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MIXED MESHLESS PLATE ANALYSIS  
USING B-SPLINE INTERPOLATION 

Summary 

A new mixed meshless approach using the interpolation of both stress and displacement 
has been proposed for the analysis of plate deformation responses. Kinematic of a three 
dimensional solid is adopted and discretization is performed by nodes located on the upper 
and lower plate surfaces. Governing equations are derived by employing the local Petrov-
Galerkin approach. The approximation of all unknown field variables is carried out by using 
the B-spline interpolation and the moving least squares functions in the in-plane directions, 
while linear polynomials are applied in the transversal direction. In order to eliminate the 
thickness locking effect, the hierarchical quadratic interpolation of the transversal 
displacement component through the thickness is used. The shear locking effect is efficiently 
suppressed by the interpolation of the stress field independently from the displacement. The 
numerical efficiency of the derived algorithm is demonstrated by numerical examples. 

Key words: mixed meshless approach, plates, B-spline interpolation, shear locking, 
thickness locking 

1. Introduction 

In recent years, numerical approaches known as meshless methods have attracted 
considerable attention due to their potential to overcome shortcomings associated with mesh-
based numerical methods, such as the Finite Element Method (FEM). Using these numerical 
procedures, a computational model may be discretized only by nodes which do not need to be 
connected into elements. Thus, some issues associated with the FEM, such as a time-
consuming mesh generation or element distortion problems, may be efficiently overcome by 
using meshless formulations.  

In addition, the meshless methods can also successfully deal with various locking 
phenomena which usually appear in the thin plate and shell analysis. Therefore, a number of 
different meshless formulations have been proposed. However, some of these approaches still 
require certain meshes in the form of background cells to integrate weak forms, as can be 
found in the Element-Free Galerkin (EFG) method [1, 2]. On the contrary, the Meshless Local 
Petrov-Galerkin (MLPG) method [3] does not require any kind of element mesh for either 
interpolation or integration and therefore represents a truly meshless approach. The MLPG 
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method has already been successfully applied for solving various problems dealing with shell-
like structures, such as the elasto-statics of homogenous plates [4], the analysis of composite 
plates [5] or the elasto-dynamics of plate structures [6, 7]. Furthermore, the MLPG 
formulations for the analysis of shear-deformable shells [8, 9] have also been developed. All 
those formulations are mainly based on some of classical theories, e.g. the Kirchhoff-Love 
theory or the Reissner-Mindlin theory. The common drawback of such approaches is that they 
do not allow a direct implementation of general three-dimensional (3-D) material laws, which 
may be important in the modelling of shell-like structural components, especially in the case 
of material nonlinearities. 

The MLPG formulations employing a 3-D solid concept are proposed in [10, 11] for 
plate analyses, and their application to shells is presented in [12]. Therein, the in-plane 
interpolation has been performed by using the standard Moving Least Squares (MLS) 
approximation. The hierarchical quadratic interpolation through the thickness has been 
applied for the transversal displacement component in order to eliminate the undesired 
thickness locking effect. Like in the most formulations using the Reissner-Mindlin approach 
mentioned above, the shear locking phenomena in the thin structural limit is only minimized 
[12] by applying the displacement interpolation functions of a sufficiently high order. On the 
other hand, the same locking effect is alleviated in [11] by introducing new field variables 
such as the transversal shear strains and some special displacement variables. 

A mixed formulation based on the interpolation of the strain and the displacement fields 
has been proposed in [13] for plate analyses. In this approach, the thickness and shear locking 
phenomena are efficiently eliminated by a proper approximation of the strain components. In 
contrast to the standard fully displacement MLPG approaches, low-order MLS functions are 
used, which significantly contributes to accuracy and numerical efficiency. Besides the 
displacement vector interpolation, the independent approximation of the strain tensor 
components and the transversal normal stress components are proposed in [14]. Herein, the 
interpolation of the transversal shear strain components yields the shear locking elimination, 
while the thickness locking is suppressed by means of the transversal normal stress 
component distribution. The interpolation has been performed by using the modified MLS 
shape function proposed in [15, 16], that obeys the interpolation condition with high accuracy. 
It has been demonstrated that the proposed mixed formulation is computationally superior to 
the fully displacement MLPG approach considered in [12]. However, it is to note that the 
above mentioned mixed formulations require relatively complex transformation procedures, 
and moreover, it is well known that the derivation of the MLS shape functions, often applied 
in meshless analyses, is connected with the complex mathematical approaches.  

In the present contribution, besides the MLS interpolation procedures, the B-spline shape 
function is proposed for the first time for the meshless analysis of plate structures. Instead of the 
strain and the stress interpolations mentioned above, here only the stress approximation is 
combined with the displacement distribution. The formulation presented is again based on the 
concept of a 3-D solid, allowing the implementation of complete 3-D material models. 
Discretization is performed by nodes located on the upper and lower surfaces, and the local 
weak form of the equilibrium over the prismatic local sub-domain, surrounding the couple of 
nodes positioned on the opposite surfaces, is derived. By analogy to the computational strategy 
presented in [13, 14], the nodal stress values are eliminated locally using the displacement 
interpolation by means of a collocation approach. Since the B-spline shape function is not 
interpolatory, a linear transformation of nodal values is performed in order to impose the 
interpolatory condition. The delta property of the MLS function is enforced by its modification, 
like in [14]. The stress components interpolation contributes to the shear locking elimination, 
and the thickness locking is suppressed by using the hierarchical quadratic interpolation of the 
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transversal displacement components through the thickness. All comments regarding the 
advantage of the mixed computational strategy over the standard fully displacement 
formulations quoted in [13, 14] also hold for the formulation presented in this contribution. The 
performance of the proposed formulation is demonstrated by numerical examples. 

The paper is organized as follows: Section 2 presents the derivation of the governing 
equations for the plate analysis based on the MLPG mixed approach. The discretization 
procedure with the description of the MLS and B-spline interpolations is presented in Section 3. 
The numerical examples demonstrating robustness and accuracy of the proposed computational 
strategy are presented in Section 4. The concluding remarks are given in Section 5.  

2. MLPG mixed approach for plate analysis 

In order to derive the governing equations for the proposed formulation, a homogeneous 
plate of uniform thickness is considered. The 3-D Cartesian co-ordinate system with the X1-
X2 plane lying on the plate middle surface is used, as shown in Fig. 1.  

 

Fig. 1  Discretization of plate continuum 

The well-known equilibrium equations referring to such coordinate system may be written for 
a global 3-D plate domain   bounded by a global surface   as 

0, inij, j iσ b   , (1) 

where ijσ  is the stress tensor and ib  denotes the body force vector. On the surface  , the 

following boundary conditions are given:  

, oni i uu u  , (2) 

,oni ij j i tt n t   . (3) 

Herein, u  and t  are the parts of the global boundary   with the prescribed displacements iu  

and tractions it , respectively. jn  denotes direction cosines of the outward normal vector on  . 

The plate continuum is discretized by a set of node couples, where the nodes are 
positioned on the upper and lower plate surface as shown in Fig. 1. According to the Local 
Petrov-Galerkin approach [3], the equilibrium equations (1) may be written in a weak form 

over the local sub-domain I
s , surrounding the Ith node couple and bounded by the local 

boundary surface I
s , as 

 , d 0; 1,2,..., ,
I
s

ij j i kib v I N


     (4) 
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where N stands for the total number of the node couples used for the plate discretization. kiv  

represents the applied test functions. It is to note that I
s  could theoretically be of any 

geometric shape and size. Furthermore, according to the Petrov-Galerkin principle, the test 
and trial functions may be taken from different functional spaces. According to [17], the test 
functions are chosen as ik ikv v , where v  is a kinematically admissible test function and 

ik  denotes the Kronecker delta. In the present contribution, the prismatic local sub-domains 

as shown in Fig. 1 are used and v  is assumed to be linear over the plate thickness 

 
3 3

3
0 1

1 1

2 2

X X
v X c c

h h

   
         

   
 (5) 

with 0c  and 1c  as arbitrary real constants and h  stands for the plate thickness. 

By inserting Eq. (5) in Eq. (4), using the divergence theorem and taking i j ijt n   on I
s  

into account, the following system of the governing equations for the local sub-domain I
s  is 

derived 

     

   

     

   

3 3 3

,

3 3

3 3 3

,

3 3

d d d

d d

d d d

d d

1,2,..., ,

I I I
s s su

I I
s st

I I I
s s su

I I
s st

ij j ij j ij
j

L

i i

ij j ij j ijj
L

i i

X X n X n

X b X t

X X n X n

X b X t

I N

 

 

 

 

        

   

        

   

  

 

  

 



  

 

  

 

 (6) 

where 

   
3 3

3 31 1
, .

2 2

X X
X X

h h
 

   
         
   

 (7) 

Herein, the stress tensor components ij  are approximated independently from displacements 

as explained in the following section. As evident, the local boundary I
s  is divided into 

three parts, I I I I
s s st suL Γ Γ    , where I

sL  is the part of I
s  inside the global domain  , 

while I
stΓ  and I

suΓ  coincide with the parts of   with the prescribed natural and essential 

boundary conditions, respectively. The linear distribution of the in-plane and transversal 
normal stress components over the plate thickness is assumed, while the transversal shear 
stress components are constant.  

3. Discretization 

3.1 MLS interpolation 

Since the MLS interpolation is well-known in the meshless formulations, see e.g. [3, 18], 

it will be presented here very briefly. The MLS nodal shape function  J X   is defined as 
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  1

1

( )
m

J
i i J

i

X p X  



    A B ,    (8) 

with A as a momentum matrix  

1

( ) ( ) ( )
n

T
J J J

J

W X X X  


 A p p ,  (9) 

and the matrix B defined as 

1 1 2 2( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .J J n n

W X X W X X

W X X W X X

   

   

 



B p p

p p



 
   (10) 

The complete monomial basis  X p is expressed in terms of the local normalized 

coordinates in the middle surface directions X   in order to improve the conditioning of the 

matrix A, as explained in [12]. ( )JW X   is the weight function associated with the Jth node 

couple. Herein, a regularized weight function, similar to those in [15, 16], is employed to 
ensure a sufficiently accurate enforcement of the Kronecker delta property, which leads to the 

same condition for the MLS shape function, i.e.  J I J IX   . 

3.2 B-spline interpolation 

B-spline interpolations have a wide application in engineering. They are mostly used in 
surface generation in the geometric modelling of a computer aided design system. B-spline 
functions may also be employed as interpolating functions to solve structural problems as 
reported in [19], where they are used in FEM formulations. The recently proposed 
Isogeometric Analysis is based on the Non-Uniform Rational B-Splines (NURBS), which are 
used for both the geometry and field approximation [20]. In the present contribution, the B-
spline is used as the interpolation function in the frame of the MLPG meshless method.  

Here, the derivation of the two-dimensional (2-D) B-spline shape function is 
summarized. We start with the definition of the B-spline curve which is defined by the 
following expression 

,
1

( ) ( )
n

i p i
i

C x N x P


  ,    (11) 

where , ( )i pN x are the B-spline basis functions of order p  and iP  are their coefficients 

referred to as control points. In general, the control points are not interpolated by B-spline 

curves. The basis functions are formed by the knot vector 1 2 1 ,k n px x x     X   

which specifies the distribution of parameter x  along the curve. ix R  is the coordinate of 

the the ith knot, +1i ix x , and n  is the number of basis functions which the B-spline 

comprise. If the knots are equally spaced, the knot vector is called uniform. More than one 
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knot can be located at the same coordinate and these are referred to as repeated knots. In 

general, the basis function of order p  possesses 1p   continuous derivatives. If a knot is 

repeated k  times, than the number of continuous derivatives decreases by k . When a knot is 

repeated p  times, the basis function is interpolatory, but in general, they are not. More about 

B-spline curves can be found in [20]. 

B-spline basis functions are defined recursively. For 0p  , they are constant and 
expressed as 

1
,0

1
( )

0
i i

i
if x x x

N x
otherwise

 
 


.  (12) 

For 1,2,3,...p  , they are defined by 

1
, , 1 1, 1

1 1

i pi
i p i p i p

i p i i p i

x xx x
N x N x N x

x x x x
 

  
   


       

 
 . (13) 

The important properties of B-spline basis functions are that they constitute a partition of 

unity, ,
1

( ) 1,
n

i p
i

N x x


  , and that they are non-negative, i.e. , ( ) 0,i pN x x  . 

 

Fig. 2  B-spline basis function computational scheme 

A scheme for the derivation of a second order basis function is presented in Fig. 2. As 
evident, the basis function ,2iN  is constructed by means of the two first order basis functions 

,1iN  and 1,1iN  , where each of those is derived by the two functions ,0iN  , 1,0iN   and 1,0iN  , 

2,0iN  , respectively, according to the De Boor–Cox algorithm [21].  

B-spline surface is defined as the rectangular tensor product of B-spline curves. 
Accordingly, the B-spline surface of (p x q)th order is described by the relation  

, , ,
1 1

( , ) ( ) ( )
n m

i p j q i j
i j

S x y N x M y P
 

  ,   (14) 

where , ( )i pN x  and , ( )j qM y  are the basis functions of the B-spline curves of order p  and q  

in the x  and y  directions, respectively. ,i jP  are the control points building up the two 

dimensional control net. Now, the knot vectors are 1 2 1k n px x x     X   and 

1 2 1k n qy y y     Y  . 
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Fig. 3  Construction scheme of a 2-D B-spline basis function 

The construction of the B-spline surface over a patch defined by the basis functions , ( )i pN x  

and , ( )j qM y  is presented in Fig. 3. 

According to the above consideration, an in-plane distribution of a variable   over the 

defined control points ,k i jP P  may be expressed as the B-spline surface, which can be 

written in the following form  

1

( ) ( ) ( )
Kn

k k
k

B P


 X X B X P ,   (15) 

where the abbreviations ( ) ( , )S x y X . , ,( ) ( ) ( )k i p j qB N x M yX  denotes a 2-D basis 

function constructed over a patch defined by the functions , ( )i pN x  and , ( )j qM y  as presented 

in Fig. 3. The values of ( )kB X and kP  are expressed in the matrix form as ( )B X  and P , 

respectively. Kn  stands for the total number of control points. 

Since the B-spline surface is not interpolatory over the control points, the following 
condition is imposed  

ˆ( )I IB X P φ ,   (16) 

where ˆ Iφ  is the value of   to be interpolated at the control point IX . To impose the 

interpolatory condition, a linear transformation from the fictitous nodal values to the true 
nodal values should be performed similarly to the transformation found in [3]. Accordingly, 

the relation of -1 ˆ( )I IP B X φ  can be easily expressed from (16), and after inserting in (15), 

the following expression is obtained 

-1 ˆ ˆ( ) ( ) ( ) ( )I II I I  X B X B X φ X φ ,  (17) 

which yields the B-spline shape function  

-1( ) ( ) ( ) ,I I X B X B X   (18) 

having the Kronecker delta property ( )I J IJ X . 

3.3 Discretization of governing equations 

The stress tensor components in equation (6) are approximated in the in-plane directions 

by means of the basis functions    J J X  X  derived above. The linear distribution of 

the in-plane stress components and the transversal normal stress component over the thickness 
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is assumed, while the transversal shear stress components are used as constant in the thickness 
direction. Accordingly, the stress tensor may be expressed in terms of nodal values using the 
matrix symbols as 

 
1

ˆ
n

J J
J




 σ Φ X σ ,  (19) 

where  11 22 33 12 23 31
T      σ  is the stress vector,  J

Φ X  is the three-

dimensional stress shape function, while the vector ˆ Jσ  denotes the nodal stress values 

       3 3
4 4

2

J J
X X

X   


 
 
  

I I 0
Φ X

0 0 I
  (20) 

                   11 22 33 12 11 22 33 12 23 0 31 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT
J l l l l u u u u

J
            σ  (21) 

In the above relations,  3X  and  3X  are expressed by (7), while 4I  and 2I  stand for 

the 4x4 and 2x2 identity matrices, respectively. The notation (l) and (u) in the subscripts of 
the vector components (21) describe the values associated with the lower and upper nodes, 

respectively, and (0) refers to the middle surface. It should be stressed that  J X   is the in-

plane shape function associated with the Jth node couple inside the domain of definition of the 

current point X  . Thereby, the domain of definition is a region that includes all nodes whose 
nodal shape functions do not vanish at the current point, as defined in [22]. n  stands for the 
total number of the node couples inside the domain of definition. 

Substituting the approximated stress tensor components from (19) into (6), the 
discretized governing equations for a local sub-domain surrounding the Ith node couple are 
obtained, which may be written in the matrix form as 

     

   

     

   

1

1

ˆd d d

d d

ˆd d d

d d

I

I I I
s s su

I I
st s

I

I I I
s s su

I I
st s

N

J J J J
J L

N

J J J J
J L

  

 

 

  

 

 

     

   

     

   





 
   
 
 

 

 
   
 
 

 

   

 

   

 

H Φ G NΦ G NΦ σ

G t G b

H Φ G NΦ G NΦ σ

G t G b

  (22) 

with N  as the matrix of the components of the outward unit normal vector i inn e  on the 

local sub-domain boundary, and   3
3( )X G I ,   3

3( )X G I  are the diagonal 

matrices with 3I  as the 3x3 identity matrix. The matrices  H ,  H  are computed by the 

relations 

       ( ) , ( )T T
k k    H D G H D G    (23) 

where kD  stands for the standard 3-D kinematic operator. In addition, in equation (22), IN  

denotes the total number of the node couples inside the domain of influence of the Ith node 
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couple. The domain of influence is a region that covers all nodes whose shape functions do 
not vanish in the local sub-domain surrounding the current node couple. From the discretized 
equations in (22), it is obvious that there are altogether ten nodal unknowns per each node 
couple, as expressed in (21). However, the discretized equations represent only six equations 
for each local sub-domain. Therefore, in order to reduce the overall number of unknowns, the 
nodal stress components should be expressed in terms of the independently approximated 
displacements, as described in the following consideration. 

The displacement vector  1 2 3
T u u uu  is expressed in terms of the nodal values 

by analogy to the above stress interpolation equation as 

 
1

ˆ
n

u
K K

K
 u Φ X v ,   (24) 

where the displacement shape function matrix  u
KΦ X is given by  

   
   

   
     

3 3

3 3

3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0

u
K K

X X

X X X

X X X



 

  

  

 
 
   
 
  

Φ X  (25) 

Here, besides the linear interpolation of the in-plane displacement components over the 

thickness described by  3X and  3X , the quadratic hierarchical distribution of the 

transversal displacement component expressed by  

 
23

3 1
2

2

X
X

h


 
    

 
   (26) 

is introduced. Using the quadratic interpolation for the transversal displacement, the undesired 
thickness locking effect will be overcome. More about this locking phenomenon can be found 
in [10]. The vector of the unknown variable ˆ Kv  is  

1( ) 2( ) 3( ) 1(u) 2(u) 3(u)ˆ ˆ ˆ ˆ ˆ ˆ ˆT
K l l lu u u u u u    v ,  (27) 

where   is the parameter associated with the quadratic term of the transversal displacement 
approximation. 

By means of the standard 3-D kinematic relation for the strain vector kε D u  and the 

constitutive equation σ Dε , where D  stands for the 3-D elasticity stress-strain matrix, the 

nodal stress vector may be expressed in terms of the nodal values ˆ Kv  as 

1

ˆ ˆ
Jn

J KJ K
K

σ B v ,  (28) 

where  KJ K JB DB X  with  K JB X  as the matrix containing derivatives of the 3-D 

displacement shape function matrix. Jn  is the total number of the node couples inside the 

domain of definition of the Jth node couple. After inserting equation (28) into (22) and by 
neglecting the terms containing the body force vector, the following final discretized form of 
the governing equations on the domain of influence level is obtained 
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     

 

     

 

1 1

1 1

ˆd d d

d

ˆd d d

d

JI

I I I
s s su

I
st

JI

I I I
s s su

I
st

nN

J J J KJ K
J KL

nN

J J J KJ K
J KL

  

 



  

 



     

 

     

 

 

 

 
   
 
 



 
   
 
 



   



   



H Φ G NΦ G NΦ B v

G t

H Φ G NΦ G NΦ B v

G t





 (29) 

As obvious from (29), six equations are generated for each local sub-domain, while there are 
seven unknowns at each node, including the six nodal displacement components at the nodes 
on the upper and lower surface and the parameter   associated with the quadratic term of the 
transversal displacement interpolation. Therefore, additional equations are required for the 
solution of the boundary value problem. 

To obtain the additional equations, the equilibrium in the transversal direction is enforced 
at the mid-points located on the middle surface within each local sub-domain. Accordingly, the 

equilibrium at the mid-point  0
IX , as shown in Fig. 4, is expressed by the relation 

     3 , 30 0 0I I
j j b  X X .   (30) 

After the discretization procedure described above and the omitting of the body force, 
the following additional equation is obtained  

     

 

2 1, ,
1

1

1
0 0 0

1
ˆ0 0 0 0

I

J

n

J J X J X
J

n

J KJ K
K

X X X
h

X
h

  



  







 

 



 B v

   (31) 

Herein, In  is the total number of the node couples inside the domain of definition of the Ith 

node couple. Now, for each local sub-domain, a system of seven equations, expressed by (29) 
and (31), with seven unknowns, is derived. For the domain of influence with N  couple of 
nodes, a set of 7N  equations with the equal number of unknowns is evaluated. A closed 
global system of equations on the structural level is derived by using the node-by-node 
numerical assemblage procedure.  

 

Fig. 4  Mid-point equilibrium for the elimination of thickness locking effect 
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From the presented formulation it is clear that, in contrast to the fully displacement 
meshless formulation, the differentiation of the shape functions over the local sub-domains is 
avoided, because their derivatives are needed only at the nodes, which should contribute to 
the stability and accuracy of numerical solutions. Due to the stress interpolation scheme, the 
shear locking effect should be completely suppressed as will be demonstrated by the 
following numerical examples.  

4. Numerical examples 

4.1 Thin cantilever plate under transversal line load at free end 

As the first example, the bending of a cantilever plate subjected to the transversal line 

load of 3100q h   is considered. The length and the width of the plate are 10l   and 1b  , 
as shown in Fig. 5. The material data are Young’s modulus 200000E   and Poisson’s ratio 

0.0  . The plate is discretized by uniformly distributed grid points on the upper and lower 

surface in the directions of the global axes 1X  and 2X .  

   
 Fig. 5  Cantilever plate under transversal load Fig. 6  Convergence of free end deflection for l/h = 100 

The results computed by the present formulation using the MLS interpolation with the 
second order polynomial basis and by means of the biquadratic B-spline shape function are 
compared in Fig. 6, presenting the convergence study. The plate length to thickness ratio is 

/ 100l h   and the free end deflection is normalized by using the exact analytical solution 
[23]. As evident, the exact solution is achieved with fewer degrees of freedom when the B-
spline interpolation is used.  

A more detailed convergence study employing the relative deflection error in the 
discrete L2 norm has been performed. The results obtained by using both the MLS and the B-
spline shape functions are again compared in Fig. 7. The relative error is defined as 

 

 

2

1

2

1

N
I aI
i i

I
w N

aI
i

I

u u

r

u










,  (32) 

where I
iu  is the result of the meshless computation and aI

iu  stands for the exact analytical 

solution at the nodes.  

As may be seen, the formulation using the B-spline shape function is much more 
accurate for relatively coarse discretizations, but the accuracy is decreased for large numbers 
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of degrees of freedom. Furthermore, it was noticed during the computations that the loss of 
accuracy was accompanied by an increase in the condition number of the global stiffness 
matrix, which could be a reason for the loss of accuracy. The ill-conditioning of the global 
coefficient matrix may be caused by the linear transformation from the fictitous nodal 
parameters to the true nodal values presented in (17), performed in order to impose the nodal 
point interpolation. 

The sensitivity of the proposed mixed approach to the shear locking effect has been 
tested by increasing the plate span to thickness ratio, as displayed in Fig. 8. As obvious, the 
convergence is achieved even for very thin plates by both interpolation functions, which 
shows that the shear locking effect is completely eliminated.   

   
 Fig. 7  Relative errors of plate deflection Fig. 8  Free end plate deflection vs. 
 for l/h=100 span to thickness ratio for cantilever plate 

4.2 Clamped thin square plate under uniform load 

As the second example, a clamped thin square plate under the uniformly distributed load 
of 0.001q   is analyzed. The plate thickness to span ratio is / 0.01h a   and the material data 
are Young’s modulus 200000E   and Poisson’s ratio 0.3  . Due to symmetry, only one 
quarter of the plate is discretized by uniformly distributed grid points on the upper and lower 
surface. The discretization over the plate surface by 5x5 nodes is shown in Fig. 9. 

 

Fig. 9  Discretization and boundary conditions of clamped plate 

The relative deflection error in the L2 norm expressed by (32) has again been calculated 
and the results obtained by the MLS and B-spline shape functions are compared in Fig. 10.  
As evident from the figure and like in the previous example, the formulation using the B-
spline interpolation exhibits better accuracy for the discretization with a small number of 
degrees of freedom. However, the advantage of the B-spline again disappears in the case of a 
very fine discretization. 
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Now, by analogy to the previous example, the sensitivity of the proposed formulation to 
the shear locking effect has been tested by increasing the span to thickness ratio and the 
results are shown in Fig. 11. As evident, the shear locking is suppressed again. 

  

 Fig. 10  Relative errors of clamped plate Fig. 11  Central deflection vs. span to thickness 
 deflection ratio for clamped plate under uniform load 

5. Conclusion 

A new mixed meshless Local Petrov-Galerkin formulation employing both the stress and 
the displacement interpolations has been proposed for the analysis of plate structures. The 
kinematic of a 3-D solid is applied, allowing the use of complete 3-D constitutive equations. 
The interpolation has been performed by using the MLS and the B-spline shape functions in the 
in-plane directions, while the simple polynomials are used for the interpolation over the 
thickness. In order to eliminate the thickness locking effect, the hierarchical quadratic 
interpolation of the transversal displacement component through the thickness has been applied. 
The shear locking is completely eliminated by means of the stress interpolation. In contrast to 
the mixed meshless formulations already proposed by the authors, the complex transformations 
employed in the strain and the stress description are avoided in the formulation presented.  

The results computed by the present formulation using the MLS and the B-spline shape 
functions are compared. Both interpolation strategies exhibit accurate solutions, and the 
locking phenomena are completely suppressed, as shown by the numerical examples. The 
formulation using B-spline shape function yields smaller errors at a relatively coarse grid 
point distribution, but accuracy is reduced in the case of a very fine discretization. 
Furthermore, the derivation procedure of the B-spline shape function is much simpler than 
that of the MLS formulation, which is advantageous in meshless analyses. 

The reason for the loss of accuracy at the large number of degrees of freedom may be 
the ill-conditioned global coefficient matrix, which appears due to the linear transformation 
used to impose the interpolatory condition of the B-spline shape function. Therefore, further 
research is required to avoid the ill-conditioning of the global matrix arising because of the 
mentioned transformation procedure. In addition, other more efficient strategies to obtain the 
B-spline interpolation function with the Kronecker delta property should be considered. 
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