
PERIODICUM BIOLOGORUM	 UDC 57:61 
VOL. 116, No 4, 371–379, 2014	 CODEN PDBIAD 
	 ISSN 0031-5362

 
 
Hedgehog signaling and cross-talk therapeutic  
potential

Introduction

Normal and tumor cells use many pathways for survival, prolifera-
tion and communication with environment. Many defects during 

lifetime occur and consequently many other sets of alternative pathways 
switch on, in a fighting for survival, repair and reproduction. In such 
dynamic processes depending on a moment, environment, conditions 
and events, cells learn how to survive. To find effective tools to attack 
particular sets of those pathways in particular cells is main strategic road 
to treat and fight with cancer.

Accumulating wide lines of experimental evidence revealed that ab-
errant activation of Hedgehog–Gli (Hh-Gli) pathway and pathways 
involving receptor tyrosine kinases (RTK), such as the EGF signaling, 
frequently occur during cancer initiation and progression, and these 
tumorigenic cascades may cooperate through multiple signaling cross-
talks to the malignant transformation of cells, treatment resistance and 
disease relapse.

In this context, the most relevant issue for clinical application is: How 
to attack molecular mechanisms and specific downstream signaling el-
ements that may contribute to the cooperative or synergistic interactions 
of the Hh-Gli and RTK signaling pathways, including EGFR, in cancer 
and metastasis-initiating cells?

Moreover, it is of great therapeutic interest to define drug resistance-
associated molecules, including ABC transporters modulated through 
the inhibition of Hh and/or EGFR pathways, that could be targeted for 
reversing the chemoresistance of cancer and metastasis-initiating cells.

In view of the promising results from preclinical studies, targeting 
the Hh cascade seems to represent a therapeutic strategy of great clinical 
potential.

Misregulation of molecular signaling pathways

Misregulation of molecular signaling pathways that control funda-
mental cellular processes such as growth and cell death has been di-
rectly associated with a variety of inherited and sporadic diseases. Tar-
geting such pathways, as is the Hedgehog (Hh) signaling pathway 
represents a promising new paradigm for drug discovery. Cyclopamine, 
plant-derived steroidal alkaloid, was the first discovered inhibitor for 
this pathway, shown to bind to the heptahelical transmembrane part of 
Smo, inhibiting its activity.
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After that, small molecule Hh-Gli regulators have be-
come very rapidly expanding field. They come in varieties 
depending on their source (synthetic versus natural prod-
ucts), as well as on the locus of action: those that inhibit 
SMO versus those that act downstream of SMO, includ-
ing those that may block GLI function directly. Blocking 
antibodies, peptides and small RNA inhibitors are more 
recent aspects of new targeting tools.

The Hedgehog-Gli (Hh-Gli) signaling 
pathway

The Hh-Gli signaling pathway is a developmental 
pathway, which is often found aberrantly active in various 
tumors. The Hh pathway is a key regulator of patterning, 
growth, and cell migration during embryonic develop-
ment (1, 2), and inhibition of the Hh pathway at this stage 
has been shown to cause severe birth defects such as cy-
clopia (3). In adult organisms, the Hh pathway contrib-
utes to homeostasis and regeneration of certain tissues 
such as skin and bone, it is active almost exclusively in 
somatic stem cells, but aberrant activation of the Hh path-
way has been linked to tumorigenesis in various and se-
vere types of cancers (4). The fact that it is frequently 
activated in cancer stem cells makes it an interesting tar-
get for future therapies.

Hedgehog (Hh) signaling pathway was first discovered 
in Drosophila in early 1980s (5). The pathway’s name 
originates from the observations that mutations in the 

gene encoding the secreted protein, one of the key regula-
tors of the pathway in fruit flies, give rise to an unusual 
spiky-haired phenotype. In mammals, the proteins are 
Sonic hedgehog (Shh), named after the popular video 
game hero, Indian hedgehog (Ihh) and Desert hedgehog 
(Dhh), the latter two named after existing species of living 
hedgehogs. Sonic hedgehog (Shh) is the most widely char-
acterized of the three vertebrate Hedgehog homologs, and 
is essential for proper embryonic development.

The pathway activation begins when the secreted Shh 
protein binds to its receptor, Patched (Ptch1), a twelve 
transmembrane protein, resulting in the de-repression of 
Smoothened (Smo) a seven transmembrane protein, that 
has a function of co-receptor. This triggers a cascade of 
events in the cytoplasm leading to activation of the tran-
scription zinc finger factors Gli and transcription of their 
target genes. Several components of the Hh-Gli pathway 
(PTCH, GLI1, GLI2 and HHIP) are Gli transcriptional 
targets that induce positive or negative feedback (6). The 
Gli proteins are regulated by the Suppressor of Fused 
(SuFu), Protein Kinase A (PKA), Glycogen Synthase Ki-
nase 3b (GSK3b) and Casein Kinase 1 (CK1). GLI tar-
gets mediate various cellular responses, notably enhanced 
cell proliferation and survival by upregulating D-type 
cyclins and antiapoptotic proteins (7, 8, 9).

Many studies have shown that the activity of GLI pro-
teins can be additionally modified by integration of dis-
tinct signals, such as the MEK/extracellular signal-regu-

                   Activated pathway                                     Inactive pathway                                 Cyclopamine inhibition  
                                                                                                                                                     of the activated pathway

Figure 1. Schematic presentation of main steps in Hh-Gli signaling pathway. Pathway is activated when the ligand Hh binds to 12-transmem-
brane receptor Ptch (Activated Pathway), or it is inactive when the ligand is not present (Inactive pathway); and the activated pathway can be 
blocked by cyclopamine inhibition (Cyclopamine inhibition of the activated pathway). The interactions of the components of the Hh-Gli path-
way occur in the primary cilia of cells (10). Functional Hh protein is generated in a two-step process that involves autocatalytic cleavage of a 
precursor molecule to release a cholesterol-modified N-terminal signaling domain, followed by addition of palmitate to the N terminus. This 
protein is then secreted from the membranes of the producing cells and initiates the Hh signaling cascade upon binding to the Patched (Ptch) 
(11). In the absence of the Hh ligand, the Ptch receptor inhibits the activity of the downstream co-receptor Smoothened (Smo), which in gen-
eral topology resembles G-protein-coupled receptors (GPCRs). It is proposed that Ptch effects this inhibition by excluding the ciliary localization 
of Smo (12). Binding of Hh protein to Ptch causes Smo, stored in intracellular vesicles, to move to the cilium and activate signal transduction. 
Active Smo then signals via a cytosolic complex of proteins including Suppressor of Fused (SuFu), and the cascade culminates by triggering ac-
tivation of the glioma (Gli) family of transcription factors and their translocation to the nucleus. This activation results in the expression of 
specific genes that promote cell proliferation and differentiation.
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Table 1
Small molecule Hh-Gli pathway inhibitors and indicative targets in clinical trials (some of the data from 

Mas and Ruiz i Altaba 2010-(16)).

Compound Target Cancer type Status

GDCO449

GDCO449
+gemcitabine

BM-833923
BM-833923
+carboplatin
+etoposide
BM-833923
+cisplatine
BM-833923

SMO

SMO+DNA
Replication
SMO
SMO
DNA alkylation
Topo II
SMO
Topo II
SMO

medulloblastoma, glioblastoma, BCC
Colorectal cancer, stomach, ovarian, pancreatic

metastatic pancreatic

BCC, BCNS, small cell lung
small cell lung
small cell lung
small cell lung

metastatic gastric and esophageal
multiple myeloma

phase II

‘’

phase I
‘’
‘’
‘’

‘’

Table 2
Some of known Hh-Gli antagonists and 

agonists.

Antagonists Target References

cyclopamine	 Smo	 17, 18, 19
KAAD-cyclopamine	 Smo	 20
Robotnikinin	 Shh	 21
SANT1,2,3,4	 Smo	 22
SANT74, SANT75	 Smo	 23
Cur-61414	 Smo	 24
GANT58	 Gli	 25
GANT61	 Gli	 25
Hh-Ag	 Smo	 26
SAG	 Smo	 22

lated kinase (ERK) and phosphinositide-3 kinase (PI3K)/
AKT pathway, and they have been described as nonca-
nonical Hh-Gli activators in cancer.

However, signaling events immediately downstream 
of Smo are still not clearly understood. Accumulating 
evidence from several groups indicates an important but 
not yet fully defined step: mammalian Smo is during sig-
naling translocated to primary cilia. This was found in 
most vertebrate cells (10).

The pathway is a highly coordinated and orchestrated 
network, linking events from ligand binding on the mem-
brane, toward events in cytoplasm and transcription fac-
tors Gli. Therefore, it deserved the name Hh-Gli signaling 
pathway, today in predominant use.                                                           

Hh-Gli pathway inhibition

The first small-molecule inhibitor of the Hh-Gli 
pathway, natural product alkaloid cyclopamine, 
achieves inhibition by direct binding to the seven-
transmembrane alpha-helical bundle of the Smooth-
ened, the co-receptor Smo (13). The majority of Hh-Gli 
pathway inhibitors target Smo, and this has led to the 
identification and development of many other Smo an-
tagonists and derivatives of cyclopamine. Since a num-
ber of cancer cells have been found insensitive to Smo 
inhibition, because of the mostly acquired resistance to 
Smo antagonists through mutations in SMO that pre-
vent binding of the antagonist (14, 15), there was a need 
to target downstream effectors. Today there is a long 
list of small molecule inhibitors of the Hh-Gli pathway, 
acting from the level of attacking the ligand (any of Hh 
varieties), or from the Smo level, or acting on down-
stream targets in cytoplasm. Some of them are promis-
ing and are in clinical trials (table 1). Also, there is a 
long list of many new potential antagonists and ago-
nists of the pathway, some of them listed in table 2.

Even though GLI1 is a transcription factor and thus a 
priori a bad target, it is a rather unusual factor with mul-
tiple lives in different cellular compartments (25). GLI1, 
and the other GLIs, are exquisitely regulated at different 
levels, including phosphorylation, acylation, sequestration 
and degradation (27–31). Each of these steps, as well as 
the partners that physically interact with the Gli proteins, 
provides possible sites for small molecule action. There-
fore, Gli1 is not only a valid target but so far it is also the 
only reliable and general marker of a cell’s response to Hh 
signaling. Measuring GLI1 levels in relevant human cells 
is thus a requisite (32).

Inhibitors of the pathway

Because of its accessibility on the membrane and its 
importance in regulation of the pathway, SMO has been 
the primary focus in the development of small-molecule 
inhibitors of the Hh-Gli pathway. GDC-0449 (vismo-
degib; Genentech) is an orally administered agent that 
selectively suppresses SMO activity and was the first SMO 
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inhibitor to progress to clinical trials. It has produced 
promising antitumor responses in patients with advanced 
basal cell carcinoma and medulloblastoma (33, 34), but 
resistance has been reported (15, 35). The resistance to 
SMO inhibitors highlights the therapeutic need to target 
downstream effectors. So, the small molecule GANT61 
was identified as a specific inhibitor of GLI1 and GLI2. 
It suppresses the DNA-binding capacity of GLIs and in-
hibits GLI-mediated transcription. GANT61 reduces 
proliferation and induces apoptosis in a GLI-specific fash-
ion in prostate cancer (25), colon carcinoma (36, 37), oral 
squamous cell carcinoma (38), pancreatic cancer (39), 
neuroblastoma (40), and chronic lymphocytic leukemia 
(41). However, today it is generally recognized that this 
inhibitor is not really specific inhibitor for Gli, and un-
fortunately the Hh-Gli pathway has no specific inhibitors 
created yet.

MicroRNA regulation

MicroRNAs (miRNA), small RNA molecules which 
bind to regulatory elements in the mRNA molecules and 
control their stability, are crucial post-transcriptional 
regulators of gene expression, cell differentiation and pro-
liferation. They are involved in normal cell development 
and in development of various types of tumors. The role 
of miRNA in regulation of Hh-Gli signaling pathway has 
been suggested using screening approaches and bioinfor-
matics, and a direct link between these two mechanisms 
has been investigated in various cancers. Downregulation 
or even misregulation of specific miRNAs allows high 
levels of Hh-dependent gene expression leading to tumor 
cell proliferation, sustaining cancer development (42). 
Specific miRNAs involved in the regulation of the Hh 
signalling (miR-125b, miR-324-5p and miR-326), down-
regulated in medulloblastoma, target the activator compo-
nents of the pathway, Smo and Gli1, thereby suppressing 
tumor cell growth. This was the first discovered mecha-
nism of regulation of Hh signaling through miRNA-
mediated control of Smo and Gli1 and of involvement of 
miRNA-mediated control of the Hh pathway in malig-
nancy. The concept is still under research, particularly for 
severe types of cancer (43), and may have promising 
implications for miRNA based therapies (44).

Link between developmental biology 
and cancer

First discoveries related to the Hh-Gli pathway and 
human disorders were made on a range of PTCH1 al-
teration profiles, including genetic mutation, LOH, and 
promoter hypermethylation, and the two-hit theory was 
explored to dissect all possible genetic and epigenetic 
mechanisms (45–49).

At this level, the key player in the pathway is PTCH1. 
Inactivation of PTCH1 allows hedgehog ligand-indepen-
dent activation of SMO, causing a downstream activation 

of the pathway that may lead to neoplastic growth. Muta-
tions in the PTCH (PTCH1) gene are the underlying 
cause of nevoid basal cell carcinoma syndrome (NBCCS) 
or Gorlin syndrome. And thanking to this syndrome, 
tumor suppressor PTCH was cloned, its role in develop-
ment and cancer was unraveled. Cancers driven by muta-
tions within the Hh signaling, mostly BCC and tumors 
described within Gorlin syndrome (50, 51), had not been 
in wider focus, until aberrant activation of the pathway 
and its inhibitors (i.e. the natural alkaloid, cyclopamine) 
were described. After that, various studies through in vi-
tro and in vivo models explored and attempted to explain 
mechanisms of ligand-dependent, ligand-independent, 
autocrine, canonical and non-canonical Hh-Gli pathway 
activation in multiple tumors.

Mechanisms of Hh-Gli signaling 
pathway deregulation that may 
lead to cancer development

The first and widely described, ligand-independent 
mechanism, usually involves mutations in which loss of 
PTCH1 or its functionality leads to loss of suppression, 
whereas SMO mutations create a constitutively active 
form of the protein (20, 52, 53, 54).

But it was also shown that PTCH1 function can be 
lost through methylation (48, 55, 56).

Amplifications or mutations of genes downstream of 
Ptch contribute to activation of the Hh-Gli pathway, e.g. 
high amplification of Gli1 was reported in glioblastomas 
(6).

Another under widely explored, ligand-dependent 
mechanism, can be achieved through ligand hyperpro-
duction or by downstream activation processes.

Ligand-dependent Hh-Gli signaling has been report-
eded in different stages of carcinogenesis in different tu-
mors: pancreatic cancer, lung cancer, esophageal cancer, 
prostate cancer, breast cancer, gastric cancer, colon cancer, 
ovarian cancer and hepatocellular cancer (58–66), sug-
gesting that Hh-Gli signaling has significant role in car-
cinogenesis of these tumors.

In support of these findings, transgenic mice with 
pancreatic-specific expression of SHH or GLI2 develop 
pancreatic tumors (59, 67). In some other tumors (gastric, 
prostate cancer) Hh signaling activation is associated with 
cancer progression, and consistent with these findings, 
inhibition of Hh signaling in prostate and gastric cancer 
cells reduces cell invasiveness (63, 68). Also, it was pub-
lished that Hh signaling is required for development and 
progression of melanoma, gliomas, breast cancer, ovarian 
cancer, leukemia and B-cell lymphomas (69, 70).

In addition, the modes of Hedgehog signaling in can-
cer development may be variable. Activated Hh-Gli sig-
naling can act in an autocrine or paracrine manner. In the 
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autocrine manner Hh is produced by the cancer cells 
themselves. In the paracrine manner (various studies in 
pancreatic, lung, esophageal cancer) stromal tumor cells 
are included in receiving signals. Even more, it was dem-
onstrated that tumor-infiltrating monocytes or macro-
phages secrete ligand Shh, that activates Hh-Gli pathway 
in cancer cells (71, 72, 73). Shh or Ihh ligands secreted by 
the tumor cells activate Hh signaling in the stromal cells 
(74). It is also evident from studies of Dierks et al 2009 
(74) and Zhao et al 2009 (75) that Hh signaling is re-
quired for maintenance of cancer stem cell population.

In our research we have observed hyperproduction of 
the Shh ligand by tumor cells in ovarian cancer, that lead 
to cell proliferation, as an example of the autocrine activa-
tion (76 ). These results indicate that in ovarian tumors 
pathogenesis through SHH gene expression differs in bor-
derline tumors and carcinoma. Also, it was shown by oth-
ers that the Hh-Gli signalling pathway plays an important 
role in ovarian tumorigenesis as well as in the activation 
of cell proliferation, thus could be as molecular target of 
new treatment strategies for ovarian carcinoma (66).

On the other hand, in breast cancer we observed a 
cross-talk between Hh-Gli signaling (Shh ligand) and 
estrogen receptors creating an autoregulatory loop (77, 
78). Furthermore, in colon cancer we observed hyperac-
tivation of the regulatory kinase GSK3b that leads to 
overproduction of activator form of Gli3 and to the path-
way hyperactivation (79). This suggests a major role for 
the interplay of GSK3and Gli3 in the regulation of this 
pathway in colon cancer (publication in preparation).

Such examples from recent research of our group and 
many others document various ways of Hh-Gli signaling 
activation in many types of cancer, indicating different 
tumors have different modes of interaction with the path-
way. Therefore, this pathway might indeed be a suitable 
target for cancer therapy.

Cancer therapy targeting Hh 
signaling

Today it is generally recognized that Hh-Gli signalling 
pathway is activated in various types of cancer and at 
various levels, and contributes to cancer proliferation, 
progression and invasiveness, so this pathway is antici-
pated to provide a new avenue for cancer therapy.

There are probably more than hundred compounds 
disclosed to have inhibitory effects on Hh signalling. 
Some are under clinical trials. Hh-signaling inhibitors are 
mainly targeting three sites in Hh-Gli pathway: Ligand 
Hh (by neutralizing antibodies, Robotnikinin), Smo pro-
tein (cyclopamine and its derivates) and Gli inhibitors. 
Several Smo inhibitors have been proposed as potential 
candidates for cancer therapy either as a single agent or in 
combination regimens with conventional chemotherapy. 
Most pathway inhibitors can be divided into three groups: 

natural products (cyclopamine), novel synthetic com-
pounds and Hh-signaling modulators.

Cyclopamine is Hh-Gli pathway inhibitor on the 
level of direct interaction with Smo (3). Some derivates of 
cyclopamine differing in solubility (IPI-926) or in struc-
ture (GDC-0499, LDE225, BMS-833923), or inhibitors 
of the transformation of inactive Smo into active Smo 
(SANT 74-75), and more others have been developed, and 
some are in clinical use (80, 81, 82). Most drug develop-
ment programs and recent clinical trials are focused on 
Smo inhibitors.

However, it was also shown that on the level of Gli-
mediated transcription, which constitutes the final step 
in the pathway, some tumors could be selectively inhib-
ited (GANT58 and GANT 61) (25). Another recently 
identified Gli inhibitor, Gli-antagonist, is arsenic trioxide 
(ATO), which FDA approved as a drug for the treatment 
of acute promyelocytic leukemia. ATO binds directly to 
Gli1 inhibiting its transcriptional activity and suppressing 
tumor growth in vitro and in vivo (83, 84).

Rapid advancement in the discovery of novel Hh sig-
naling inhibitors has provided many opportunities for 
developing novel cancer therapeutic strategies. It is not 
surprising to learn that several major challenges still exist 
to prevent the use of Hh signaling inhibitors in clinics. 
These challenges include a lack of basic understanding of 
the molecular mechanisms by which Hh signaling medi-
ates carcinogenesis; no clear criteria to identify the right 
tumors for therapeutic application; only a few reliable, 
physiologically relevant, and reproducible mouse models 
for cancer metastases to test and optimize drug dosages 
in order to minimize side effects; and a lack of clear strat-
egies to mitigate drug resistance. Over the last years, re-
search in this area has greatly improved. It is anticipated 
that additional novel therapeutic strategies will be devel-
oped for cancer clinical trials using Hh signaling inhibi-
tors in the next years.

Interactions between Hh-Gli 
signaling and other pathways or 
cross-talk

We may assume that pathways that enable particular 
cell to survive are interacting among themselves, and that 
in many cases Hh-Gli signaling pathway is involved.

Examples include regulation of SHH expression by 
Ras, NFkB and ERalfa, as well as regulation of Ihh by 
Msx2 (67, 85). Also, expression of Gli1 is regulated by 
TGFbeta, Ras and Jun oncoprotein (86, 87). Further-
more, the interaction between PKC and Hh signaling 
varies depending on PKC isoforms and cell types; al-
though PKC alpha is shown to activate Hh signaling, 
PKC delta inhibits it (88).
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Particularly interesting are the interactions with an-
other developmental pathway, Wnt pathway, which is also 
often active in some cancers, like colon cancer. Hh and 
Wnt signaling can form a positive or negative feedback 
loop depending on tissue content. In gastric cancer Hh 
signaling can exert negative effects on Wnt signaling 
through elevated expression of Wnt inhibitor sFRP-1 (89). 
But in Hh-mediated skin carcinogenesis Wnt signaling is 
required (90), mostly trough beta-catenin expression (91).

Many studies have shown p53 pathway collaboration 
with Hh pathway in skin carcinogenesis. In melanoma it 
was shown that p53 negatively regulates Gli1 expression 
through MDM2 (92); this feedback regulatory loop is 
required for maintaining stem cell number and cancer cell 
number.

Synergistic effects with Hh-Gli signaling was shown 
for some growth factors (IGF-I, VEGF, PDGF alpha, 
EGF) and their receptors, affecting MEK/ERK/JUN 
pathway (93). This raises the question whether targeting 
Hh signaling with inhibitors of the pathway is also a good 
target for growth factor pathways, and could such strat-
egy make contribution to better treatment of cancer (in-
hibitors of Hh-Gli pathway and EGF/EGFR, IGF in-
hibitors etc).

The importance of the Hh-Gli signaling pathway in-
vestigations related to its role in cross-talk is underlined 
by the estimates that the pathway may be active in one 
third of all cancers. Better understanding of the modes of 
Hh-Gli pathway regulation and tumor response, as well 
as of interactions of the pathway with other signaling 
pathways, has an obvious potential for development of 
better therapies that would be based on combined effects 
of the Hh-Gli and other pathways inhibitors.
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