-% j.e. the basis vectors for irreducible representations (IRs) of the cor-
responding molecular point symmetry group, determined by one of the optimization
criteria,5! which can be regarded as an extension of the maximum overlap criterion.
These symmetry orbitals are the optimum linear combinations of the atomic orbitals
(AOs) and may be called the optimum symmetry orbitals. The optimum symmetry or-
bitals obtained can be used not only to block diagonalize the Hamiltonian or Fock ma-
trix52 but also to obtain directly a set of delocalized molecular orbitals.5! It follows that
the basic principle of maximum overlap is closely related to the symmetry properties
of the bonding orbitals.

The format of this paper is primarily that of a review of the extended application
of the maximum overlap principle to the construction of the optimum symmetry or-
bitals, but it also presents some new results concerning further extension of the met-
hod and some new insights concerning the relation between the maximum overlap and
the symmetry properties of the bonding orbitals. In the following section, we will brief-
ly discuss an important property of the maximum overlap orbitals. Based on this pro-
perty, a new generalized criterion will be proposed and employed to derive a set of
generalized equations for constructing various kinds of optimum orbitals in section 3.
The symmetry properties and the bonding properties of the optimum orbitals will be
discussed in sections 4 and 5, respectively.

OPTIMUM LINEAR COMBINATIONS OF HYBRID ORBITALS

Assuming there are m bonds in a molecule, we consider m pairs of the bonding
maximum overlap hybrid orbitals forming m bonds:

W, = (|oy) |wg) . .. |0m)
Wi =(lyd) 92 [¥w)
These hybrid orbitals satisfy the maximum overlap criterion,
2, {@i|y) = maximum, (1)
i=1

i.e. the sum of the m bond overlap integrals takes its maximum. Denote the overlap
matrix W;*W,, by S,. By use of matrix S,, the condition given by Eq. (1) is equivalent to
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Tr - S; = maximum.

According to Murrell’s two theorems,” the m x m matrix 8; must be Hermitian. It is
easy to show that for each unitary matrix U,

U*s,U =8/, : 2

matrix S’; has the same trace as S,, i.e., if S, satisfies a requirement Tr-S; = maximum,
S’, satisfies the condition Tr-S’;, = maximum as well. From Eq. (2) we get

S, =UtWiHe, U = Wiy, @
where
W) = (o) |0')) ... |e'y) =WU
Y=y ¥ .. |[¥'w) =¥U

|w’)s and |¢’)s are linear combinations of |w;)s and |y;)s, respectively, and satisfy also
the maximum overlap criterion given by Eq. (1).

Clearly, the unitary matrix U can take an arbitrary form. However, the form will
be fixed if we demand that each overlap integral (w’;|y’;) should take its extremum
(optimum value),

{@’;|¢’) = extremum. @
Let

2 2 u;i W; (w,ulwv>
A= (o |yt = A= - ®)

b
PRA

=1

The criterion (4) can be satisfied by use of the following variational conditions:

oA; .
-51—1—:= y _]=1,2,...,m. (6)
ji

From the condition d4;/du; = 0, one can get
SlUi = AiUi (7)

where U, is a column matrix formed from the ith column of matrix U. Apparently, if
we denote |w"), |9’ and S’; satisfying the criterion (4) by |®°), |¥°) and S°,, respec-
tively, the |w%) = W,U;, |y°) = ¥,U; and (8°));; = {(w°%|¥°) = A;8;. Therefore, the S°
matrix is a diagonal one formed from the m eigenvalues A;s of matrix S;, and the uni-
tary matrix U determined by the criterion (4) is the corresponding eigenvector matrix:
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8,U = USg (8)

It follows that the overlap matrix S; formed from the m pairs of maximum overlap
hybrid orbitals is Hermitian, but that formed from those satisfying not only the total
bond overlap integral being maximum but also each overlap integral (w?|y?) taking
its optimum value must be diagonal. In fact, if each overlap integral (wf|yf) takes its
positive optimum value according to the optimization criterion given by Eq. (4), the
total overlap integral ZP {wf|yf) must take its maximum.

It is known from a previous paper®! that the |w®)s and |y°)s are all basis vectors
for the IRs of the molecular point group. That is to say, they are the symmetry orbitals
that are the optimum linear combination of the maximum overlap hybrid orbitals and
are, therefore, called the optimum symmetry orbitals. Such an important conclusion
will be included in the generalized conclusion presented in section 4 of the paper as
a special case of Q = 1 (identity operator). In addition, since the hybrid orbitals are
the linear combinations of the AOs, the optimum symmetry orbitals are also the op-
timum linear combinations of the AOs. Practically, the optimum symmetry orbitals
|w%)s and |y°)s here are just the maximum overlap symmetry orbitals (MOSOs)
proposed in the previous paper.5!

GENERALIZED EQUATIONS FOR THE CONSTRUCTION
OF OPTIMUM ORBITALS

After Murrell employed the maximum overlap criterion (1) to construct the HAOs,
many others have used various modified criteria of maximum overlap, such as the
weighted maximum overlap criterion used in Maksi¢’s IMOA method,?? the criterion
proposed by Lykos and Schmeising® and discussed by others,!%5 the criterion of Lin-
derberg and Ohrn’s »energy weighted maximum overlap« (EWMO)!!'!4 and the ex-
tended criterion for constructing the MOSOs.5!

Here, in order to construct various kinds of optimum orbitals, we first suggest a
new generalized optimization criterion, which can be regarded as an extension of the
maximum overlap criterion, i.e.

=R yi(lyyiilezil|zizi) 7z = optimum value. ©
Let
Y=(y) |y2) --- |Yq>)=(|1’1> [p2) --- |¥’q»A=¢A
Z=(z)lz) ... lz)=0x) |%)..- |%)B=XB

where ® and X are two linearly independent and normalized AO basis sets, |y;)s and
|z;)s are orthonormalized optimum orbitals determined by the optimization criterion
(9), and A and B are the corresponding coefficient matrices. The Hermitian operator
Q in Eq. (9) may be called a generalized weighting operator, which can be the constant
1, weighting coefficient k,5,”® weighting coefficient k,, »*' Hamiltonian operator H,
Fock operator F or other Hermitian operators.

Denote matrix elements of A and B by «;; and by, respectively. We rewrite the ex-
pression of the optimum value o; as
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q r =
2 za;ibvi(¢u|QIXv)
pu=1 v=1

g, = a (10)

i il eu oD (D Y bhibyi{x, IJC»))]U2
1

pu=1 v=1

[(3,

The generalized optimization criterion (9) can be expressed as the following condi-
tions:

=

_;=%=0’ i=4L2,...,4 k=1,2,...,r. 11

From condition d0,/da; = 0 and the normalization conditions of |y;) and |z ), one can
get

Sbilea | QI )-0i Sav{ple)=0

L.e
QBi = aiSIAi (12)

where Q = <l>*QX, S, = ®*®, and A, and B, are the ith columns of matrices A and
B, respectively. Similarly, condition do;/db; = 0 gives

QtA; = 0;S,B; (13)
where S, = X*X. We rewrite Eq. (13) as
0B, = S;'1Q*4A;, (13a)
and Eq. (12) as
QoB; = ofS,A; . (12a)
Substitution of Eq. (13a) into (12a) gives
QS3'Q*A; = ofSA, . (14)

Similarly, one can obtain

Q*S7'QB; = 07S,B; . (15)
Egs. (14) and (15) are generalized »eigenvalue equations« for the construction of op-
timum orbitals. When o; = 0, Egs. (12) and (13) can also give

B; = 85'Q*A07! (16)

A; = S7'QBo7!. amn
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It follows that when o; # 0, one can also employ Eq. (16) or (17) to simplify the cal-
culation process. For convenience, let q > r. One can first use Eq. (14) to construct q
|y)s and then employ Eq. (16) to obtain r |z)s from the first r |y,)s. Egs. (14) and
(16) can be, respectively, expanded as

QS;'Q*A = S,AA (14a)

B = S;!Q*aD-! (16a)

where a is a submatrix formed from the first r columns of A, and the diagonal ele-

ments of diagonal matrices D and A are o0y, oy, ...,0, and o?,, d%, .., o2, 0, 0,...,0,

respectively. For convenience, we still denote the last (q — r) zero diagonal elements
of A by 0% (i=r+1, r+2, ...,q). In order to solve Eq. (14a), we rewrite it as

(ST2QS7'Q*Si/%) (S1/%A) = (SIA) A . (14b)

It follows that A is an eigenvalue matrix of S71/2QS;'Q*S7!/2. If ® and X are all or-
thonormal basis sets, then S; and S, are all unit matrices.

As examples, we give the following concrete forms of Eqgs. (14a) and (16a):

. If Q =1,Q = ®'X = S and 0; = (yi|z) = ( w°]|y°), then Egs. (14a) and (16a)
become

SS3ISTA = S,AA (14a-1)
B = S3!S*aD-1. (16a-1)
These are the equations for constructing orthogonalized maximum overlap symmetry
orbitals.
2.IfQ=H,Q=®'HX = Mand o; = (yilﬁlzi) = { w%|H|¢;), then Egs. (14a)
and (16a) become
MS;!M*A = S,AA (14a-2)
B = S;'Mt*aD-1. (16a-2)
These are generalized equations for constructing the maximum overlap symmetry or-
bitals.5!
@). If Q is the density operator 1'5op employed by Jug,*” Q = d)"lA’apX = P and o;
= (vi|Podz;) = {gi|Pod h;), then Eq. (14a) becomes
PS;'PTA = S,AA (14a-3)
B = S3'P*aD-! (16a-3)

Eq. (14a-3) is a generalized equation for calculating the maximum bond order.57-50
By solving Eq. (14a-3), one can easily evaluate the maximum bond order Pug = AR
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4). If Q is the delocalization energy operator, Q is the delocalization energy mat-
rix,58 the equation for studying the interaction of the frontier orbitals proposed by Fu-
kui et al..’® can be regarded as a simplified form of Eq. (14a) if ® and X are the or-
thonormalized, occupied and unoccupied, MO basis sets of two molecules, respectively.

5). If® = X and Q . 3ij such that (xilsijlxj) = J;; 8y = S; = S and Q becomes a
unit matrix I, then Eq. (14a) becomes

S-1A = SAA
S2A = AA-!
or
SA = AD-! (14a-4)

which is the equation for constructing the maximum overlap atomic and molecular or-
bitals proposed by Lykos and Schmeising.® The significance of Eq. (14a-4) will be dis-
cussed deeply in a subsequent paper.

©6). If ® = X and Q =1- 3ij, S; = S; = S, then Eq. (14a) becomes
(S-D)S-! (S-DA = SAA
or
(S-I)A = SAD (14a-5)

which is the basic equation for proposing the maximum overlap population principle.5
In Eq. (14a-5),

g; = 222 a/:i Qi (?yl?’v) = 222 P,l(ll)

u< v u< v

where P{) is the overlap population between uth and vth AOs with one electron oc-
cupying the ith maximum overlap population orbital®? if ® is an AO basis set.

SYMMETRY PROPERTIES OF OPTIMUM ORBITALS

Eq. (14a) can be rewritten as

(@ 0) ! (®HQX) X+X)I(X+Q* D) A = AA

O(O* D) DX (X+X)IX+QHY = YA (18)
or
BY = YA (18a)

where operator ﬁA = ¢(¢*¢)“1¢+QX(X+X)‘1X*Q*. It follows that |y;)s are eigenvec-
tors of operator E .

Furthermore, let G be a point symmetry group which has g operators as its ele-
ments:

G={OR}
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The operator 6Rﬁ can be expressed as
OgE = Ogd (@+051030)-1d+0510;,Q0510xX (X+05'05X)-1 X+0510,Q+0510;  (19)

If Q is a linear Hermitian operator and commutes with 6R, 6R € G, then Eq. (19) be-
comes

OgE = (Og®) [(@+0g") (Ox®)1-! (@*05!) Q (OxX) [(X*Oz) (OpX)l-! X+O5!) Q0 (20)

Moreover, if ® and X are normalized bases for g- and r-dimensional representations
of Group G, respectively, then we have

@21

Oy = @D, (R)
OpX = XDy(R)

+0O=! = D-1(R\b+
{q> Og! = Di!(R)® ©2)

x*03! = D7'(R)X*
Substitution of Egs. (21) and (22) into Eq. (20) gives

Og E = &(@*®)! &+ QXX *X)! X+QOg ,
ie.

6R ﬁ = EQR . (23)

Therefore, operator E commutes with 6R, 6R € G. One can obtain from Egs. (18a)
and (23) that

E(OpY) = (OgV)A . 24)

It follows that the eigenvectors |y;)s associated with the same eigenvalue of ope-
rator E form a basis for a representation of G. Similarly, it can be proved that under
the same condition, |z;)s also form basis vectors for representations of G. In addition,
one can also show that the |z;) obtained by using Eq. (16a) has the same transforma-
tion properties as the |y;) under all the Ogs. A similar conclusion has been obtained
in a preceding paper.54

For convenience, we will call optimum orbitals that all »two-orbital« integrals, i.e.
{pil Qlxds, {pilxds, {pilp)s and {i|x)s, have no contributions to the optimum values
o;s as non-bonding optimum orbitals, and the other optimum orbitals as bonding opti-
mum orbitals. For examples, if q # r, then the optimum values for the last (q - r) |y;)s
are all zero and, therefore, the (q - r) |y;)s are non-bonding optimum orbitals; if X =
® and Q = 1 -y; then the optimum orbitals corresponding to the zero optimum value
are non-bonding optimum orbitals; if X = ® and Q = J;;, then the optimum orbitals
corresponding to o; = 1 are non-bonding optimum orbitals.

Generally, if the energy of an optimum orbital |y;) or |z) or an orbital obtained
from a linear combination of them can be determined by the value of o;, then the rep-
resentations associated with the bonding optimum orbitals are irreducible. Represen-
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tation with respect to non-bonding optimum orbitals may be reducible and should be
further reduced. A reducible representation can be reduced by finding proper optimum
linear combinations of the original non-bonding optimum orbitals according to a new
optimization criterion. The new optimum orbitals obtained are also symmetry orbitals.
As a matter of fact, there have been some examples?!:52 supporting this conclusion.

All these symmetry orbitals determined by optimum linear combinations are called
optimum symmetry orbitals. The optimum symmetry orbitals form not only the basis
vectors for the IRs of group G but also satisfy an optimization criterion. Because the
ordinary symmetry orbitals are only basis vectors for the IRs of the group, each of the
optimum symmetry orbitals can also be regarded as an optimum linear combination
of the ordinary symmetry orbitals corresponding to the same IRs. Based on this con-
clusion and Eqs. (14a-3) and (16a-3), a new very simple method will be proposed in a
future paper® for obtaining systematically hybrid orbitals, which will be called »max-
imum bond order hybrid orbitals«, from the density matrix calculated by a molecular
orbital calculation.

MOLECULAR ORBITALS FROM THE OPTIMUM SYMMETRY ORBITALS

As it is well known, the optimum symmetry orbitals have not only the symmetry
properties of ordinary symmetry orbitals but also a more useful property, i.e. satisfying
an optimization criterion. Therefore, the optimum symmetry orbitals can be used not
only for the block diagonalizing of the Hamiltonian or Fock matrix and simplifying
the ordinary molecular orbital calculation process, but also for other purposes. As an
example in this section we present the application of a particular property to direct
construction of delocalized molecular orbitals.

First of all, the atoms in a molecule are partitioned into two sets according to the
condition®! that the directly bonded atoms are partitioned into different sets, and the
corresponding AOs are also partitioned into two sets ® and X. When Q = H and the
Wolfsberg-Helmholz approximation®® is employed, the operator Q in the optimization
criterion (9) becomes a weighting coefficient kuv appearing in a weighted criterion of
maximum overlap.®! This time, the optimum symmetry orbitals are the maximum overlap
symmetry orbitals |@%)s and |°) s, and can be constructed by using Egs. (14a-2) and
(16a-2). From the paper® in which the basic idea of the MOSOs was first proposed,
we can see that if |w%) and |@®%) (i = j) form the basis vectors for different IRs or cor-
respond to the different rows of the same IR of the group, we have

(of [H @) =(yp |H|pp)=(of | H|pr)=(y¢ | A |of)

=(of |@f)=(yp | 9¥f)=(f | ¥P)=(y? | ) =0 (25)

even if |w%) and |w°) (i # j) form the basis vectors corresponding to the same row of
the same IR of the group, we also have
(@ |H | wp)=(yp | H|of)=(of|f)=(y | vf)=0, 26)

and



478 C.-G. ZHAN

@7

From Egs. (25) - (27), one can directly get a set of delocalized molecular orbitals, | G%)s,
by using the following simple linear combinations of the MOSOs:5!

|G?>={c?a|w?>+q’b!¢?> i=1,2...,5 o5

| @f) i=r+1L,r+2,...,q

For convenience, the delocalized molecular orbitals |G°)s obtained are called the max-
imum overlap symmetry molecular orbitals (MOSMOs). It has been shown®! that the
| G°;) obtained are close to the canonical molecular orbitals obtained by the customary
LCAO method, and calculation by the MOSMO method requires less computing time
than the LCAO method, thus illustrating the fact that the MOSMO method is not only
a reasonable approximation of the LCAO method, but simpler and feasible in large
molecular systems. This conclusion can be illustrated by listing part of the numerical
results’! in Tables I and IL

It has also been demonstrated®! that the MOSMO method can be used for opti-
mization of molecular geometries and calculation of vibrational frequencies by adding
a two-body repulsive energy term and a modification of the Wolfsberg-Helmholz for-
mula. The total energy of a considered molecule is expressed as a sum of two-body elec-

TABLE I

The MO energies (e.v.) for some molecules

IR al t2(HOMO) t2(LUMO) al
Methane  pMosMO  -24.530 -15.519 4.313 31.695
EHMO -24.530 ~15.519 4.316 31.709
IR al e a1(HOMO) e(LUMO) a1l
Ammonia  MOSMO = -27.419 -16.457 -14.060 2.085 18.467
EHMO -27.964 ~16.457 ~13.779 2.088 19.501
IR alg €lu €2g biu alg
MOSMO  -28.302 -24.765 ~19.488 ~17.104 -16.644
EHMO -29.557 -25.673 -19.901 ~17.149 -16.579
IR elu azu bzu e2g e1g(HOMO)
MOSMO  -14.886 -14.521 ~14.295 -13.418 -12.801
Benzene EHMO -14.914 ~14.521 -14.295 ~13.376 -12.801
IR e2u(LUMO)  b2g €lu alg e2g
MOSMO  -8.324 -4.745 4.138 7.960 12.009
EHMO -8.323 —4.744 3.650 8.296 10.475
IR alu azg elu ezg aiu
MOSMO 14.565 15.141 24.537 36.789 58.366

EHMO 14.283 15.148 27.676 43.357 63.984
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TABLE II

Running times (s) for calculating some molecules in MV/6000 computer

Benzene CisHi2 CssHis C4sH24
Molecule (30 AOs) (84 AOs) (162 AOs) (216 AOs)
MOSMO 5 51 320 739
EHMO 10 122 1213 -

trostatic correction energy E.(R) and the total electronic energy Eyosmo(R) obtained
from the MOSMO calculation:

E(R) = E.o(R) + Eposmo(R) = ZﬁEaﬁ(R) + 2 n;Ey(R) (29)

where R stands for all parameters of nuclear coordinates, E,4(R) is the two-body elec-
trostatic energy between atoms a and g, E;(R) = (G%|H|G®) / {(G%| G°,) symbolizes the
orbital energy of the ith MOSMO, and n; the orbital occupation number. The two-body
electrostatic energy E,g(R) can be calculated by the following formula:%?

Ep(R) = Eg(R) = ZoJZsR3h - [ ps) 37"’; | R, -7 av] 30)

where atom B is the more electronegative atom. Some of the concrete forms of Eq.
(30) can be found in literature,52 in which the Slater orbitals have been employed. We
consider only valence AOs and adopt the parametrization assumed in the EHMO met-
hod,% but the Wolfsberg-Helmholz formula®® is modified as:

H; = 0.5 K (H;; + Hy) §;; exp [-L,g (Rap — dogp)] - (31)

where K = 1.75 is the Wolfsberg-Helmholz constant, R,g is the internuclear distance
between atoms o and 8 to which the AO i and j belong, respectively, doop is the stand-
ard bond length®* of the a8 single bond, and Lgg is a new parameter. For example,
the used L,g values for several atom pairs are:

H-H:0.136; C-C:0.340; C-H:0.390; C-0:-0.090; O-H:0.228.

The obtained equilibrium geometries and vibrational frequencies are, on the whole, in
good accordance with experimental data. Some of the calculation results®! are listed
in Tables III and IV.

Besides, when X = @ is an non-orthogonal and normalized basis set composed of
all the valence AOs in a molecule, we choose the operator Q = 1 - ;. In this case,

the optimization criterion (1) becomes that given in the maximum overlap population
principle:5®

0 =2 2; P{) = optimum value. 32)
nv
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TABLE II1

The optimum geometries (A, Deg) compared with the experimental data and those obtained
from other methods

Molecule MOSMO  Expt.* MINDO/3* MNDO® CNDO/2°  INDOY (I‘f;, /‘g;tllg)
CH4

r(CH) 1.098 1.093 1.104 1.116 1.084
C2Ha2

r(CH) 1.027 1.0566 1076 1.051 1.093* 1.10 1.057

r(CC) 1.198 1.2087 1.191 1.194 1.198* 1.20 1.185
Cz2H4

r(CH) 1.066 1.086 1.098 1.089 1.110* 1.11 1.076

r(CC) 1.322 1.337 1.308 1.335 1.320* 1.31 1.317

{ (CCH) 122.56 121.3 124.8 123.2 121.8
CH3CH3

r(CH) 1.085 1.108 1.103 1.109 1.117* 1.12 1.086

r(CC) 1.524 1.536 1.486 1.521 1.476* 1.46 1.527

{ (CCH) 109.15 110.1 112.8 111.2 112.2 111.19
CeHs

r(CH) 1.062 1.084* 1.120 1.090

r(CC) 1.410 1.397* 1.398 1.407
CH2CCH2

r(CH) 1.082 1.07* 1.099 1.090

r(CC) 1.314 1.308* 1.311 1.306

{ (CCH) 123.72 121.5% 122.9
2CHz (‘CH3)2

r(.CH) 1.089 1.09*

r(2CH) 1.077 1.09*

r(CC) 1.544 1.54*

{ (CCC) 111.97  111.5*
{ (CICH) 109.15

H2CO
r(CO) 1.206 1.2078 1.251% 1.25 1.184
r(CH) 1.122 1.1161 1.116* 1.12 1.092
( (HCO) 118.72 121.75 115.0 122.15

aExperlment:zll data with notation * come from ref. [65], those with notation ** from ref. [66], and the
others from ref. 164).
b Phe MINDO/3 and MNDO calculation results come from ref. [67] and [68].
® The CNDO/2 calculation results with notation # come from ref. [65], and the others from ref. [64].
The INDO calculation results come from ref. [64].
® The ab initio calculation results come from ref. [66], in which the data in parentheses were calculated
with STO-3G basis and the others with HF/6-31G basis.

Correspondingly, the optimum symmetry orbitals become the maximum overlap popu-
lation orbitals.

It has been shown?® that the maximum overlap population orbitals determined by
Eq. (14a-5) can be obtained from diagonalization of the AO overlap matrix, and can
be regarded as a good approximation of the canonical molecular orbitals used for popu-
lation analysis and direct calculation of the bond order, atomic valence and atomic
charge.’® The values of the bond order, atomic valence and atomic charge obtained
from the maximum overlap population orbitals are in good agreement with those from
the canonical molecular orbitals constructed using the ab initio calculation. This con-
clusion can be illustrated by listing part of the calculated results®® in Table V.
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The calculated vibrational frequencies (cm™), compared with the experimental

data and other theoretical results*

Molecule MOSMO Expt. ab initio CNDO/2 INDO
Hz 4791 4160 4647 (5918) (5918)
co 1671 2143 2438 (3198) (3164)

CH4 3514 3019(t2) 3302

3297 2917(a1) 3197

1488 1534(e) 1703

1209 1306(¢2) 1488

H20 3899 3756(b1) 4188

3690 3657(a1) 4070

1380 1595(a1) 1826

3126 3009(b1) 3231

CHz20 2903 2944(a1) 3159

1657 1764(a1) 2028

1374 1563(c1) 1680

1084 1287(b1) 1384

1053 1191(b1) 1336

C2Hz 4198 3497(aty) 3719

3903 3415(aty) 3607

2509 2011(a*y) 2247

1032 747 (7tu) 883

894 624(rg) 794

*The frequencies in parentheses are evaluated by using the force constants listed in ref. [64] and
the calculation formula of the harmonic vibrational frequency. The other experimental data and

the ab initio calculation results all come from ref. [66].

TABLE V

The bond orders, atomic valences and net atomic charges of some small molecules*

d tomi tomi
Molecule  Bond Bond order Atorm Atomic valence Net atomic charge
Calc.  Ab initio? Calc.  Ab initio Calc. Ab initio
H20 HO 0.957 0.96 (0] 1.915 1.92 -0.475 -0.67
H 0.998 0.97 0.237 0.34
CH4 CH 0.976 0.99 C 3.905 3.96 -0.525 -0.66
H 0.998 1.00 0.131 0.17
H2CO CH 0.966 0.94 H 0.999 0.96 0.071 0.06
Co 2.042 2.03 C 3.974 3.91 0.034 0.06
(0] 2.105 2.11 -0.177 -0.19
CH30H CcO 0.988 0.87 C 3.935 3.61 -0.218 -0.27
OH 0.961 0.82 (0} 1.991 1.72 -0.342 -0.68
CHc 0.970 0.91 H 0.998 0.83 0.237 0.37
CH¢ 0974 0.92 Hc 1.000 0.91 0.106 0.18
He 1.000 0.91 0.111 0.22

* All ab initio calculation results are based on the Mulliken population analysis.
2 The ab initio calculation results of CH30H come from ref. [69] and the others from ref. [70].
The ab initio calculation results come from ref. [69].
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CONCLUSION

In the present paper, we have employed a generalized optimization criterion,
which is an extended application of the basic principle of maximum overlapping, to
obtain a set of generalized equations for constructing various kinds of optimum orbi-
tals. If ® and X are the bases for q- and r-dimensional representations of a group G
= {Og}, respectively, and Q is a linear Hermitian operator which commutes with Og,
then the optimum orbitals |y;)s and |z )s associated with an optimum value o; all form
basis for a representation of group G. In general, if the optimum values are closely re-
lated to the orbital energies, the bonding optimum orbitals are symmetry orbitals, i.e.
the basis vectors for irreducible representations of group G. The non-bonding optimum
orbitals should be further classified in order to obtain all the optimum symmetry or-
bitals. Such a generalized conclusion and the generalized equations obtained are useful
not only for the construction of optimum symmetry orbitals, but also for the direct
construction of delocalized molecular orbitals and other problems.

The conclusion for the symmetry properties of the bonding optimum orbitals
shows that for a pair of bonding orbitals expressed in linear combinations of all the
AOs in a molecule, so long as the criterion of maximum overlap is satisfied, the bond-
ing orbitals must be the symmetry orbitals belonging to the same row of the same IR
of the point symmetry group, i.e. they are symmetry-adapted. The symmetry-adapted
orbitals do not, in general, satisfy the criterion of maximum overlap unless a maximi-
zation procedure has been employed to derive them. The analogy to the conventional
molecular orbital theory is that molecular orbitals result from minimization of energy
for a particular geometry, but symmetry adapted orbitals do not, in general, minimize
the energy unless a minimization procedure has been employed.
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SAZETAK
Naéela maksimalnog prekrivanja i optimalne simetrijske orbitale
Chang-Guo Zhan

Dan je revijski prikaz metode maksimalnog prekrivanja za konstrukciju hibridnih orbitala.
Autor posebice razmatra mogucénosti generalizacije i simetrijska svojstva delokaliziranih hibrida.
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