
Probability has a mathematical aspect 
and a scientific aspect. There is a reason-
able agreement about the mathematics of 
probability. Almost everybody accepts the 
same probability axioms and has no dis-
putes about the truths of the mathematical 
theory of probability. Yet, when it comes 
to scientific applications of the theory there 
are different opinions about what probabil-
ities are. Some identify them with degrees 
of (rational) belief, some with limiting 
frequencies, and there are other opinions. 
Why does it matter?1 We explain why, 
starting with a simple problem of a coin 
fairness testing.2

Consider a hypothesis about the probabil-
ity of a coin coming up heads. If we denote 
it by H, then H = 0 and H = 1 represent a 
coin which, respectively, produces a tail or 
a head on every flip. There is a continuum 
of possibilities between these extremes, 
with H = 1/2 indicating a fair coin. Now, 
if you had observed 3 heads in 12 flips, do 
you think it was a fair coin?
1 Think about mathematics of numbers, 
i.e. arithmetic. In scientific applications it does 
not matter what numbers are. What is important 
are rules that numbers obey, not what they re-
ally are. Is it not the same with probabilities?
2 The idea is to compare Laplacean 
(prestatistical) approach to a textbook problem, 
with the statistical approach to the same prob-
lem. It may seem that this is more appropriate 
for a college course than for a research article, 
but my experience is that such an introduction is 
eye opening (and surprising) even for the audi-
ences that are highly trained in probability. The 
problem is taken from Sivia 1996, ch.2.
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The idea that probability is a degree of rational belief 
seemed too vague for a foundation of a mathemati-
cal theory. It was certainly not obvious that degrees 
of rational belief had to be governed by the probabil-
ity axioms as used by Laplace and other prestatistical 
probabilityst. The axioms seemed arbitrary in their 
interpretation. To eliminate the arbitrariness, the stat-
isticians of the early 20th century drastically restricted 
the possible applications of the probability theory, by 
insisting that probabilities had to be interpreted as rela-
tive frequencies, which obviously satisfied the prob-
ability axioms, and so the arbitrariness was removed. 
But the frequentist approach turned more subjective 
than the prestatistical approach, because the iden-
tifications of outcome spaces, the choices of test sta-
tistics, the declarations of what rejection regions are, 
the choices of null-hypothesis among alternatives, the 
contradictory choices between sizes and powers etc., 
depend on thoughts or even whims of the experimenter. 
Frequentists thus failed to solve the problems that moti-
vated their approach, they even exacerbated them. The 
subjective Bayesianism of Ramsey and de Finetti did 
not solve the problems either. Finally Cox provided the 
missing foundation for probability as a degree of ration-
al belief, which makes the Bayesian probability theory 
(which is based on this foundation) the best theory of 
probable inference we have. Hence, it is quite unbeliev-
able that it is not even mentioned in recent philosophy 
textbooks devoted to the probable inference. The reason 
could be that it requires fairly sophisticated mathemat-
ics. But not even to mention it? We explain the history 
and prove Cox theorem in a novel way.
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A Bayesian who thinks of probabilities as degrees of rational belief, will use Bayes’ theo-
rem to answer this question:3

 
pr(H | D, I )dH =  

Actually, he will use a simpler form:

pr(H | D,I )  pr(H |I ) pr(D | H, I ),

because he can evaluate the missing constant (which does not depend on H) from the nor-
malisation condition

 pr(H|D,I)dH = 1.

The power of the theorem lies in the fact that it relates the probability that the hypothesis H 
is true, given the data D (e.g. 3 heads in 12 flips) and background information I (e.g. flip-
ping is vigorous, coin is symmetric etc.), to the probability that the data would have been 
observed if the hypothesis is true, which is easier to assign.

Prior probability pr(H | I ) represents the degree of rational belief in H given I (with no data 
D available). It is modified by the data D, through the likelihood pr(H | D, I ), and yields the
posterior probability pr(H | D, I ), which represents the degree of rational belief in H given 
I and the data D.

In our specific case of coin flipping, prior pr(H | I ) represents what is known about the coin
before any data is taken into account. The state of ignorance is represented by the uniform
probability assignment

 

pr(H | I ) = 

      Fig. 1

This prior state of ignorance is modified by the data through likelihood:

pr(D | H, I )  HR(1–H)N-R,

3 In what follows pr is probability or probability density which, for short, we also call prob-
ability.

1

0

pr(H|I )dH ∙ pr(D|H,I )

pr(D|I )

{ 1    0 ≤ H < 1
0    otherwise
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where H is the probability of obtaining a head and R is a number of heads obtained in N 
flips. (For simplicity, equality is again replaced by proportionality, since the omitted term 
does not depend on H.) By Bayes’ theorem:

pr(D | H, I )  HR(1–H)N-R, for 0 ≤ H ≤ 1, 

otherwise it is 0. If the coin is flipped once and it comes up heads, the resulting posterior is:4

pr(H | {h}, I )  H

      Fig. 2.

If the coin is flipped for a second time and again comes up heads, the resulting posterior is:

pr(H | {h,h}, I )  H2

      Fig. 3.

If the third flip comes up tails the resulting posterior is:

pr(H | {h,h,t}, I )  H2(1-H)

      
      Fig 4.

If the forth flip also comes up tails the resulting posterior is:

4 The graphs are normalized in such a way that the maxima are always 1.
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pr(H | {h,h,t,t}, I )  H2(1-H)2

      Fig. 5.

And so on. The following figures show how the posterior evolves as the number of data be-
comes larger and larger.5 The position of the maximum wobbles around, but the wobbling 
decreases with the increasing amount of data. The width of the posteriors also becomes 
narrower with more data. For the coin in our example, the best estimate of H converges to 
0.25 (of course this was the value used to simulate the flips).

        Fig. 6.

People tend to agree with the binomial distribution for the likelihood (pr(D | H, I )  HR(1–
H)N-R) but worry about the prior: how would the inference about the coin have changed if 
a different prior was chosen? If we repeated the analysis of the date with different priors 
the results would have been the same, because the posterior is dominated by the likelihood, 
and the choice of the prior is largely irrelevant (cf. fig. 2.2. in Sivia 1996).

5 It is easy to prove that it does not matter whether the data are introduced one by one or all of them 
simultaneously.
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The result of the Bayesian analysis is the probability distribution of every possible hypoth-
esis H, given one real data set D.

Often, we wish to summarize this distribution with just two numbers: the best estimate and 
its reliability. If we denote the posterior by P, i.e. P = pr(H | D, I ), then the best estimate 
of its value is the maximum point H0 given by:

     and    

The measure of the reliability of the best estimate is the spread of the posterior about it. The
behaviour of any function around a point can be estimated by its Taylor’s expansion about 
the point. But, rather than dealing with posterior P, it is easier to deal with its logarithm L 
= ln P. Expanding L about H0, we get:

L  L(H0) +            | H0
 ( H - H0 )

2 ,

(the linear term is 0 because L is monotone in P, so H0 as the maximum point of P is also 
the maximum point of L).

If we define 1/2 = – ( d2L/ dH2) | H0
 we get:

L  L(H0) – 

which by exponentiation yields:

P = pr(H | D, I )  P(H0) e  

From the normalization condition:

1 =  pr(H|D,I)dH  P(H0) e                   dH = P(H0)√2π

it follows that P(H0) = 1/√2π , i. e.

pr(H  D, I )              e

dP d2P
dH dH2| H0

 = 0 | H0
 < 0.
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This normal or Gaussian approximation6 is usually conveyed by the statement:

H = H0  ,

with H0 the best estimate and  referred to as the error-bar. The integral properties of the
normal approximation tell us that the probability that the true value of H lies within   
of H0 is 67% i. e.

pr(H–  H  H0+D, I ) =  pr(H|D,I)dH  0,67

Similarly, the probability that H lies within  2 of H0 is 95%, and that H lies within  3 
of H0 is 99.8%.

In the coin example:

P = pr(H  D, I )  HR(1– H)N–R, 0  H  1¸
L = C + R ln H + (N–R)ln (1–H),

      =     –         = 0  for  H0 =      ,

       | H0
= –       –              = –                  ,

 =                      < 

Hence, the relative frequency of heads R/N is the best estimate of H, and its error-bar  is 
less than 1√N . So, the width of the posterior becomes narrower with the increasing number 
of the data N, as we have seen above (cf. fig. 6.).7

 
This prestatistical approach to our problem was the standard approach of Laplace and his
contemporaries. As we have just seen, the approach is extremely successful. But neverthe-
less, it was rejected by the frequentists of the late 19th and the early 20th century. Why? The 
idea that probability is a degree of rational belief seemed too vague for a foundation of a 
mathematical theory. It was certainly not obvious that degrees of rational belief had to be
governed by the probability axioms used by Laplace and others. The axioms seemed arbi-
trary in this interpretation.8 To eliminate this arbitrariness, the mathematicians of the late 
6 The approximation is just the quadratic approximation of the logarithm and has nothing to 
do with coins or probabilities.
7 The last formula also proves that it is easier to identify a highly biased coin than it is to be 
confidential that it is fair, because the nominator H0(1– H0) is greatest when H0 = 1/2.
8 Furthermore, the probability rules described how to manipulate probabilities, but they did 
not specify how to assign the prior probabilities that were being manipulated. We will not address this 
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19th and the early 20th century drastically restricted the possible applications of the theory, 
by insisting that probabilities had to be interpreted as relative frequencies of occurrences 
in repeated random experiments (mostly imagined, rarely actual). The relative frequen-
cies obviously satisfied the probability axioms, hence their arbitrariness was removed. 
Also, the frequentist approach, by its reference to observation of repeated experiments, 
seemed to make probability an objective property of “random phenomena” and not a sub-
jective degree of the rational belief of Bayesians.

But, the frequency definition of probability made the concept of the probability of a hy-
pothesis illegitimate, e. g. the prior pr(HI ) and the posterior pr(HD, I ) in the coin ex-
ample make no sense. A hypothesis is either true or false, it is not a random variable. A 
consequence is that scientists are not allowed to use Bayes’ theorem to asses hypotheses. 
So, how would a frequentist deal with the coin fairness problem? He can not calculate the 
probability of the fairness hypothesis (the hypothesis that H = 1/2), even less the probabil-
ity distribution of every possible hypothesis H, given the data D, since hypotheses have no
probabilities.

Hence, Fisher developed his system of significance tests for hypotheses testing. To perform
the test, an experiment must be devised, in our example flipping the coin a predetermined
number of times, say 12, and then the result analysed in three steps.

First, specify the outcome space. In our example 212 possible sequences of 12 heads or tails.
The result of the experiment should be summarised in some numerical form, e.g. the 
number of heads in the outcome. This summary is called test-statistics, and as a function of 
outcomes it is a random variable which has probability.

Second, calculate the probability of every possible value of the test-statistics, given the
hypothesis you are testing (Fisher called it the null-hypotheses). This is the sampling

distribution of the test-statistics. In our case it is pr(R) =                            , with R the 
number of heads:

Third, look at all results which could have occurred (given the null-hypothesis) and which, 

question, although we have seen that at least in some cases, e. g. our coin example, it is irrelevant. 
Furthermore, probability is the logic of uncertainty, and as the standard logic does not tell us what 
are the factual truths, but only what follows from what, so probability does not tell us what are prior 
probabilities but only what probability follows from given probabilities.

R
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as Fischer put it, are more extreme than the result that did occur. It means their probability 
is less than or equal to the probability of the actual outcome. Then calculate the probability 
pr* that the outcome will fall within this group. For example, if our experiment produced 3 
heads in 12 flips, the result with less or equal probabilities to this are R = 0,1,2,3,9,10,11,12; 
and the probability of at least one of them occurring (c.f. the shaded values in the table 
above) is pr*= 0.15. Fisher’s accepted convention is to reject the null-hypothesis just in 
case pr* 0.05. Hence our null-hypothesis of the fairness of the coin is not rejected.

Some statisticians recommend 0.01 or even 0.001 as the critical pr*. The adopted critical 
probability is called the significance level of the test, and the null-hypothesis is said to be 
rejected at this significance level if pr* is less than or equal to it.

“The null-hypothesis is rejected at a significance level” is a technical expression, which 
means that the result of the experiment fall in a certain region (declared “the rejection 
region”). But what does it really say about the null-hypothesis? Today the standard view 
(introduced by Neyman) is that a rejection or non-rejection of a null-hypothesis is not an 
inductive inference, but just an instruction for inductive behaviour. If we behave according 
to the instruction, in the long run we shall reject a true hypothesis H, i.e. we shall make a 
type I error, no more than once in a hundred times, when significance level is 0.01.

We may also worry, as Neyman and Pearson did, about accepting a false hypothesis H, 
i.e. making a type II error. The probability of type II error is the probability of rejecting a 
true alternative hypothesis, let’s call it Ha

9, by accepting the false H. The complement of 
the significance level of rejecting Ha is called the power of a test and, in this context, the 
significance level of rejecting H is called its size. An ideal would be to maximize the power 
and to minimize the size of a test. But that ideal is inconsistent. In most cases a contraction 
in size brings with it an expansion in power, and vice versa.

Apart from the volatility of what is declared to be “the rejection region”, the incoherence 
of contracting the size and expanding the power of a test, and considering only one or two 
hypotheses10, there are other problems with the frequentist approach.

For example, different random variables may by defined on an outcome space, not all of 
them leading to the same conclusion when used as a test-statistics in a significance test. 
This is the notorious problem of “which test-statistics to choose?”

There is also the problem of “the stopping rule”. Consider again that a coin has been flipped 
12 times, giving 3 heads and 9 tails. Is this the evidence that the coin is biased? With the 
data provided, the frequentists cannot even begin to answer this question. Namely, from 
these data it is not clear what the outcome space for the data is. If the frequentist is told 
that the experimenter’s plan was to flip the coin 12 times, then analysis can proceed as 
above. But this is not the only way for these data to be produced. The experimenter may 

9 It means that Neyman and Pearson approach considers (only) two possible hypothesis H 
and Ha.
10 In a Neyman-Pearson test you have to choose which of the two is your null-hypothesis and 
that choice may change which of the two is rejected (cf. Howson and Urbach 2006, 156).
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have planned to flip the coin until he produced 3 heads, or until he becomes bored with the 
flipping. In this case, the outcome space will be different, even infinite or ambiguous, and 
the final result of the significance test may also be different. (cf. Loredo 1990, 109-110).
It seems that the frequentist approach is more subjective than the Bayesian approach, be-
cause the identifications of outcome spaces, the choices of test statistics, the declarations 
of rejection regions, the choices of null-hypothesis among alternatives, the contradictory 
choices between sizes and powers etc., depend on thoughts or even whims of the experi-
menter. Frequentists thus failed to solve the problems that motivated their approach, they 
even exacerbated them.

The basic problem of frequentist analysis is that, in search of a rejection region, it evaluates 
a single hypotheses by taking into account data that could have happened. But what this 
possible data have to do with our problem? We have made our experiment, we have got the 
real data and we want to estimate hypotheses given this real data.

The result of the frequentis analysis is a behavioural attitude towards a single hypotheses,
prompted by data that could have occurred but did not.

To be more specific, for Bayesians there is the probability of H being in an interval:

pr(R/N–            H  R/N +            )  95%

For frequentists there is no such probability. There is only the inductive behaviour accord-
ing to which, when we prove that:

pr(H–            H  R/N +            )  95%

then if we behave so that we accept R/N as our estimate of H, we may expect to be correct 
in 95% of our repeated behaviours.

The simple Bayesian 95% probability that your hypothesis is true, is replaced by the con-
voluted frequentist 95% chance of being correct in your repeated “as if my hypothesis is 
being true” behaviours. Why on earth would anybody do that? Is there not a better answer 
to the frequentist critique that degrees of belief are subjective and therefore incoherent 
and (even if they have some sense) that we do not know whether they satisfy probability 
axioms. A lot of people thought there is.

For John M. Keynes a degree of rational belief is a degree of partial entailment. Sometimes 
a conclusion follows from premises, but more often it only partially follows from them. As
Keynes used to say, a conclusion stands in a relation of probability with premises (cf. 
Keynes 1921, 52-3). The relation is logical, and probability is just an extension of classi-
cal “true or false” logic. But how do we asses this logical relation of probability and, more 
specifically, how do we establish the probability axioms from this logical point of view? 
Keynes thought we simply perceive them as true, with some kind of logical intuition. (cf. 
Keynes 1921, 52-3).
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Harold Jeffreys held the same logical attitude towards probability. He was one of the earli-
est critics of the frequentist statistics, but he did more than criticize. In his Jeffreys of 1939, 
he solved many statistical problems completely inaccessible to frequentists. That should 
have been a clear indication that he was on the right track, even though his first hundred 
pages devoted to logical arguments for probability axioms were not very successful. His 
work was rejected on philosophical grounds, as was Keynes’.

The most famous critic was Frank Ramsey. His answer to Keynes’ position (that there are 
logical relations of probability and that these can be perceived with some kind of logical 
intuition) was simple and final. He does not perceive the probability relations of Mr. Key-
nes and, moreover, he suspects that others do not perceive them either (cf. Ramsey 1926, 
161-2).

I suppose Ramsey was referring to the probability axioms:

(1) pr: P  P  [0,1]

(i. e. probability is a real number from [0,1] assigned to an ordered pair of propo-
sitions11 in P  P, which measures how probable is the first proposition given 
the second),

(2)  A  pr(AI) = 1

(i.e. probability of a logically valid proposition is 1, whatever background in-
formation I),

(3) I  –(AB)  pr(A  BI) = pr(AI) + pr(BI)

(i.e. if A and B a contradictory given I, then the probability of their alternation, 
given I, is additive),

(4) pr(ABI) = pr(AB, I)  pr(BI)

(i.e. the probability of conjunction is quasi-multiplicative).

I do not think that he or anybody else has problems with inferences of probability theory. 
For example, that from (1)-(3) it follows that pr(A) = 1– pr(A); or that from (1)-(3) and A 
 B it follows that pr(A)  pr(B); or that from (1)-(4) follows Bayes’ theorem; or that from 
(1)-(4) and A  B it follows that pr(BA, I) = 1; or that from pr(AAB, I)  1 it follows that 
pr(AB, AB, I) > pr(AAB, I)12; etc.

Probability axioms are problematic, not probability inferences.

11 Or statements, or sentences, here it is not important.
12 Given A→B; A does not follow from B, but A is more probable given B.
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Instead of vague logical intuitions Ramsey (and de Finetti) offered a definition of probabil-
ity and proved that it satisfies probability axioms (1)-(4). Namely, the probabilities were 
defined as betting quotients and it was proved that the betting quotients are coherent (i.e. do 
not allow unfair bets; which we define below) iff they satisfy (1)-(4). It was a great success 
and the logical theory was forgotten.

It is often declared that this is a very surprising result, and that it is by no means obvious 
that betting quotients, if coherent, should obey the probability axioms (c.f. Gillies 2000, 
66). I think it is obvious, and I am offering an obvious proof bellow. Before that, let me 
present a more standard version of the proof that coherence implies axioms (1)-(4)13.

Think of me as a bookie. If you are willing to pay me M’ for prospect of getting M if A hap-
pens, then your net-gain G(A) in this bet on A, is M–M’ if A happens and –M’ if it does not
happen14. If we define the value of A as V(A) = 1 if A happens, and as V(A) = 0 if A does not
happen, then

G(A) = MV(A) – M’.

If you are willing to pay me M’ for prospect of getting M only if a condition C is fulfilled 
and A happens (i.e. the bet is cancelled if C is not fulfilled), then your net-gain G(AC) in 
this bet on A under condition C, is

G(AC)) = V(C)(MV(A) – M’)

(i.e. the bet is cancelled by V(C) = 0 and otherwise it is like before).

What I am offering you, i.e. M, is your possible brutto-gain or the value of the bet. What 
you are willing to pay for the bet, i.e. M’, is your betting expectation. Your betting quotient, 
in this particular bet on A, is defined as

q(A) = M’/M.

In this definition it is presupposed that your expectation M’ is proportional to the value of 
the bet M, i.e. that your betting quotient depends only on the proposition A you are betting 
on and not on M. Real bets are definitely not like that and this is the soft point of Ramsey-de 
Finetti’s argument. But let’s go further with the argument.

Since M’ = q(A)M, your net-gains (c.f. above) can be reformulated as
G(A) = M(V(A) – q(A))
G(AC) = V(C)M(V(A) – q(A)).

13 The converse does not interest us here. In philosophical literature the proof of the converse 
is usually omitted, and if not omitted it is often incorrect (cf. Gillies 2000, 60-64; Hacking 2001, 
165-168). Gilles “proves” that each of (1)-(4) taken separately, implies coherence. Of course, it is 
nonsense, because then each of them, taken separately, implies all of them, since coherence implies 
all of them. Hacking’s proof is similar, although it is not clear whether he is claiming a proof or just 
an idea of it.
14 Of course, a negative gain is a loss, as a negative loss is a gain.
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Your betting quotients are said to be coherent (and your bets to be fair) if I can not choose 
my Ms so that I win whatever happens. Or, for that matter, that I can not choose them so 
that I lose whatever happens.15 It means that the gain or the loss must depend on what hap-
pens. If it does not depend on what happens there is no gain and no loss, i.e. the gain is zero. 
More formally, your betting quotients are coherent (and your bets are fair) if, and only if, 
G does not depend on V only if G = 0.

Now, that we have defined coherence (fairness) we may prove that the probability axioms 
(1)-(4) follow from it.

Suppose that q(A) [0,1], i.e. q(A) < 0 or q(A) > 1. If M >0, then G(A) = M(V(A) – q(A)) 
>0 or G(A) = M(V(A) – q(A)) < 0 independently of the value V(A). ( If M < 0 then G(A) < 
0 in the first case and G(A) > 0 in the second case.) Hence, G(A)  0 independently of V, 
which is in contradiction with coherence. So, it is impossible that q(A) [0,1], i.e. q(A)  
[0,1]. This is our axiom (1).

If A is logically valid, i.e.  A, then V(A) = 1 and

G(A) = M(V(A) – q(A)) = M(1– q(A))

does not depend on V. By coherence it must be zero, i.e. M(1 – q(A)) = 0, from which (for 
M  0) it follows that q(A) = 1. This is our axiom (2).

If you bet on A with quotient q(A) for brutto-gain M1, and on B with q(B) for M2, and on 
AB with q(AB) for M; then your total net-gain is

G = M1(V(A) – q(A)) + M2(V(B) – q(B)) + M(V(AB) – q(AB)).

Now, if from your background information it follows that A and B are mutually contradic-
tory, then V(AB) = V(A) + V(B). If furthermore, your bet is such that M1 = M2 = – M  0 
then, for this particular bet,

G = Mq(A) + Mq(B) – Mq(AB).

This gain does not depend on V so, by coherence, it must be zero,

M(q(A) + q(B) – q(AB)) = 0.

It follows that q(AB) = q(A) + q(B). This is our axiom (3).

If you bet on AB with quotient q(AB) for brutto-gain M, and on B with q(B) for M1, and on A
under condition B with quotient q(AB) for brutto-gain M2; then your total net-gain is

G = M(V(AB) – q(AB)) + M1(V(B) – q(B)) + V(B)M2(V(A) – q(AB)).
15 Of course, changing the signs of my Ms turns one into another.
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If your bet is such that M2 = – M  0 then, since V(AB) = V(A)V(B), your net-gain is

G = – Mq(AB) + M1V(B) – M1q(B) + V(B)Mq(AB).

If furthermore M1 = – Mq(AB) then, fort this particular bet,

G = – Mq(AB) + Mq(AB)q(B).

This gain does not depend on V so, by coherence, it must be zero,

M(– q(AB) + q(AB)q(B)) = 0.

It follows that q(AB) = q(AB)q(B)). This is our axiom (4).

This is a standard, maybe not extremely obvious proof. Now I present basically the same 
proof, which is trivial and completely obvious. Instead from coherence, I start from its 
simple consequence: for same bets you should have same expectations.16 I define two bets 
as the same, if your brutto-gain in every possible situation is the same for both bets.

Example I: if A and B are mutually contradictory, then “to bet on AB for M” is the same as
“to bet on A for M and to bet on B for M”. Namely, there are only three possible situations 
AB, AB and AB (because AB is excluded) and in each of them your brutto-gain is the same 
for both bets (M if AB or AB and 0 if AB ).

Example II: “to bet on AB for M” is the same as “to bet on B for M and then continue to bet
on A for what you have got”. Now, there are four possible situations, AB, AB , AB and AB .
In both bets you brutto-gains are the same in every of the four situations. They are, respec-
tively: M, 0, 0, 0.

According to the example I, what you are willing to pay for bet on AB with brutto-gain 
M (if A and B are mutually contradictory), must be the same as what you are willing to pay 
for two bets, one on A for brutto-gain M and another on B for brutto-gain M. It means that

q(AB)M = q(A)M + q(B)M,

and (for M  0) it immediately follows that q(AB) = q(A) + q(B). This is our axiom (3).

According to the example II, what you are willing to pay for bet on AB for brutto-gain M,
must be the same as what you one willing to pay for bet on B for brutto-gain M, which 
continues with the bet on A for what you have got. It means that

16 It is a simple consequence of coherence. Namely, if you bet on A for M, with different 
expectations M1 and M2, i.e. with different quotients q1 and q2, then I may offer you M for one 
quotient and –M for another. Your total net-gain in this compound bet is: G = M(V(A) – q1) – M(V(A) 
– q2) = M(q2 – q1), which is independent of V and different from zero (because q1 ≠ q2 and we can take 
M ≠ 0). Hence, your quotients q1 and q2 are not coherent.
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q(AB)M = q(AB)(q(B)M),

and (for M  0) it immediately follows that q(AB) = q(AB)q(B). This is our axiom (4).

I think the arguments for the axioms (1) and (2) were obvious. If your q(A) >1 you obvious-
ly lose whatever happens, and if your q(A) <0 you obviously win whatever happens. For 
valid proposition A, whatever happens, you obviously win if your q(A) <1, (because valid A
happens, whatever happens).

So, betting quotients quite obviously satisfy the probability axioms. There are no surprises
about that. I would even suspect that these simple arguments for axioms (1)-(4) were well
known from the beginnings of probability theory, because they are really extremely simple.
Perhaps the reason they were not published (if they were not) is that the betting quotients 
were problematic, because they were not well defined.

And still today, they are not well defined. Presumption that M’, which you are willing to 
pay for a bet, is proportional to M, which is the brutto-gain you are hoping for, is com-
pletely unsubstantiated. Even Ramsey was aware of that when he unsuccessfully tried to 
overcome the problem by introducing “ultimate goods” bets, instead of money bets, cf. 
Ramsey 1926, 173-176.17

The subjective Bayesianism of Ramsey and de Finetti did not solve the problems of the 
logical (or objective) Bayesianism of Keynes and Jeffreys. But Cox in the 1940’ (cf. Cox 
1946 and Cox 1961) provided the missing foundation for logical Bayesianism, which is 
today known as Bayesian probability theory, or BPT for short.18 The intuitive appeal of 
BPT19, the huge amount of successful results and its rigorous mathematical foundation pro-
vided by Cox and others, make it the best theory of probable inference we have. Hence, it 
is quite strange that it is not even mentioned in the recent philosophy textbooks devoted to 
the probable inference (e.g. Gillies 2000, Hacking 2001 and Mellor 2005). It is mentioned 
in Bayesian textbooks, e.g. Howson and Urbach 2006 which explicitly declares it as the 
best approach (“which begs fewest questions of all”), but even then the Cox’s mathemati-
cal foundation is omitted because “it requires fairly sophisticated mathematics”.

Although mathematics is a bit sophisticated, I will present a variant of the crucial proof; 
especially because printed proofs are rare, quite often not completely correct and they 
almost always presuppose more assumptions then necessary (cf. Cox 1946, Cox 1961 and 
Jaynes 2003).

Cox’s idea was to start from the notion of the plausibility of a proposition A given a propo-
sition I as known, which is denoted by AI, and from some properties that these plausibili-
ties have to satisfy. I will use the following properties.

17 Gillies proposes, following early de Finetti, that we should use money bets with appropriately 
selected stakes, with no real explanation, not to talk about a definition, of appropriateness, cf. Gillies 
2000, 57.
18 Jaynes call it “probability theory as the logic (of science)”, cf. the title of Jaynes 2003.
19 Just compare the Bayesian vs. frequentist analysis of the coin fairness problem above.
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(P1)   I = o  AI  II = j

(i.e. plausibilities are real numbers between the minimum o, which is the plau-
sibility of a logical contradiction and the maximum j, which is the plausibility 
of a logical truth).

(P2)   I  –(AB)  ABI = AI(AI, BI)

(i.e. if A and B are mutually contradictory given I, then the plausibility of their 
alternation “A or B”, given I, is determined by the plausibility of A, given I, and 
the plausibility of B, given I; the determination function AI may depend on I).

(P3) Functions AI are continuous and strictly increasing in both arguments.

(P4)   ABI = KI (ABI, BI)

(i.e. the plausibility of the conjunction “A and B” given I, is determined by the 
plausibility of B, given I, and the plausibility of A, given B and I; the determina-
tion function KI may depend on I).

(P5)   AII = AI.

From these properties, using the logical rule of the replacement of equivalents (e.g. from 
(A∨B)C ≡ AC ∨BC; it follows (A∨B)C|I = (AC∨BC)|I, from I ≡ II it follows A|I = A|II etc.) 
it is possible to prove that there exists a continuous and strictly increasing function f (x) 
such that f (o) = 0, f (j) = 1 and that for every proposition I:

AI (x,y) = f (f -1(x) + f -1(y)),           KI (x,y) = f ((f -1(x) ⋅ f -1(y)).

This is equivalent to:

f -1AI (x,y) = f -1(x) + f -1(y),           f -1 KI (x,y) = f -1(x) ⋅ f -1(y).

Hence, if we define pr(A|I ) := f -1(A|I) and substitute A|I for x and B|I for y, we get:

pr(A∨B|I ) = pr(A) + pr(B),        pr(AB|I ) = pr(A|BI )⋅pr(B|I ).

The conclusion is: if plausibility satisfies (P1)-(P5) then there is a measure of plausibility 
which satisfies our probability axioms (1)-(4). Namely, every continuous and strictly 
increasing function of plausibility A|I could be a measure of plausibility, as any other. 
Out of all these possible measures we chose pr(A|I ), not because it is more “correct” but 
because it is more convenient, i.e. the quantities pr obey the simplest rules of combination: 
the normality condition (1), (2), the sum rule (3) and the product rule (4). 

The situation is analogous to that in thermodynamics (cf. Jaynes 2003, 42), where out 
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of all temperature scales (which are continuously increasing functions of each other) we 
choose Kelvin scale because it is more convenient, i.e. the laws of thermodynamics take 
the simplest form in this scale. Similarly, in mathematics, out of all angle scales we choose 
the radians as the most convenient; e.g. dsin x / dx = cos x only if x is measured in radians.

Before I present the proof of this crucial result (usually called Cox’s theorem) I should ad-
dress one more problem. Why plausibilities should obey the properties (P1) – (P5)?

Desideratum (P1) is that degrees of plausibility are represented by real numbers (with the 
minimum which represent the plausibility of contradictions and the maximum which rep-
resent the plausibility of tautologies). I believe it is possible to prove that this desideratum 
follows from more elementary desiderata that (i) degrees of plausibility should be linearly 
ordered (i.e. that they are transitive, antireflexive and universally comparable), and that 
(ii) continuous, strictly increasing, commutative and associative operations (representing 
degrees of plausibility of conjunctions and alternations c.f. below) are definable on these 
degrees.20

In the moment it is just a conjecture, and I will not further discuss (P1).

As a first point about (P2), note that, given the knowledge of I, the process of deciding that 
AB is true, can be broken down into elementary decisions about A and B separately:

(i) Decide that A is true.  (A|I)
(ii) Decide that B is true.  (B|I)

In each step I indicate (in the brackets) the plausibility corresponding to that step. These 
two decisions completely determine our decision about AB. More formally:

A∨B|I = AI (A|I, B|I),

which is our (P2). Of course, if the plausibility in any of the two steps is increased then the 
combined plausibility of AB is increased, which is our (P3).

As for (P4), note that, given the knowledge of I, the process of deciding that AB is true can 
be broken into elementary decisions about A and B separately, in the following way:

(i) Decide that B is true.      (B|I)
(ii) Having accepted B as true, decide that A is true.   (A|BI)

Equivalently
(i’) Decide that A is true.      (A|I)
(ii’) Having accepted A as true, decide that B is true.   (B|AI)

Regarding the first procedure, in order for AB to be true it is necessary that B is true. So, BI 
is to be decided. Further, if B is true it is necessary that A is true. So, ABI is to be decided, 
20 The proof would be on adaptation of Hölder-Cartan proof that every linearly ordered group 
without minimum is embeddable in ℝ, and isomorphic to ℝ if it is Dedekind continuous.
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too. These two decisions completely determine our decision about AB. More formally:

AB|I = KI (B|I, A|BI),

which is our (P4)21. Of course, (P5) is self-evident.

If we define x:=A|II and take into account that j = I|I, I ≡ II and AI ≡ A, given I, then

KI (x,j) = KI (A|II, I|I) = AI|I = A|I = A|II = x.

Similarly,

 KI (j,x) = KI (AI|AI, A|I) = AIA|I = AI|I = A|I = x.

In other words j is a neutral element for KI (for every I).

It is as easy to prove that o is a neutral element for AI (for every I):

AI (o,x) = AI (⊥|I, A|I) = (⊥∨A)|I = A|I = x,

and similarly

AI (x,o) = AI (A|I, ⊥|I) = (A∨⊥)|I = A|I = x.

That AI is associative, is proved in the following way:

AI(AI(x,y),z) = AI(AI(A|I,B|I),C|I) = AI((A∨B|I,C|I) = ((A∨B)∨C)|I = (A∨(B∨C)|I 
= AI (A|I, (B∨C)|I) = AI (A|I, AI (B|I, C|I)) = AI (x, AI (y,z)).

It is even easier to prove that it is commutative, i.e. that:

AI (x,y) = AI (y,x).

Furthermore, KI (is distributive with respect to AI , i.e. for every I and C: 

KI [AC I (x,y),z] = AI [KI (x,z), KI(y,z)].

Namely, (A∨B)C ≡ AC∨BC, hence 

21 In many discussions of uncertain reasoning (most prominently in AI discussions of 
fuzzy logics) it is quite common to suppose that AB|I = K (A|I, B|I), with various candidates for K , 
although it is evident that no relation of this form is generally valid. (So, the discussions based on 
this assumption are completely futile.) For example, the plausibility of the next person being female 
and the plausibility of the next person being male could be about 50%, although the plausibility of 
the next person being male and female is zero. On the other hand the plausibility of the next person 
being older than 20 years and the plausibility of the next person being younger than 60 years could 
also be about 50%, although, in this case, the plausibility of the next person being older than 20 years 
and younger than 60 years should not be zero.
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(A∨B)C|I = (AC∨BC)|I.

It follows that

KI((A∨B)|CI, C| I) = AI (AC|I, BC|I),

which means that

KI[AC I (A|CI, B|CI),C|I]= AI [KI (A|CI, C|I),KI(B|CI, C|I)].

If we define x:= A|CI, y:= B|CI, and z:= C|I, we finally have

KI [AC I (x,y),z] = AI [KI (x,z), KI(y,z)],

which was to be proved.

If we substitute z = j in the above formula of distributivity we get:

KI [AC I (x,y),j] = AI [KI (x,j), KI(y,j)],

which simplifies to

AC I (x,y) = AI (x,y),

(because j is a neutral element of KI ). We may repeat this while exchanging C and I and get

AC (x,y) = AC I (x,y) = AI (x,y).

The conclusion is that A does not depend on I. (That K does not depend on I, will follow 
from what follows.)

So far we have proved that:

o ≤ A(x,y) ≤ j    o ≤ K(x,y) ≤ j    
A(x,o) = A(o,x) = x
K(x,j) = K(j,x) = x
A(A(x,y),z) = A(x,A(y,z))
K[A(x,y),z] = A[K(x,z), K(y,z)]

(where K could be any KI).

In what follows the binary operation A(x,y) is renamed xy. This operation is defined on 
[o,j], it is continuous, associative, commutative, strictly increasing in both arguments, and 
it has a neutral element o (in algebra usually called zero).

For any number u, such that o < u < j, we have
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o < u < uu < uuu < …

(because  is strictly increasing). Hence, if we define 1 u:= u, 2 u:= uu, 3 u:= uuu, etc. 
We immediately see that mu < nu, whenever m < n.22 Furthermore, if u < v then uu < 
vv, uuu < vvv etc. (because  is strictly increasing). Hence, mu < mv, whenever u<v. 
In other words, the two valued function mu is continuous (because  is continuous) and 
strictly increasing in both arguments (m∈N and u∈[o,j]).

If we fix the first argument, i.e. m, we get the strictly increasing function mu, of one 
argument u. Because of 

j = 
ju

lim
→

u ≤ 
ju

lim
→

mu ≤ j,

it follows that this function maps [o,j] onto [o,j]. And it makes it in 1-1 fashion, because it 
is strictly increasing. Hence, for every u∈[o,j] there is exactly one v∈[o,j] such that mv = 
u. We symbolize this v with 

v:=     .23

Now we are ready to define our function f. For every m/n∈[0,1]

          := m     .

Of course, we have to prove that for every km/kn

It is easy if we note that j/kn = (j/n)/k, (this follows immediately from knz = k(nz), which is 
obvious). Namely, km(j/kn) is equal to

   (km times),

Which is equal to

    (m brackets; k times in brackets).

22 Note that nu is not nu. By underlining n we stress the difference.
23 Note that u/n is not u/n. By underlining n we stress the difference.
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But then, each bracket is equal to k((j/n)/k), which is j/n. Hence, the whole value is equal 
to m(j/n), which was to be proved. 

Now it is easy to prove some important properties of f. First of all, f is strictly increasing,

m2 > m1 ⇒             >             ,

because  is strictly increasing and j/n > o:

             =                                       (o … o) =             ,

(in the first and the third bracket we have m1 times j/n; in the second and the forth bracket 
we have (m2 – m1) times j/n and o). Furthermore,

                     = m1        m2        = (m1 + m2)    = 

i.e. f is -additive.

So, f is strictly increasing, -additive function defined on rational numbers from [0,1], 
such that f(0) = o and f(1) = j. There is the unique continuous -additive extension of this 
function to the real numbers from [0,1] (remember, we presupposed that A, which means , 
is continuous). This extension, which we continue to denote f, is also -additive:

f(x)  f(y) = f(x+y).

If we substitute u = f(x) and v = f(y) this is equivalent to

uv = f(f -1(u) + f -1(v)).

Let us pause and state what we have proved so far.

There is a continuous and strictly increasing function f, defined on 
[0,1], such that f(0) = o, f(1) = j and

A(u,v) = f(f -1(u) + f -1(v)).

If we substitute this result into distributive law

KI[A(x,y),z] = A[KI(x,z), KI(y,z)]
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(which we proved above), we get:

KI[f (f 
-1(x) + f -1(y)),z] = [f -1(KI(x,z)) + f -1(KI(y,z))].

Further, if we denote f -1(x) by u, and f -1(y) by v, and apply f -1 to both sides of the above 
equations, then

f -1[KI(f (u+v),z)] = f -1[KI(f (u),z)] + f -1[KI(f (v),z)].

We further simplify by defining M(u,z) := f -1[KI(f (u),z)], to get

M(u+v,z) = M(u,z) + M(v,z).

It means that M is additive in the first argument, from which it follows it is linear in the first 
argument (because it is continuous):

M(u,z) = k(z)u.

From the defining equation M(u,z) = f -1[KI(f (u),z)] it follows:

KI((f(u),z) = f(M(u,z)) i.e.

KI(t,z) = f(M(f -1(t),z)) = f(k(z)f -1(t)).

Substituting j for t we get: 

z = KI(j,z) = f(k(z)f -1(j)) = f(k(z)),

from which it immediately follows that k(z) = f -1(z). Hence, (for every I),

KI(t,z) = f(f -1(t) ⋅ f -1(z)).

Let us summarize what we have proved so far.

There is a continuous and strictly increasing function f,
defined on [0,1], such that f(0) = o, f(1) = j and

A(u,v) = f(f -1(u) + f -1(v)).
K(u,v) = f(f -1(u) ⋅ f -1(v))

or equivalently
f -1(A(u,v)) = f -1(u) + f -1(v)
f -1(K(u,v)) = f -1(u) ⋅ f -1(v).

If we substitute concrete plausibilities for u and v we get:

f -1(A(A|I, B|I)) = f -1(A|I) + f -1(B|I)
f -1(K(A|I, B|AI)) = f -1(A|I) ⋅ f -1(B|AI).

Zvonimir Šikić | What is Probability and Why does It Matter

41



Now we can define probability function pr by pr(A|I):= f -1(A|I) and finally get:

pr(A∨B|I) = pr(A|I) + pr(B|I),

pr(AB|I) = pr(A|I) ⋅ pr(B|AI)

(of course, we presupposed that I  –(AB)).

At the end we should address Halpern counterexample to Cox’s theorem, cf. Halpern 1999. 
The crucial point is that the counterexample presupposes there is only finitely many proba-
bility values. But it is trivially true that for every m/n there is a proposition with probability 
m/n, e.g. “from urn with m white balls and n–m non-white balls a white ball will be drawn”. 
Hence, it is as relevant to probability as any statement about finite structures is to arithme-
tic. You may explore finite structures and finite probability spaces and these are important 
subjects, but they do not provide us with counterexamples to arithmetic or probability. (For 
example, in a finite field of residues modulo 7 there is only finitely many primes but this 
has nothing to do with Euclid’s theorem on infinitude of primes in ordinary arithmetic.)
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