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Prethodno priopćenje 
Sažetak: U članku se razmatra stanje naprezanja-deformacija padine prouzročenih seizmičkom aktivnošću  uzimajući u 
obzir geometrijsku i fizičku nelinearnost promatrane sredine. 
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Preliminary notes 

Abstract: This paper investigates the stress-strain state of the slope caused by seismic activity, and taking into account 
the geometrical and physical nonlinearity. 
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1. INTRODUCTION 
 
It is known that soil slopes are nonlinear complex 

environment, which stress-strain state depends 
essentially on the way, time and type of loading. 
Therefore, it is desirable to take into calculation model 
from infinite number of factors that characterize this 
complex system only a finite number of them, 
reflecting its most important properties. Thus, they 
must be really determined from experimental data, and 
subject to further numerical implementation using 
computer programs. 

Therefore, the calculation model is not exactly the 
same as the real system, but should reflect its main 
properties. Although the model is "poorer” than the 
material object, but, according to the rules, it is 
accessible, informative and user friendly. It also allows 
better understanding of basic properties of the object, 
to predict the consequences of changing the material 
properties and various influences on object. 

Currently, there is a rapid development of 
mathematical modeling methods which led to a 
development of large number of different types of 
models. The most detailed description and 
classification is stated, for example, in [5, 6, 7]. It 
should be noted that such approach in scientific 
research is today most applicable and productive. 

 
 

2. FORMULATION OF MATHEMATICAL 
MODELING 

 
As shown in [6], the formulation of mathematical 

modeling problem can be divided into three stages: a 
model - an algorithm - a program (software). Let us 

briefly consider these stages in relation to the slopes 
which are under the influence of its own weight and 
previously applied static, followed by seismic loads. 

A complex model is constructed in the first stage, 
taking into consideration a complex system, which in 
mathematical form displays the most important of its 
properties, formulated in the form of the fundamental 
laws of nature. Work by authors [3] shows that soil 
slopes even under the effect of their own weight are in 
the elastic-plastic state, so their model must consider 
this factor. 

Further, soils slopes are subject to complex loading, 
which means that deformation theory of plasticity is 
not applicable. Therefore, a more sophisticated theory 
of plastic flow with hardening [3] must be used. 
Definition of physico-mechanical properties of soils 
characterizing its properties that are necessary for this 
theory are described in [2]. 

Large deformation and displacement may arise in 
the slopes under the influence of the static and dynamic 
loads, which must also be taken into account in the 
model and defined from calculations. In this case, 
using Lagrangian (material) approach, the relationship 
between Cauchy-Green strain tensor C and 
displacement vector u will take the form [3]. 
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Difficulties occur when solving nonlinear problems 

that are associated with the lack of information on 
actual configuration Vt, which is determined by the 
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Cauchy stress tensor σ. Therefore, when solving 
nonlinear problems it is more convenient to find state 
of stress using the reference configuration V0, 
described by the source data. 

With regard to this, it is necessary to operate with 
arising stress tensor determined by this configuration. 
Here we will use a symmetric Kirchhoff stress tensor 
K, which is defined through Cauchy stress tensor, as 
follows: 
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The equation of motion, balance and static 

boundary conditions using Kirchhoff tensor Κ is 
nonlinear, depending on the strain state of a continuous 
medium. Ratio of virtual work principle with total 
stresses and with finite increments using Kirchhoff 
tensor defines component form as follows: 
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The equation of state in increments can be written 

as follows [3] 
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In the study of problems with small extensions and 
translations is assumed that the current body 
configuration Vt coincide with its reference 
configuration V0. This significantly simplifies the 
solution. However, under deformation with over 10% 
of displacement gradient, this approach can lead to 
both qualitatively and quantitatively wrong results. 

Therefore, the process of solving problems with 
large deformations creates additional difficulties 
associated, firstly, with the geometric nonlinearity of 
the original equations and, secondly, the lack of 
information about the current configuration of the body 
Vt. 

The first problem leads to the introduction of 
various stress and strain tensors and the two main 
approaches in the study of problems in mechanics: 
Lagrange’s and Euler’s. The second problem generates 
widely used methods for solving the problems of 
incremental (high-speed) type. 

Such approach allows replacement of a full load 
with equivalent number of small sequential steps and 
then to determine the body configuration, as well as the 
stresses and strains at a subsequent step from the 
previous where they are known. In this case, the 
reference configuration of a subsequent loading is 
adopted from previous current configuration. This 
enables the results determination process for each load 
to be written in the form of operation of the same type 
using the algorithm for solving the geometrically linear 
problems. 

 
 
3. PROBLEM SOLUTION AND EQUATION  

SET-UP 
 
Solution to the first problem allows us to represent 

our problem in algebraic form ie move from an infinite 
number of degrees of freedom of the slope to a finite 
number. It can be implemented using various 
projection methods. We will use finite element method. 
Solution to the second problem enables to linearize the 
original non-linear equations. In this case, the 
adjustment of their coefficients can be performed at 
each iteration solution or through their given number. 

Discretization of equations using finite element 
method and static calculation methods for calculating 
the slopes are in detail considered in the monographs 
[3, 4], so we’ll move to the solution of dynamic 
problems. In matrix form the equation of body motion 
at the time tn is transformed in the following form: 
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The second term in brackets is called the matrix of 

associated masses and it takes into account the impact 
from the water environment on the slope with its 
oscillations [3]. Let us denote sum in parentheses with 
and call it the reduced mass. 

The second term in (5) is the matrix of damping 
which for each finite element equals: 
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( )δΚ  is called the system matrix of stiffness and it 
depends through a matrix D of the global vector of 
nodal displacements. 

To solve the equation (5) we use an explicit or 
implicit methods of integration. Solutions shows that 
the second type methods are most acceptable regarding 
considered problems, so the Newmark method and its 
possible modifications will be used. 

 
 

 
 
 
 

4. METHOD APPLICATION ON AN EXAMPLE 
 
For determination of displacement in time we use 

the following equation: 
Consider the example of the slope design scheme 

shown in Fig. 1. 
We take that the ground slope located in the vertical 

plane with coordinate = –60 m receives displacement 
impulse of 10 cm from right side, which caused slope 
oscillation. At the slope boundaries wave oscillations 
are not reflected and they freely passing through.  

Fig. 2 shows diagrams of horizontal and vertical 
oscillation displacement of slope point A. 

 
 

 
 

Figure 1.  Design scheme of a planned slope 
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Figure 2. Diagrams of horizontal and vertical oscillation displacement of point A 

 
Fig. 3 shows the diagrams of the normal and tangential stress oscillation at slope point B. 
 

 

 
 

Figure 3. Diagrams of normal and tangential oscillation of stresses at slope point B. 
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5. CONCLUSION 
 
Thus, using the proposed software we can examine 

complex oscillation processes occurring at any point in 
the slope caused by static and seismic loadings. It 
enables the results determination process for each load 
to be written in the form of operation of the same type 
using the algorithm for solving the geometrically linear 
problems. The possibilities of complex program are not 
limited only to the solution of problems given by initial 
displacement of the soil slope: accelerograms of 
earthquakes can also be defined. 
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